
COLO: COarse-grained LOck-stepping Virtual Machines for
Non-stop Service

YaoZu Dong1,2, Wei Ye1,2, YunHong Jiang1, Ian Pratt 4, ShiQing Ma1,2, Jian Li3, HaiBing Guan1∗

1 Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, China.
2 Intel Asia-Pacific R&D Ltd., China

3 School of Software, Shanghai Jiao Tong University, China.
4 Bromium Inc., USA

eddie.dong@intel.com, li-jian@sjtu.edu.cn, hbguan@sjtu.edu.cn

Abstract

Virtual machine (VM) replication provides a software
solution of for business continuity and disaster recovery
through application-agnostic hardware fault tolerance by
replicating the state of primary VM (PVM) to secondary
VM (SVM) on a different physical node. Unfortunate-
ly, current VM replication approaches suffer from ex-
cessive overhead, which severely limit their applicabil-
ity and suitability. In this paper, we leverage the practi-
cal effect of networked server-client system that PVM
and SVM are considered as in the same state only if
they can generate the same response from the clients’
point of view, and this is exploited to optimize perfor-
mance. To this end, we propose a generic and high-
ly efficient non-stop service solution, named as “CO-
LO” (COarse-grained LOck-stepping virtual machine)
utilizing on-demand VM replication. COLO monitors
the output responses of the PVM and SVM, and rules
the SVM as a valid replica of the PVM according to
the output similarity between PVM and SVM. If the re-
sponses do not match, the commit of network response
is withheld until PVM’s state has been synchronized to
SVM. Hence, we ensure that the system is always ca-
pable of failover by SVM. Although non-determinism

∗Corresponding author.

Copyright c© 2013 by the Association for Computing Machinery, Inc.
(ACM). Permission to make digital or hard copies of portions of this
work for personal or classroom use is granted without fee provided
that the copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the first
page in print or the first screen in digital media. Copyrights for com-
ponents of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific per-
mission and/or a fee.

SoCC’13, 1–3 Oct. 2013, Santa Clara, California, USA.
ACM 978-1-4503-2428-1.
http://dx.doi.org/10.1145/2523616.2523630

may mean a different internal state of SVM from that
of the PVM, it is equally valid and remains consisten-
t from external observations. Unlike earlier instruction
level lock-stepping deterministic execution approaches,
COLO can easily support Multi-Processors (MP) involv-
ing workloads with the satisfying performance. Results
show that COLO significantly outperforms existing ap-
proaches, particularly on server-client workloads such as
online databases and web server applications.

1 Introduction
Surviving hardware failure is critical to achieve non-
stop service for networked client-server systems in data-
center and cloud computing environments. Software-
Based Replication (SBR) model provides an OS- and
application-agnostic high availability as well as a high
flexible redundancy solution in virtualized environmen-
t. SBR model enables non-stop service through virtual
machine (VM) replication, which allows cloud service
providers to deliver dependable infrastructure as a ser-
vice. Generally speaking, SBR model replicates the pri-
mary virtual machine (PVM) in a specific frequency to
a secondary VM (SVM), and use the SVM to take over
the service once a fault state of the PVM is detected.
It has shown significant advantages than the hardware-
implemented fault tolerance solutions, such as HP Non-
Stop server [4], which require redundant components
and specific system design to maintain and switch from
the faulty component to the backup [15][24][32]. Be-
sides its expensive price and low industrial popularity,
hardware-implemented fault tolerance solutions can on-
ly provide the physical server level replication rather
than indicated VM replication, which reduce the flexibil-
ity, elasticity and scalability features in cloud computing
and data-center environment.

Conventionally, one kind of SBR approach replicates
VM state at instruction level using a technique known
as lock-stepping [13] [18] [30] [31] [21], where PVM

and SVM execute in parallel for deterministic instruc-
tions. In contrast, lock-stepping is applied for non-
deterministic instructions, achieving the same state at
the boundary of those instructions. The instruction level
lockstepping method is only suitable for the single pro-
cessor VM, and their performance will degrade dramat-
ically to one-seventh for the guest with more than one
processor due to the high non-deterministic execution
results of each memory access instruction [19]. Thus,
the solution of lock-stepping at the boundary of each in-
struction is inefficient.

Another kind of SBR approach replicates the VM s-
tate at the boundary of each epoch with periodic check-
points, that is, the PVM state is replicated to the SVM
periodically, such as Remus [17]. Remus buffers the out-
put packets until a completion of successful checkpoint
in order to enable the failover from the replica in case
of the hardware failure on PVM hosting physical node.
However, periodic checkpointing suffers from the extra
network latency due to output packet buffering, and the
heavy overhead due to the high checkpoint frequency.

Note that the perfect matching between PVM state
and SVM state is an overly strong condition. On the
other hand, the non-stop service can be achieved only
if the SVM can successfully take over the service while
respecting the application semantics at the time of hard-
ware failure (no matter the machine state is identical or
not). In this case, it is a key point to identify the bound-
ary for the divergence between machine states in order
to determine when the SVM becomes an invalid replica.
From the client’s point of view, the SVM is qualified as
a valid replica of the PVM as long as the PVM and SVM
can generate the identical responses. If so, the SVM can
successfully take over when the PVM is in a hardware
failure, so that it provides the unnoticeable high avail-
ability service (transparency), according to the service
semantics.

Though execution of non-deterministic instructions
may cause immediate differences in machine states, the
PVM and SVM will likely generate identical outputs in a
short interval. For instance, the TCP timestamp typically
uses the system ticks, and its value is non-deterministic.
However, the timestamp becomes different only after the
accumulation of a sufficiently large clock drift between
the PVM and SVM. Therefore, we use output similarity
or response similarity [22] to analyse and quantify the
divergence between PVM and SVM.

