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Abstract
Exergaming, the use of activity, exercise, and
information in video games, has been a growing field
for the promotion of wellness and for preventing and
treating obesity. Realistic exergaming requires
movements that are adapted from detailed, fine-grain
motions. An appropriate, active exergame requires a
user-centric design, allowing for accurate motion
recognition as well as a real-time responsiveness,
often balancing accuracy with latency. This paper
presents a framework for such an exergaming system,
specializing on human interaction. This system
includes a method for dynamically altering the
algorithm to analyze the trade-off between
classification accuracy and real-time responsiveness,
allowing for a unique, tailored, interactive experience.
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Introduction
Accurate physical activity monitoring of human motions
has importance in many applications. These
applications include medical monitoring systems [10],
personal training [9], and personal gaming [1]. The
latter, personal gaming, is of particular interest, since it
spans the realm of different forms of human activity
monitoring. Such monitoring can be on general
movements [5], or detailed movements, such as those
in exergaming, which is activity monitoring for gaming
with targeted health applications [1]. This latter
application realm is a target solution for childhood and
adult obesity, a growing epidemic [14] and economic
burden [4]. Indeed, work in [4] estimates that, over the
next two decades, there will be a 33% increase in
obesity and 130% increase in severe obesity in the
United States. That work also proposes methods to
save almost $550 billion in medical expenditures over
that time. Exergaming has potential to help both the
health epidemic as well as relieve some of the health
care economic burden. User adherence to a game,
however, drops with noticeable latency [3]. Latency can
alter the user experience in a negative fashion in many
application realms, for example, in user performance in
gaming consistency and experience [15]. Ultimately,
this shows the importance of analyzing each aspect of
any interactive system and the importance of the
human element in that loop.

This paper presents a system and optimization
approach for playing a realistic soccer exergame,
based on a system developed in [8]. That game
consists of a sensor system for user input, a
classification method for fine-grain activities, and a
visual interface on a mobile tablet for gameplay and
feedback. This paper dynamically adjusts the algorithm

presented in [8] through the use of a derivative free
optimization approach in order to define a unique
exergaming experience for each individual user.
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Figure 1: System Architecture of User Playing Soccer
Exergame

Related Works
General Activities of Daily Living Monitoring
In [12], hereafter known as RDML, a method is
presented that uses a combination of the mean of
accelerations, the standard deviations, the energy or
power expenditure, and a correlation between the
channels of an accelerometer worn on the body for
general activity monitoring of standing, walking,
running, climbing up stairs, climbing down stairs,
sit-ups, vacuuming, and brushing teeth. Features are
extracted from windows of size 256, which is five
seconds of repetitive, cyclical movement data.
Fine-grain movements that fit in much smaller windows
could be problematic in such a scenario. Ultimately,
these calculations do not properly classify fine-grain
movements[8], but are still presented as applicable to
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the dynamic optimization approach presented here.
Move Description
Back Heel Kick Backward
Behind Foot Pass Pass left
Chip/Lob Lift ball
Fake Shot Fake kick
Flick Pass Flick pass
Full Swing Shot Full shot
Laces Shot Mid shot
Quick Shot Low shot
Curved Shot Placed shot
Through Pass Diagonal pass
Pass Pass left
Step Over Move Swing around ball
Side Step Step right
Run Step
Sprint Step 2x

Table 1: Movements Captured

Exergaming
There exist many vision-based exergaming
approaches. The Microsoft Kinect camera system and
SDK for human motion monitoring has proven effective
[11] at monitoring activity. Skeletal gestures are
combined principal component analysis (PCA) [11] to
classify movements. The goal of this work is to develop
a general system that can be used in a mobile setting
that approaches the classification of many movements
and delay in a similar fashion to those presented in [11]
that use specialized hardware for processing.

Derivative Free Optimization
Dynamic optimization problems encompass the range
of optimization problems where the constraints
themselves often require complex solutions or
simulations [13], and indeed, might be learned or
sampled instead of known. Often, work involves
evaluating different solvers for smooth or noisy
constraint functions [7] or interpolation and
approximation [6]. This paper takes the latter
approach, by sampling the function for the constraint
instead of knowing it outright. [2] uses a case based
dynamic window to improve results and this work will
take a similar approach for dynamically adjusting the
window size, not for rule refinement, but for real-time
responsiveness.

