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Abstract— Sedentary behavior is a root cause of several
chronic conditions affecting health of adults and children in
the United States and worldwide. The chronic conditions that
result from this cause not only health concerns for these
individuals but significant economic burden. Exergaming, or the
merger of exercise and health information with video games,
presents a solution that attempts to address the sedentary
behavior of adults and children by making physically interactive
video games that increase energy expenditure. Such games,
particularly those that use the body as the controlling device for
the game through the use of accelerometers, have elicit moder-
ate levels of physical activity when measuring the metabolic
equivalent of task (MET) of the associated activities. This
work presents the support vector regression scheme in order to
better correlate accelerometer measurements with MET values.
Energy expenditure data collected on 14 individuals and their
accelerometer data have regressions with the mean absolute
difference (error) of the associated MET approximations is
under 2 and as low as 0.58 for full gameplay, an improvement
of well over 1 MET for all activities over related work.

I. INTRODUCTION

Sedentary behavior is a root cause of several chronic
conditions affecting health of adults and children in the
United States and worldwide [1] [2]. Such physical inactivity
often leads to overweight populations and obesity [3] that
are associated with chronic conditions such as cardiovascular
disease or diabetes. Cardiovascular disease and diabetes both
present a significant economic burden in the United States as
well as health, with cardiovascular disease accounting for an
estimated $670 billion in health care costs in 2010 [4] and
estimates suggesting diabetes may approach $900 billion in
health care costs by 2015 [5].

As a result, many solutions using wireless wearable sen-
sors have been presented to monitor activity [6] [7]. One
such solution is the use of these body-worn sensors, such
as accelerometers, to enable the actions of an individual to
control a video game [8]. Exergaming, or the mix of physical
activity to control an electronic game, has been shown
to increase physical activity [9] as well as other directed
goals, such as stroke rehabilitation [10]. Such exergames,
such as the ones presented in [11] [12] [13] [14], show
frameworks for potentially active video game play, but the
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energy expenditure of such systems needs to be further
verified, whether by activity type [12] [13] or by intensity
levels [11] [13]. Some work has been done to determine
the energy expenditure and metabolic equivalent of task
(MET) [15] of exergames to show that they can increase
energy expenditure and be a useful intervention over time
[16] [17] [18]. These systems do promote activity and thus,
accelerometer approximations to this energy expenditure
provide useful information about real exercise [19] [20] [21].

In order to provide useful information while exergaming,
accelerometer approximations to the energy expenditure need
to be created. Since it is difficult to measure the oxygen
consumption while playing, such as in [22], approximations
need to be developed that correlate closely to the caloric
expenditure values. Work such as [23] [24] [25] developed
advanced models of mapping accelerometer values to energy
expenditure. However, each uses a unique regression off the
data collected from the sensors, some of which were in
proprietary accelerometer counts. Further, they document the
need for individual accelerometer approximations for each
unique activity being modeled.

The current work introduces an advanced energy expen-
diture estimation model for a soccer exergame, which often
involves unique movements derived from reality but adapted
for gameplay. It will measure the appropriate output in terms
of METs, which can then be translated to caloric expenditure
directly based on each user. By using advanced, non-linear
models of regression, namely a support vector regression, it
will provide stronger mappings between exergaming move-
ments, the accelerometer readings for those inputs, and the
METs generated. It will be shown, through a leave-one-
subject-out cross-validation, that the robustness of such a
model for exergaming movements by measuring the mean
absolute error (by calculating the mean absolute difference)
in each approximation is greatly improved over standard
linear regression techniques.

II. RELATED WORKS
A. Common Regressions

Work in [26] showed an advanced, non-linear regression
method for walking energy expenditure approximation. By
using a support vector regression, instead of a standard linear
regression, [26] shows reduced mean square errors for walk-
ing energy expenditure estimations. The results support that
using advanced regression techniques can provide stronger
results. This work will adapt such a methodology to the data
collected and set of movements to a soccer exergame, to



expand upon results beyond walking to many types of leg
movements. Similarly, work in [27] uses an artificial neural
network, which also models a non-linear regression method,
to estimate METs of activities with low root-mean-squared
error by combining it with the activity detection. This work
will use the advancement of using the individual identified
activity in order to develop movement-specific models that
approximate the energy expenditure.

B. METs for Exergames

Work in [22] was one of the preliminary investigations into
the MET values associated with exergaming movements. A
trial conducted on six people showed that specific regressions
are needed for each type of activity, because the regular table
look up of energy expenditure does not allow for a vast
amount of variability. Work in [22] developed MET values
for a soccer exergame, using a simple linear regression,
showing simulated gameplay manufactured an average of
7 METs. This work extends [22], namely, more advanced
regression techniques are designed here to allow for robust-
ness across subjects. Work in [22] is a simple regression and
not data in cross-validation in order to measure error across
subjects. This work will continue the work of developing
accelerometer approximations for specific activities, in this
case soccer exergame movements, but develops a more
robust model to allow variability across subjects. First, this
work will adapt the method shown in [22] to work on
individual activities, and then will further apply a support
vector regression in order to produce strong results in cross-
validation.