In this paper, we propose COLO, a non-stop ser-
vice solution with coarse-grained lock-stepping VMs for
client-server systems. The PVM and SVM execute in
parallel, and the inbound packets from clients are deliv-
ered to both. COLO receives the outbound packets from
both the PVM and SVM and compares them before al-
lowing the output to be sent to clients.

The SVM is qualified as a valid replica of the PVM,
as long as it generates identical responses to all client
requests. Once the differences in the outputs are detect-
ed between the PVM and SVM, COLO withholds trans-
mission of the outbound packets until it has successfully
synchronized the PVM state to the SVM. COLO trans-
fers the incremental VM states during checkpointing, for
efficiency. As execution continues the PVM and SVM
will again start to diverge due to non-determinism, and
COLO will continue to compare the output until it de-
termines resynchronization is required. Thus, COLO en-
sures the SVM is always a valid replica of the PVM from
the point of view of all clients, and can take over if the
PVM fails.

The contributions of this paper are as follows:
• Taking advantage of output similarity between the

PVM and the SVM, we propose a novel solution for
non-stop service for server-client systems, based on
coarse-grained lock-stepping VMs.
• We discuss the design and implementation of

coarse-grained lock-stepping on Xen and compare
it with the periodic checkpointing solution, Remus.
• We explore how performance can be improved

through modifications of TCP stack for improving
determinism and hence output similarity, which can
effectively reduce the frequency of VM replication.
• We conduct a comprehensive set of experiments to

measure the performance of COLO for different us-
age scenarios.

The evaluation results show that COLO has potential
to scale well with the increasing number of virtual C-
PUs. COLO can achieve the native comparable perfor-
mance in SysBench testing [33] with CPU and memory
workloads and achieve 80% of native performance run-
ning Kernel Build workload. In the same testing scenari-
o, COLO outperforms Remus by 29%, 92% and 203%
respectively in task completion time of Kernel Build.
In FTP server [34] GET and PUT benchmarks, COLO
achieves 97% and 50% of native performance, outper-
forming Remus by 64% and 148%, respectively. In Web
Server tests with WebBench [34], COLO achieves up to
native performance, outperforming Remus by 69% when
running WebBench with up to 256 concurrent threads.
In the pgbench PostgreSQL data base benchmark CO-
LO achieves 82.4% of native performance on average
and 85.5% of native peak performance, outperforming
Remus by 46% and 34%, respectively.

Note that COLO is built on top of Xen [10] and its in-
cremental VM check-pointing solution, Remus [17], but
the solution itself is generic enough to be implement-
ed in other hypervisors. In COLO system, the replicas
are executed in the context of a PVM with one or more
backup replicas dynamically configured in an n-modular
redundant fashion. The necessary patches of COLO have

been posted on the Xen mailing list, and the original idea
was presented in Xen summit 2012 [3].

The rest of the paper is organized as follows: Sec-
tion 2 gives a brief introduction of Xen and Remus
passive-checkpointing approach. In section 3 and 4, we
describe the coarse-grained lock-stepping VM (COLO)
approach as well as the detailed implementation. Section
5 presents the evaluation results, and Section 6 shows re-
lated work. We conclude the paper and describe future
work in Section 7.

2 Background: Xen and Remus
Xen implements a split device driver model, with a fron-
tend (FE) driver running in the guest communicating
with a backend (BE) driver running as a service in do-
main 0, as shown in Figure 1. In the split device driver
model, the FE driver communicates with the BE driv-
er through shared memory for bulk data transfers, and
uses an event channel (indexed by a per-guest port), for
notifications. Direct page table mode is used in the Xen
paravirtualized (PV) guest, which cooperatively works
with hypervisor to manage both the hardware and guest
view of page tables [10], though this is not an architec-
tural requirement of the COLO approach.

Domain 0

Backend
Drivers

Guest

Remus
Frontend
DriversRemus

Direct
Page TableEvent Channel Xen

Figure 1: Xen/Remus Overview

Remus implements an active PVM/passive SVM
model, that is, the PVM executes actively, while the
SVM is suspended until a PVM failure passes control to
the SVM. Remus periodically takes checkpoints of the
VM state, including CPU, memory, and device states,
replicating them from the PVM in the primary node to
the SVM in the secondary node. Remus transfers period-
ic checkpoints based on Xen live migration techniques
[16].

Remus uses heartbeat monitoring, which is a software
component running on both the primary and secondary
nodes, to periodically check platform availability. When
the primary node suffers a hardware fail-stop failure, the
heartbeat stops responding, the secondary node will trig-
ger a failover as soon as it determines the absence of
heartbeat.

Remus only executes the SVM after failover, when a
hardware fail-stop failure is detected in the primary n-
ode. Because the SVM in Remus is not actively execut-
ing during each epoch, we refer it as a passive check-

pointing, and say COLO performs active checkpointing
because it actively executes the SVM after each check-
point. This make COLO as a revolution architecture de-
sign for software based replication, which will be de-
scribed in the next section.

3 COLO Design and Principles
In this section, we introduce the design principle of CO-
LO, a VM-based coarse-grained lockstepping solution,
implementing based on Remus and Xen PV guests. We
explain how to use the output similarity to determine the
checkpointing time for the networked server-client sys-
tem and discuss the efficiency in replication overhead
reduction. Then, we highlight the implementation chal-
lenges and solutions how to extend and optimize the X-
en passive checkpointing solution for active-checkpoints
by improving the output similarity between PVM and
SVM.

3.1 Output Similarity Model
As introduced before, COLO initiate a server-client sys-
tem in the PVM and SVM at exactly the same state
and then stimulate them with the same incoming events.
Then, the identical results should be produced for a spe-
cific interval, which depends on the deterministic execu-
tion performance of PVM and SVM. We now introduce
how to detect the output divergence between PVM and
SVM with the response model.