System Architecture
Exergaming Overview
This section describes the full system architecture
presented in Figure 1. This figure shows the user
playing the exergame. It starts with a motion from the
user, follows to the sensing platform and movements

required. From here, data is wireless transmitted to a
computing device (e.g., a tablet computer). This
computational device contains the recognition engine
as well as dynamic optimization tools. When
movements are detected they are passed to the game
and the information is returned to the user via a visual
interface. This loop needs to happen in a responsive
fashion for an appropriate, interactive user experience.

Soccer Exergaming
Work in [8] develops a mobile, interactive gaming
system for classifying fine-grain movements. The
system developed in this paper incorporates an
optimization approach to such a system, in order to
develop a more responsive, unique exergaming
experience. The classification engine in that game is
based on twenty four users collecting the movements
listed in Table 1, all referenced from the right foot
wearing a three-axis accelerometer and three-axis
gyroscope sampled at 100 Hz. A nearest-neighbor
classifier based upon reconstructions from a principal
component analysis are used to find the appropriate
movements, based upon a 330 point sliding window,
roughly 3 seconds, the full length of the largest move,
and a source of the classification delay.
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Figure 2: Sensor System and Computational Units
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Dynamic Optimization
Problem Formulation
At its basis, the trade off between classification
accuracy and latency can be modeled as an
optimization problem. This work will use the Micro F1
score to measure overall accuracy, as it accounts for
the precision and recall of a system. Using accuracy
alone could bias a solution since a data set this large
might result in high accuracy even if it classifies 0
movements because the number of true negatives
would have been high. The F measure is calculated as
follows:

F = 2× P ×R

P +R
(1)

where P is the precision and R is the recall rate of the
learning model, and the factor of 2 puts the end result
back in the familiar 0 to 1 range of precision, recall, and
accuracy. Implicitly, F can be defined as F (δ) where δ
is a delay factor for the system. This is because the
more data present the better the system can classify;
however, the more data used before a classification is
made, then the longer the feature extraction steps take
before classification. If one considers a system layout,
as in Figure 2, where each sensor channel (from
possibly different sensors) provides data at a given rate
to different computational modules, an eventual
classification is made when considering the
combination of the data provided to each
computational unit and the delay with which its
computation proceeds. These values are, however,
very application dependent and need to be learned. In
fact, delay can be considered as the following:

δ = max
c

{
∑

i

(αi × ri × ki)− β} (2)

where ri is the data rate to a given module, ki is the
computational delay for that operation, such as feature
extraction, αi is a scaling factor for a given module’s
importance to the overall delay, β is the real-time length
of the motion (e.g. two seconds to shoot a soccer ball,
delay only matters after the motion is completed at the
point the ball should leave the foot) and the delay is the
maximum such delay over all the sensor channels
necessary to calculate the class C. From this, F as a
function of δ becomes more clear and this presents the
optimization problem of:

min δ (3)

subject to
F (δ) ≥ τ (4)

where τ can be some predefined accuracy threshold.
The difficulty comes in determining both the F (δ) and τ
because the former is learned, and the latter is
application specific. Figure 3 shows how the F
measure changes as the window size changes. In
particular, window size is one of the features that
represents overall delay, and it seems here that the
window size can range from about 150 to 330 samples
with similar accuracy results. If a move takes 2
seconds (or 200 samples) then the most accurate point
also represents the highest delay, a trade off the user
might not want, when the 0 delay point has reasonable
accuracy.
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Dynamic Adjustment

Figure 3: F Measures as scaled with window size for
average and for different users as test subjects

As shown in Figure 3, different curves result from
leaving specific users out of the training in a
cross-validation setting of the data set in [8], using
different window size each time. In other words, the
way in which an individual user might perform
particular actions either conforms to the model or
shows their necessity in the training set for a more
robust model for other users. The right hand side of the
constraint then becomes τ(δ), which is also sampled
and learned. From this, a dynamic solution must be
derived. A method to alter the delay must be chosen
that is adaptable while in use. In particular, a dynamic
window-size algorithm is chosen, where the constraint
optimization problem tells us the left hand side of the
constraint and the minimization goal wants to shrink
the window size as much as possible while the right

hand, the constraint threshold, limits this shrinking.