III. METHOD

This section describes the data collection procedure and
trial conducted for MET approximations. This study was
a UCLA Institutional Review Board (IRB) approved study
# 12-000730, where 14 healthy adults, from ages 18-35,
were selected to run through the same protocol defined in
[22]. This trial consists of six movements and a simulated
gameplay phase to relate the data with actually playing a
game and the mix of movements necessary. The movements
are running in place, sprinting in place, passing a ball left,
chipping a ball left, medium powered shot, and a strong pow-
ered shot. Each movement was repeated consistently for three
minutes to measure the constant load of each movement, as
necessary to determine the oxygen consumption levels of
a user. Three minutes of rest between each set of moves
allowed for the user to return to a state of rest. The simulated
gameplay, in order to compare directly, was used from [22]
where the movements are mixed along with running actions
to mimic the game described in [11]. User’s wore a mask
connected to a metabolic cart in order to measure the volume
of oxygen consumed during the movements. This data was
averaged over 30 second windows. The motion data was
captured by wearing accelerometers strapped to the body
in three locations. The accelerometers were Shimmer3 [28]
wireless IMUs with a +/- 6g accelerometer sampled at 50
Hz. Those locations are the hip, on the right side, the ankle,

Fig. 1. User wearing sensors on the hip, ankle, and foot for collection trial

Activity AVG ± STD
Run 6.08 ± 3.32

Sprint 9.27 ± 3.14
Pass 4.39 ± 2.18
Chip 5.77 ± 2.58

Med Shot 5.13 ± 3.34
FP Shot 6.76 ± 2.61

Sim-Game 8.24 ± 2.09

TABLE I
A HIGH STANDARD DEVIATION OF METS FOR EACH ACTIVITY

on the outside of right leg, and the foot, on top of the right
foot, as shown in Fig. 1.

A. Data Processing

Data that was collected involved the volume of oxygen
consumed during three minutes of constant load activity.
From this information, listed as V O2(

ml
min ), MET can be

calculated as

MET =
V O2

k ×m
(1)

where k is a factor that scales based upon the physical
condition of the user (3.5 in the case of the trial in this
work), and m is the mass in kilograms of the user. Since the
data is collected from the IMUs at 50 Hz, the data needs to
be averaged. Similarly to [22], the magnitude of acceleration
is calculated, then averaged over 30 second windows. The
peaks as well as flat rest data are selected and used for the
regression.



B. Cross Validation

While the R2 correlation coefficient of a regression reports
the fit of the regression to the data, this does not necessarily
account for variability across the users, even those shown
in [22], greater variability is found over the 14 subjects
collected here. A leave-one-subject-out cross-validation is
run to test the generated models’ variability across each test
subject. Table 1 shows greater variability than reported in
[22], where in [22] most standard deviations were reported
to be under 2, even close to 1 in many cases, here they
range between 2 to 3 METs that, if reported incorrectly,
is a wide range for physical activity (perhaps the difference
between low and moderate physical activity). For each test
subject, the training data is split between each activity. Each
of these activities have their own model. The test data is then
run on the model to see what determined predicted MET
value is produced, labeled METreg . Then the mean absolute
different (MAD) is calculated for each activity and reported
to determine the best results. The MAD is calculated as

MAD =
1

n

n∑
i=1

abs(MET −METreg) (2)

where n is the number of subjects, MET the ground truth
measured value and METreg the output of the regression
model. A model’s robustness will be determined by a low
MAD (also reported as mean absolute error in some works).

1) Sensor Selection Method: The sensor selection method,
first reported in [22], was implemented using the polyfit func-
tion in Matlab. For each activity, the seven different training
configurations had each model created. The configurations
were using only the hip, only the ankle, or only the foot
sensor data, or the combination there of. Then the R2 of
each model is evaluated on the training data alone to pick
the best reported model as they choose. This model is then
used to calculated the absolute difference of predicted MET .

2) Support Vector Regression: Using LibSVM [29], a sup-
port vector regression is created, using an epsilon-svm and a
radial basis function kernel. Similarly to the Sensor Selection
method each activity model has its reported METreg value
outputted and the absolute difference stored for the overall
mean absolute difference.

IV. RESULTS

As seen in Table 2, the robustness of each method is
shown. The mean absolute difference of each movement
type is shown, validating the need for movement, specific
models. Certain movements, including the simulated game-
play, have much better mean absolute difference values than
other associated moves. Further, the movement models can
be separated easily by using a classifier to find a move
type first. The Support Vector Regression performs better in
every movement, and is particularly strong for the simulated
gameplay. This would lead one to believe a robust, advanced
regression model, can produce highly accurate energy expen-
diture values for such an exergame.

V. FUTURE WORK

There is higher variability still presented by the increase
in data. Thus, more data needs to be collected, and across
different body types to account for various states of well-
being from fully healthy and active to completely sedentary
and obese. Further, models that allow for more variability
across types should be compared. Finally, the variability
between such exergaming movements and the energy expen-
diture values, should be compared over longer periods of
actual gameplay.

VI. CONCLUSIONS

Exergaming has shown the need for advanced energy
expenditure models for the specific type of motions neces-
sary for such games. By calculating the energy expenditure
through the usage of oxygen consumed by a user, this work
developed a model and approximation method for estimating
the metabolic equivalent of task (MET) of each activity in
a soccer exergame through the usage of a support vector
regression. This higher dimensional regression tool, in cross
validation, had a mean absolute error (mean absolute differ-
ence) of less than 2 for every movement, and in some cases
under 1. This low error is a full MET, in some cases 2 METs,
better than similar linear regression techniques, providing a
significantly more accurate accelerometer approximation to
energy expenditure for exergaming movements.
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