Response Model: A client-server system can be con-
sidered as a request/response system, where a clien-
t sends its request to the server and the server responds
to the client. The request and response packets (denot-
ed as r and R, respectively) form a stream of packets,
as shown in equation (1) & (2). ri and Ri denote the ith
request and response packet, respectively.

r = {r0,r1,r2, ...,rn, ...} (1)

R = {R0,R1,R2, ...,Rn, ...} (2)

The response packet for the current request can typically
be determined by the request stream consisting of prior
requests. That is, the nth response packet is a function of
the request stream. In previous literature [14][20], server
hot swap solutions were actually built based on this as-
sumption for certain applications and usage models (for
example, a uniprocessor system running Apache server).

Output Similarity: In many cases, the response to the
current request is determined by both the prior request
stream and the execution of non-deterministic instruc-
tions (such as I/O, interrupts, and timestamp counter ac-
cesses). Consequently, the response packet Rn can be
considered as a function of both the prior request stream
and the execution results of non-deterministic instruc-
tions, as shown in equation (3) (where the execution

result of non-deterministic instructions is denoted as a
variant U). COLO duplicates the request stream to both
PVM and SVM, however, the variant U differs by na-
ture between the primary and secondary servers. Rp

k and
Rs

k denote the kth response packet from the PVM serv-
er and SVM server, respectively. More importantly, the
result of memory accesses in a multiprocessor system
is typically non-deterministic, which means that non-
deterministic instructions are pervasive in modern server
systems.

Rn = gn(r0,r1,r2, ...,rn,U) (3)

On the other hand, from the clients’ points of view, ev-
ery response stream delivered by equation (3) (no matter
what U is), is a valid response according to the server
application semantics or the service semantics.

Output Similarity Bound for Coarse-Grained
Lock-Stepping: Even though the execution of non-
deterministic instructions may cause immediate differ-
ence in VM machine states, the primary and backup
servers may still generate identical outputs in a short ter-
m, i.e. the PVM and SVM have output (response) simi-
larity, and we measure the output similarity as the num-
ber of identical output packets that PVM and SVM gen-
erate.

Client
Request

1 2 4 53

P1 P2 P4 P5P3
Primary VM

= = !=

Primary VM
Response

Secondary VM

= =

S1 S2 S3’ S4
Response

Client Received
Response

S5

P1 P2 P4 P5P3

Figure 2: VM Based Coarse-grained Lockstepping

COLO implements an efficient and generic virtual
server replication solution by taking advantage of out-
put similarity. COLO runs both primary and secondary
VMs in parallel, as long as both VMs generate identical
responses to client requests. If the output diverges due
to the accumulated results of non-deterministic instruc-
tions, as shown in Figure 2, then the SVM is no longer a
valid replica of the PVM. At that point, COLO will initi-
ate a coarse-grained lock-step operation: It replicates the
PVM state to the SVM.

Failover: If the PVM fails, the replica (SVM) can pro-
vide failover and send its response stream to the client.
From the client’s point of view, the response stream con-
sists of packets from PVM p (1st to kth packets of Rp)
and the packets from SVM s (starting from the (k+1)th
packet of Rs), as shown in Equation (4), where a failover
is implemented by switching output packets from the

PVM to the SVM at the (k+1)th packet.

C = {Rp
1 , ...,R

p
k ,R

s
k+1, ...} (4)

3.2 COLO Overall Architecture

Figure 3: COLO Overall Architecture

The architecture of COLO is shown in Figure 3. It
consists of a pair of networked physical nodes: the pri-
mary node running the PVM, and the secondary node
running the SVM to maintain a valid replica of the PVM.
PVM and SVM execute in parallel and generate output
of response packets for client requests according to the
application semantics. The incoming packets from the
client or external network are received by the primary n-
ode, and then forwarded to the secondary node, so that
both the PVM and the SVM are stimulated with the same
requests (in terms of packet data and sequence).

The COLO manager are planned in the hypervisors
both in the primary node and secondary node. The CO-
LO manager on the secondary node consumes the output
packets from the SVM, and forwards them to the COLO
manager in the primary node. The COLO manager in
the primary node receives the output of PVM and that
of SVM, then it checks if SVM is a valid replica of the
PVM according to the output similarity model, as shown
in Figure 3.

If the SVM is a valid replica as of packet k, the prima-
ry node can then immediately release packet k, as shown
in Figure 3 as well. If the response packets are diver-
gent (the SVM is no longer a valid replica), the COLO
manager forces a new checkpoint to forward the PVM
state (including the not-yet-released output packets) to
the SVM to regenerate an exact VM replica, and resumes
execution.

3.3 Challenges of Output Similarity
Note that COLO can relax the checkpointing frequency
based on output similarity model. Since the inbound re-
quest packets are duplicated to both PVM and SVM, the
stimulation of both are exactly the same. Therefore, the

divergence between PVM and SVM may be incurred on-
ly from the VM execution and indetermination of output
connection level network protocol stack.

3.3.1 VM State Divergence
The divergences of VM states between PVM and SVM
in COLO are workload dependent. In other words, dif-
ferent workload with CPU, I/O, disk, memory access re-
quirements will result in different VM divergence state
and output similarity, and consequently result in a dif-
ferent checkpointing frequency. 1) Every replication of
PVM to SVM makes them in the same state. Then, CO-
LO can deal with deterministic CPU intensive comput-
ing applications perfectly since the same input will pro-
duce the same results. In this case, COLO can achieve
almost the same performance as native system without
duplication. 2) If COLO hosts the I/O intensive work-
load such as key-value database server or other device
I/O operations, the COLO deals with device state lock-
stepping with difference methods, which will be intro-
duced in COLO implementation in Section 4.4. Briefly,
take the example of key-value database server, PVM and
SVM normally produce the same response to the ‘GET’
requests. However, the ‘PUT” request may introduce d-
ifferent data values in PVM and SVM, and COLO con-
siders the state of storage device as an internal state of
the guest to replicate. Therefore, COLO snapshots the
local storage state as part of the VM checkpoint, which
will degrade the I/O performance in comparison to the
native performance. However, our experiments in Sec-
tion 5 illustrate that COLO still outperforms the original
checkpointing scheme (Remus) significantly in PUT op-
eration.