The learned model has a maximum classification
accuracy at the full window size of 330 points. The
dynamic windowing compares the classification result
at the smaller sizes with the full size that is most
accurate on the largest number of subjects, because
no ground truth is known while a user plays with the
system, and so the best known result must be used
and compared. If a series of matches are found, where
reduced window sized classification matches full
window sized classification, the window size is shrunk.
If a series of mismatches are found, the window size is
increased again. In both cases, the threshold to allow
for re-sizing can be adjusted per application use. In this
case, since the latency is of greater concern, a series
of only five matches in a row will be enough to shrink
the window size (a number deemed an aggressive
shrinking factor that still clearly represents a pattern of
correct results). This aggressive shrinking must then
be robust enough to regrow the window if it shrank in
error (e.g., the user only performed one action correctly
ten times and it was a small window sized action).
Thus, five misses in a row will set a lower boundary on
the possible window size and the window is grown, half
way back to the previous set. As a result, a form of
binary search results in eventually settling on an
operating window size that is user specific. If the
accuracy is of greater concern, the system can be
altered to shrink less aggressively and re-grow more
aggressively based on F (δ).

Results
A leave-one-subject-out cross-validation was used in
order to interpret the results of this interactive system,
and was applied to an algorithm for fine-grain motions
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as well as one designed for general daily living to show
the adaptability of such a method. This cross validation
was developed to simulate the algorithm behavior in an
online setting by providing movements over time. The
data set is that of [8].

RDML
The dynamic windowing algorithm was run a data set
of moves from RDML to show a slow shrinking result in
a system where accuracy is considered more
important than delay, needed a greater number of
correct matches. This shows the system is adaptable
to general daily living and can be used to convert such
a method to a real-time one. Figure 4 shows that this
algorithm can slowly shrink to what is even less than
the 256 point window size that is chosen by RDML.

Figure 4: Dynamic windowing
of RDML algorithm

Soccer Exergaming
Figure 5 shows four such runs of four users run to
dynamically adjust the window sizes (where iterations
are classification queries, including those that result in
no movement, as defined in [8]). This shows each
individual user has a different response to the model.
Since this value is learned and sampled instead of
defined, each user receives a tailored experience with
a particular-sized window fit for that individual’s
performance. Note that Figure 5(a) settles on a much
larger size than might have been picked with Figure 3,
while Figure 5(b) is much smaller. Figures 5(c) and 5(d)
show an average window size of 160 points. However,
all show that in some cases this algorithm picks a
much smaller window size than would be expected
from general model, giving a user-centric model.

Future Work
The system described in this paper shows a soccer
exergame, with a dynamic optimization algorithm,
developed on a tablet using a wearable sensor on a
user’s foot. The formulaic representation of the
problem allows for adjustments to other parameters,
including data rate, sampling rate, features, and/or
power considerations to fine tune the human
interaction. A more automated way to determine the
dynamic adjustment and threshold parameters should
be defined. Finally, some discussion should surround
situations in which the smaller, optimized system
provides higher accuracy than the full model, and thus
certain misclassifications are desired and should be
kept.

Conclusion
This paper presents an interactive exergame system
with a method for optimizing the detection of fine-grain
physical activity of the human body in a real-time
environment for each individual user. The
derivative-free optimization metrics can be adjusted on
a per-application basis with the trade off of delay
versus accuracy in mind. This gives each user a
unique experience in a generalized exergame. Results
run on data sets show that previous exergaming
systems can be tailored to provide a lower-latency
classification system with high accuracy during
gameplay, giving each the best possible system of
gameplay accuracy and gameplay latency.
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(a) A user with accuracy results needing a large window
size than the average F-Measure shows

(b) A user with a much smaller window size than the av-
erage F-Measure shows

(c) A user with a window size indicated by the average
F-Measure

(d) Another user with a window size indicated by the av-
erage F-Measure

Figure 5: Dynamic windowing of Soccer Exergame for (a) a below average user (b) an above average user (c) an average user with
expected window size and (d) another user with an expected window size
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