3.3.2 Connection Level Output Similarity

A server of a networked system may have multiple TCP
connections and may respond to multiple client request-
s concurrently, which imposes additional challenges for
maximizing output similarity. First, even if the response
packets from each TCP connection are identical, the se-
quence of response packets across different TCP con-
nections may be different between PVM and SVM, re-
sulting from the non deterministic instruction execution.
However, each TCP connection runs independently, and
can recover from failover for each the TCP protocol, ac-
cording to the model described in subsection 3.1. Fur-
thermore, the TCP/IP stack is designed to be able to deal
with the reordering of the packets within and across TCP
connections. For example, a network router may take d-
ifferent routes for different packets per internal policy in
a conventional network system, and therefore it is possi-
ble that the network packets from different TCP connec-
tions may arrive at the destination out of order.

COLO implements the per TCP connection response
packet comparison, and considers the SVM as a valid

replica, if the response packets of each TCP connection
from the PVM and SVM are identical, regardless of the
packets ordering across TCP connections. This can be
considered in terms of packets on different connections
overtaking the next expected packet on a particular con-
nection. A timeout mechanism is implemented to force
a VM checkpoint if a TCP connection observes pack-
et(s) from one VM are not matched by corresponding
packet(s) from the other VM within a certain time pe-
riod, e.g., 200ms, in order to guarantee the correctness
and forward progress.

Therefore, TCP/IP protocol should be modified to en-
hance the output similarity, which can make PVM and
SVM produce the identical outputs when treating with
the same incoming events with the same state. The im-
plementation of COLO should also provide the active
checkpointing method, failover mode in case of the de-
tection of PVM failure state, as well as the device lock-
stepping. The detailed implementation will be intro-
duced individually in the next section.

4 COLO Implementation
4.1 TCP Modification for Response Simi-

larity
Although most machine state differences between the
PVM and SVM will not immediately generate response
differences, some may lead to a high frequency of active
checkpointings which can severely impact COLO per-
formance. Improving output similarity, or maximizing
the duration of SVM as a valid replica of the PVM, is
critical to COLO performance. The longer output sim-
ilarity is preserved, the less often we have to execute
checkpointing.

The TCP connection is the dominant paradigm of re-
liable communication in modern client-server system-
s. Minimizing the divergence of TCP response packets
from machine state differences due to non-deterministic
instruction execution is critical to the output similarity
of the SVM. In practice, the TCP stack employs non-
deterministic instructions in the generation of response
packet headers, which may result in different packets
even the packaging response data are identical. Exam-
ples of such packet-level differences are: timestamps,
TCP window size changes, the timing of ACK transmis-
sions, and the coalescing of small messages into a single
packet.

COLO modifies the guest OS’s TCP/IP stack in or-
der to make the behavior more deterministic. A series of
techniques are employed to improve response similari-
ty, including coarse grained timestamps, a more deter-
ministic ACK mechanism, a more deterministic smal-
l message delivery mechanism, and quantized window
size notifications. The changes made to the guest TCP/IP
stack are minimal, just tens of lines modified (57 inser-

tions and 18 deletions). Our work is based on Linux TCP
protocol stack but it can easily be applied to other OSes.
It may be possible to achieve even better performance
without changes to the guest TCP/IP stack by having a
similarity comparison function that operates transparent-
ly over re-assembled TCP streams, but this is the subject
of future work and not discussed further here.

4.1.1 TCP Timestamp Coherence:

TCP connections support an optional timestamp, which
can easily lead to differing output packet headers be-
tween the PVM and SVM. Applications can create a
TCP connection with or without timestamps, depending
on the usage model. When using timestamps, packet-
s coming from the different VMs may attach different
timestamps even though packet data is the same. This is
because the timestamps are derived from the time stamp
counter or other timer sources, which may be different
in the two VMs as a result of non-deterministic instruc-
tions.

COLO makes use of coarse-grained timestamps to
reduce the output packet divergence introduced by the
timestamp. The typical timestamp used in TCP head-
ers comes from system ticks in Linux, which is based
on an OS tick in units of 1ms, 4ms, or 10ms, depend-
ing on the tick frequency the guest OS uses. The TCP
stack may observe an accumulated tick difference after
a certain number of ticks (tens, hundreds, or more) in
the guest OS, depending on the time virtualization poli-
cy and synchronization between the hosts. On the other
hand, the TCP stack does not require high timestamp ac-
curacy. Rather, it is mostly used to identify a timeout, or
log the events with timestamps with accuracy require-
ment of only hundreds of milliseconds. In COLO, we
modify the guest OS TCP software stack to use coarse-
grained timestamps with a granularity of 128ms to in-
crease the output similarity.

4.1.2 TCP Acknowledgement Coherence:

Generation of TCP acknowledge (ACK) packets may
cause divergence in response packets. TCP connections
use ACK packets to acknowledge receipt of received da-
ta packets, but for efficiency, the packet may be deferred
for some time in case the ACK packet may piggyback
onto an output data packet. However, the policy is based
on fine-grained internal state, such as the fine-grained
size of the internal reassembly buffer, which may lead to
a high possibility of output divergence.

COLO optimizes the TCP protocol to use a highly de-
terministic ACK mechanism with coarse-grained inter-
nal state to improve output similarity through controlling
the release of ACK packets.

4.1.3 Packet Size Coherence with Nagle Algorithm:

Delivery of small messages in TCP stack may pose addi-
tional challenges to the output similarity. Although serv-
er applications will typically generate identical response
streams to the identical client requests, the timing with
which the application writes chunks of additional data
to the socket may be different, and the way in which
the data may be split into packets may be different. For
example, the timing of packets received from the client
that adjusts the advertised client window may result in
the stream being segmented in different ways. Further,
timers involved in the implementation of Nagle’s algo-
rithm may affect how small messages are grouped.

COLO attempts to make this segmentation of the
stream into packets more deterministic by adjusting Na-
gle parameters to encourage more aggressive coalescing
of short messages into full packets.

4.1.4 TCP Notification Window Size Coherence:

The notification window size is used by the receiver to
tell the sender the amount of data it is able to accept for
efficient data transmission, as a form of flow control. If
the client sends data too quickly, or the server applica-
tion consumes data too slowly, the server will notify the
client with a smaller window size, throttling the clien-
t. On the other hand, if the client sends data too slowly
or the server application consumes data too quickly, the
server will notify the client with a bigger window size,
suggesting a higher sending speed for the client.

Quantization of notification window size is proposed
in COLO to reduce packet divergence. If the notifica-
tion window size is large enough (larger than 255), CO-
LO masks the 8 least significant bits, otherwise it rounds
down to the nearest power of 2. Therefore, the notifica-
tion window size in the packet is more likely to be the
same in the PVM and SVM, then the output similarity is
improved.

4.2 Active-Checkpointing
COLO requires both the PVM and SVM to be executed
in parallel at runtime, which has additional challenges
under Xen. First, both the PVM and SVM in COLO
may generate dirty memory pages. Log-dirty mode [16]
is used to track the dirty pages of the PVM (Dp), and
the dirty pages of the SVM (Ds), for efficient tracking
of dirtied pages. A VM checkpoint requires the SVM
to update the delta memory set, (Dp ⋃Ds), but transmit-
ting the whole union delta set is suboptimal. Second,
passive-checkpointing resumes the device from the pre-
defined initial state, when a failover occurs, but active-
checkpointing may generate dirty states on the fly in the
SVM.

COLO solves the memory checkpointing issue by
keeping a local copy of the previous checkpoint’s mem-
ory contents, and reverting locally modified memory
pages to the previous checkpoint before applying the
delta memory pages from the PVM. Therefore, only
Dp is transmitted, saving CPU and network resources.
For device state, COLO uses the device suspend/resume
process that was introduced by live migration [16] to
gracefully bring both the PVM and SVM to the ini-
tial state, and rebuilds the machine state using active-
checkpointing.

4.3 Failover Mode

The heartbeat modules in both PVM and SVM are used
to detect the failure of the physical nodes, as shown in
Figure 3. With the advance of modern hardware tech-
nologies such as reliability, availability and serviceabil-
ity (RAS) features [5], many hardware failures are self-
corrected. Most hardware unrecoverable failures (such
as power, memory, cache and PCIe traffic failure) will
typically be fail-stop failures as opposed to undetected
corruptions, i.e. Byzantine failures. And therefore, CO-
LO is applicable to survive from most hardware failures.

COLO can tolerate hardware fail-stop failure. The
SVM can successfully take control if the PVM fails after
releasing the (k− 1)th packet, but before the kth packet,
and the COLO manager of the secondary node does not
consume the kth packet yet, shown as area “A” in Figure
4, by releasing packets from the SVM at the kth packet
without noticeable difference from the client’s perspec-
tive, even if the internal state is different.

If the fail-stop failure happens after the COLO man-
ager of the secondary node consumes the kth packet, but
before the PVM starts to release the kth packet (shown as
area “B” in Figure 4), or if the fail-stop failure happen-
s when the PVM is releasing the kth packet (shown as
area “C” in Figure 4), the SVM takes control and returns
responses starting from the (k+ 1)th packet. The client
may completely lose packet k. We rely on the network
stack and application to recover from this type of er-
ror, which may happen in real network systems, as well.
Consequently, COLO achieves non-stop service.

In case the hardware failure happens during a check-
point (shown as area “D” in Figure 4), the SVM may re-
sume from its local VM snapshot if the checkpoint is not
completed yet, which takes control and returns respons-
es starting from the (k + 1)th packet as it does to area
“B” as mentioned above, or from the newly successful
VM snapshot, which would include packet k and releas-
es packet k, as it does to area “A” as mentioned above,
respectively.

Figure 4: Execution and Checkpoint Flow in COLO

4.4 Device State Lock-Stepping

A VM may use a local storage or a remote storage de-
vice, and the PVM and SVM may share the remote stor-
age with non-stop storagee service.

Local Storage: The local storage device can be
viewed as an external interaction, like a network client,
or an internal state of the guest. In the former, COLO
has to forward write operations to local storage from the
SVM to the PVM for comparison, treating the SVM as
a valid replica of PVM, if and only if both the network
packets and the write operations of local storage on the
SVM are identical to those on the PVM. In the latter,
COLO considers the state of local storage as part of the
VM state, and snapshots the local disk state when taking
a checkpoint. Therefore, COLO does not need to for-
ward the write operations from SVM local storage to the
PVM at runtime. Instead, it treats divergence of local s-
torage devices like that of the CPU and memory, where
differences may not immediately generate a difference
in the response, allowing the SVM to still be consid-
ered a valid replica. However, it requires that the VM
checkpointing process transmit the storage device state
as well, and be able to roll back to a previous checkpoint,
or update to a new checkpoint.

Forwarding and comparing storage write operations
between the PVM and SVM saves the effort of support-
ing VM storage checkpointing. However it may increase
the frequency of VM checkpointing if the write opera-
tions from the PVM and SVM are different. One may
improve the storage packet similarity by implementing a
higher level storage virtualization solution. For example
a file system level PV solution is likely more determinis-
tic than a block level PV solution. Snapshotting storage
device state may add additional latency to the check-
points. However, it may be more efficient if the guest
storage write operations are less deterministic.

COLO considers the state of local storage device as

an internal state of the guest, and snapshots the local s-
torage state as part of the VM checkpoint, and plans to
explore the other solution in future. For efficiency, CO-
LO transmits just the deltas between VM checkpoints.
To do this, COLO logs the guest’s disk write operations,
and transmits them from PVM to SVM when taking a
checkpoint. Once the new checkpoint is received, both
the PVM and SVM commit the logged write operations
to maintain identical storage state between the PVM and
SVM. To bound the required log size (and therefore the
duration of log transmission time), COLO forces a VM
checkpoint once the pre-allocated log buffer is filled.

Remote Storage: The PVM and SVM may use re-
mote storage devices for exclusive and/or shared access,
depending on the configuration. In the dedicated access
use case, the SVM and PVM have their own storage par-
tition, and can access its own remote partition indepen-
dently. COLO views the dedicated accessed remote stor-
age to be same as the local storage, and therefore applies
same policy as that of local storage, mentioned in above
subsection, for non-stop service.

In shared remote storage access case, COLO relies
on the remote storage system to provide the non-stop
storage service such as the Google file system [20], and
views the interaction with remote storage same as that
of client. COLO views the outbound disk I/O access re-
quests and inbound disk response data, same as that of
the outbound and inbound network packets, as part of the
request and response stream shown in equations (1)-(4)
in section 2, and applies the same policy with that of net-
work packets for non-stop service. COLO forwards the
write operations of remote storage from SVM to PVM,
and compare them in addition to the network response
packets to determine if a divergence happens. The SVM
is viewed as a valid replica if and only if both network
response packets and storage access operations are iden-
tical as of packets kth. COLO enforces a VM checkpoint
if a divergence is identified, or releases the access op-
eration to the remote storage (and drop the write oper-
ation from SVM) in addition to the network packets, if
the SVM remains to be a valid replica. In the meantime,
COLO forwards the inbound remote storage data pack-
ets to both the PVM and SVM, so that both the PVM and
SVM observe the same (both in contents and sequence)
storage data.

Other Devices The other virtual devices, such as the
display and serial device, are also considered guest inter-
nal state, and COLO treats them similarly with that of lo-
cal storage for device state lock-stepping. These devices
do not typically have large amounts of internal state (un-
like storage devices), nor do they impact the client view
of server responses (unlike network devices). Therefore,
COLO can rely on the VM checkpointing process to syn-
chronize the device state.

4.5 Discussion
COLO enables a new solution for application-agnostic,
non-stop service, surviving from hardware fail-stop fail-
ures. The above mentioned efforts for enhancing the out-
put similarity can effectively reduce the checkpointing
frequency, and the evaluations prove this in the next sec-
tion. Different applications may have different character-
istics of output similarity, COLO shows great potential
to achive a highly efficient and scalable non-stop service,
at least in the workloads we tested, and we believe CO-
LO can be equally efficiently applied to other workloads
as well with reasonable optimization.

Note that additional performance optimization tech-
niques may be applied to further improve the response
similarity while reducing the cost of active-checkpoints.
First, one may use hardware assisted paging technolo-
gies, such as extended page table (EPT), to avoid the
expensive process of re-constructing the direct page ta-
bles of PV guests every VM checkpoint. Second, page
compression and speculative asynchronous transmission
of dirty pages may be used to reduce the cost of active-
checkpoints. Third, one may explore support of unmodi-
fied guest OSes, such as Windows, with hypervisor sup-
port to repackage guest packets for best-effort determin-
istic TCP. COLO platform provides an efficient architec-
ture to employ these potential technical candidates for
output similarity enhancement in order to treat with var-
ious and complex applications in cloud computing and
data-center.

Re-examining TCP/IP stacks to achieve determinis-
tic behavior without effecting throughput or fairness is
another ongoing research direction. Although the opti-
mizations to improve the output similarity may be sub-
jected to the feature of the TCP/IP stack the applica-
tions use, and may require additional tuning effort, CO-
LO presents an efficient application-agnostic solution to
non-stop service, to many of the applications if not most.
High level device virtualization solutions with improved
determinacy, such as the storage device mentioned in
4.3, may be used to simplify the solution of device state
checkpointing, and therefore improve performance.

Although COLO intends to provide application-
agnostic solution to non-stop service, one may be able
to combine COLO with minor application level modifi-
cation to greatly improve performance with enhanced re-
sponse determinacy. For example, the concurrency con-
trol schemes to improve the serial ordering of trans-
actions in databases [34], can be reused in COLO to
achieve a better tradeoff for an efficient non-stop service
solution.

5 Evaluation
In this section, we examine the performance efficiency
of COLO achieved by replication disturbance reduction

with output similarity constraint using various bench-
marks. We first verify the fairness of the modified TCP
protocol to prove that COLO does not impact on the
TCP connection attributes and features among multiple
connections. Second, we compare the performance en-
hancement of COLO in comparison with Remus with
multiple micro-benchmarks as well as illustrating their
output similarity. Finally, we evaluate the efficiency of
COLO for multi-processor hosted VM and recovery per-
formance from the failover when executing web services
and database. Note the native networked system without
replication is used as the native baseline, and we illus-
trate that COLO has significant performance improve-
ment than Remus.

Note that we did not execute the comparison between
COLO and other commercial non-stop service solutions
because we focus on the software based replication solu-
tions. Moreover, commercial non-stop service solutions
prohibit free publication of benchmark results in their
license agreements.

5.1 Testbed Configuration
Each of the primary and backup ‘server’ systems is an
Intelr XeonTM platform, equipped with an 8-core pro-
cessor, running at 2.7GHz, with 128 GB memory. An
Intelr 82576 Gigabit NIC and an Intelr82599 10 Gi-
gabit NIC are used [5], in which the former one for the
external network and the later one for the internal net-
work. Except where stated, the guest runs PV Xen Linux
with dedicated cores and 2 GB memory equipped with
1 VCPU, and uses a PV disk and a PV NIC driver. The
experiment runs Xen 4.1 as the hypervisor and uses a
10 MB memory buffer to log the disk write operations.
Domain 0 uses RHEL6U1 (kernel updated to 3.2) to take
the advantage of the latest hardware, while the guest uses
RHEL5U5 which support Xen 4.1 formally. The client
system has the same hardware configuration as the serv-
er, but runs RHEL6U1 natively.

5.2 Impact of TCP/IP Modification
As aforementioned, TCP/IP protocol is modified to en-
hance the output similarity. We now verify that the modi-
fication does not impact the network connection fairness
in comparison with the unmodified native TCP/IP in a
WAN connection environments.

We use iperf to generate multiple concurrent TCP
connections to evaluate the impact of our modification-
s through a company network in between Beijing and
Shanghai. Seen from Figure 5 and Figure 6, the stan-
dard deviation among the concurrent TCP connections
in COLO is close to that of native, which proves that the
COLO modification on the TCP/IP protocol stack does
not bring obvious fairness issues.

We have also executed the stress testing to compare

20

25

30

35

ut
 （

M
bp

s)

Total BW: 81 Mbps, stddev: 4.4 TCP-0

TCP-1

TCP-2

TCP-3

0

5

10

15

0 5 10 15 20 25 30 35

Th
ro

ug
hp

u

Time (s)

TCP-4

TCP-5

TCP-6

TCP-7

TCP-8

TCP-9

Figure 5: Concurrent TCP connections in COLO native
TCP/IP stack in WAN

20

25

30

35

pu
t (

M
bp

s)

Total BW: 80 Mbps, stddev: 3.1 TCP-0

TCP-1

TCP-2

TCP-3

0

5

10

15

0 5 10 15 20 25 30 35

Th
ro

ug
hp

Time (s)

TCP-4

TCP-5

TCP-6

TCP-7

TCP-8

TCP-9

Figure 6: Concurrent TCP connections in COLO modified
TCP/IP stack in WAN

the performance of modified TCP stack with native TCP
protocol, and the results show that our modification does
not introduce significant impact on connection perfor-
mance. We do not illustrate here since the experimental
results are similar,.

5.3 Performance and Output Similarity
This section will illustrate the experimental results of
COLO in comparison with Remus evaluated by numer-
ous benchmarks, including Sysbench, Kernel Build, We-
b Server, FTP Server, as well as Pgbench. These micro-
benchmarks are representative for applications in cloud
computing and data-center. The experimental results are
organized according to the employed benchmark type-
s, and every benchmark will be introduced individually
together with the testing scenario.

5.3.1 Sysbench and Kernel Build
This subsection evaluate the CPU and Memory perfor-
mance of COLO in comparison with Remus. The Sys-
bench and Kernel Build are used to evaluate the sys-
tem performances, where Sysbench can produce CPU
or Memory-intensive workload while Kernel Build can
emulate a CPU and Memory mixed workload. The ex-
perimental data is normalized to that of native system to
show the differences and performance efficiency.

0.8

1
ug

hp
ut

Native Remus-20 Remus-40 COLO

0

0.2

0.4

0.6

Sysbench.CPU Sysbench.Memory Kernel Build

No
rm

al
ize

d
Th

ro
u

Figure 7: Performance of SysBench CPU, Memory and Kernel
Build

60

70

80

90

100

ou
gh

pu
t

Native COLO-10M COLO-20M COLO-40M

0

10

20

30

40

50

60

Real User Sys

N
or

m
al

iz
ed

 T
hr

o

Figure 8: Performance of Kernel Build with Different Size of
Log Buffer

As shown in Figure 7, COLO performance is simi-
lar to the native tested by SysBench [6] with CPU and
memory-intensive workloads; and it achieve 80% of na-
tive performance when running kernel build. We con-
figure the Remus checkpoint time interval by 20ms and
40ms, which are denoted by Remus-20 and Remus-40,
respectively. These replication period configurations are
recommended for application-transparent fault tolerance
[12] with effective replication. It is shown in Figure 7
that COLO outperforms Remus-40 by performance im-
provement of 29%, 92% and 203%, respectively. This is
because COLO reduces the replication overhead and the
saved resources are used to process CPU and memory-
intensive workloads. While, Remus-20 has the lowest
performance due to the high replication overhead. The
additional overhead for COLO in Kernel Build comes
from the on-demand VM checkpoint when there are too
many pending storage write operations.

Figure 8 illustrates the performance impact from the
different buffer size when executing Kernel Build in CO-
LO platform. Known that the larger the memory buffer,
the better the performance of the kernel build due to
the reduced VM checkpoint frequency. We set the buffer
size with 10, 20 and 40MB, and the performance of CO-
LO is denoted by COLO-10M, COLO-20M and COLO-
40M, respectively, in Figure 8. Note that a larger buffer
size can improve the performance, but having a larger

0 6

0.8

1

ou
gh

pu
t

Native Remus-20 Remus-40 COLO

0

0.2

0.4

0.6

get put

No
rm

ali
ze

d T
hr

o

Figure 9: Performance of FTP Server

1

1.2

1.4

60000

80000

s)et
s #

Identical Packets # Duration

0

0.2

0.4

0.6

0.8

0

20000

40000

put get

Du
ra

tio
n(

s

Id
en

tic
al

Pa
ck

Figure 10: Output Similarity in FTP Server

memory buffer may lead to long transmission latency in
VM checkpoints, which is unsuitable for some cases.

5.3.2 FTP server
We evaluate the performance of COLO when execut-
ing FTP server [1] as the networked system workload
on COLO architecture. Figure 9 illustrates the relative
throughput performance when transmitting a 300MB
file, where the native performance is normalized as 1.
It is shown that COLO achieves 97% of native perfor-
mance in FTP GET benchmarks, outperforming Remus-
40 by 64%. That is because COLO can release the out-
put packets much faster than Remus (without output
buffering method as Remus) and spend less CPU cycles
in the VM checkpoint. In FTP PUT benchmarks, CO-
LO achieves 50% of native performance, outperforming
Remus-40 by 148%. Remus-20 has also the lowest per-
formance due to the same reason mentioned before.

Note the checkpoint frequency is significantly re-
duced by enhancing the output similarity from TCP/IP
coherences efforts. We evaluate the average checkpoint-
ing time interval, and the results are shown in Figure 10.
It is seen that COLO achieves an average output similar-
ity time of 1236ms (during 71.6K packets transmission
time interval) in FTP GET, and achieves 709ms (during
44.2K packets transmission time interval) in FTP PUT
benchmarks, respectively. FTP PUT benchmarks incur
more performance overhead due to the reduced output
similarity and the additional VM checkpoints due to the
accumulated disk write operations.

600

800

1000

(M
bp

s)
Native Remus-20 Remus-40 COLO

0

200

400

600

1 4 16 64 256

Th
ro

ug
hp

ut
 (

Number of Threads

Figure 11: Throughput Performance of WebBench

10.00

100.00

1000000

10000000

(s
)

ck
et

s #

Identical Packets # Duration

0.10

1.00

10000

100000

1 4 16 64 256

Du
ra

tio
n

Id
en

tic
al

 P
ac

Number of Threads

Figure 12: Output Similarity in WebBench

5.3.3 Web Server
We evaluate the performance of COLO when hosting the
web service workload tested by WebBench [2] micro-
benchmark, and the results are shown in Figure 11. A-
pache Web server is installed in COLO, and client runs
WebBench with a varying number of concurrent request-
ing threads (vary from 1 to 256 threads) on the client.
Remus suffers from the excessive VM checkpoint cost,
and the extra network latency due to the output packet
buffering. While, COLO achieves much higher perfor-
mance than Remus. For example, COLO achieves 100%,
99% and 89% of native performance, and it outperforms
Remus-40 by 127%, 39%, and 38%, in cases involving
one, four, and sixteen threads, respectively.

Figure 12 illustrates the output similarity duration and
the transmitted similar packets number in logarithmic s-
cale. In the case of 64 and 256 threads, COLO achieves
62% and 42% of native performance, outperforming
Remus-40 by 49% and 91%, respectively. In average,
COLO outperforms Remus by 69% due to the enhanced
output similarity. In Figure 12, it also illustrates that the
checkpointing frequency of COLO changes dynamical-
ly along with the different number of the concurren-
t request threads. This proves that COLO executes the
checkpointing in on-demand manner according to the
output similarity observation. This feature makes COLO
a totally novel architecture in comparing with the tradi-
tional periodic checkpointing schemes, such as Remus.

1 2
1.4
1.6
1.8
2.0

100000

120000

140000

160000

s)#

Identical Packets # Duration

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0

20000

40000

60000

80000

100000

Baseline Per-Conn Timestamp Ack Nagle Window
Size

D
ur

at
io

n(

pa
ck

et
s

#

Figure 13: Output Similarity of WebBench with Different Op-
timizations

12000

16000

20000

400.00

500.00

600.00

es
 #Co

st
 (m

s)

Mem_Trans Mem_Update Others Dirty Pages #

0

4000

8000

12000

0.00

100.00

200.00

300.00

1 4 16 64 256

D
irt

y
Pa

ge

VM
 C

he
ck

po
in

t

Number of Threads

Figure 14: VM Checkpointing Cost of WebBench

As of the current implementation, the performance of
COLO drops moderately when the thread number reach-
es 256 due to the reduced output similarity. However, it
is not an architectural limitation, and we believe the per-
formance can be further improved with additional engi-
neering efforts.

Figure 13 shows performance improvement achieved
by the TCP/IP modification for coherence enhancement
methods introduced in Section 4.1. The performance im-
provements are illustrated individually by accumulated
performance improvement in Figure 13, when running
WebBench with sixteen concurrent requesting threads
on the client. It can be seen that the packet size coher-
ence enhancement with Nagle algorithm and TCP ac-
knowledge window size coherence enhancement algo-
rithm have the largest contribution in output similarity
enhancement. In combing all these TCP/IP coherence
enhancement algorithms, the modified TCP/IP stack sig-
nificantly improves the output similarity by 1160x in
packet number, or 753x in output similarity duration.

Figure 14 shows the overhead of VM checkpoints
with different number of threads as well as the pol-
luted dirty page number. As shown, one of the major
overheads come from memory transmission, due to the
large number of dirty memory pages as a result of im-
proved output similarity. The average memory transmis-
sion speed is approximately 2Gbps only in the curren-

20.0

25.0

30.0
(T

ra
ns

/s
)

Native Remus-20 Remus-40 COLO

0.0

5.0

10.0

15.0

1 4 16 64 256

Th
ro

ug
hp

ut
 (

Number of Request Clients

Figure 15: Performance of Pgbench

t implementation, demonstrating the large potential for
improvement by reducing the VM checkpoint cost.

Another important cost comes from the guest page ta-
ble page updating, which involves slow memory page
pin and unpin operations in Xen PV guests [10]. The
cost can be completely eliminated in the hardware as-
sisted virtual machine, where the two-dimensional page
tables are used [11], as a direction for improvement.

5.3.4 PostgreSQL
This subsection evaluate COLO performance with Post-
greSQL, which is one of most advanced open source
Database, for emulating the applications in data-center
access. Figure 15 shows the performance of the Post-
greSQL when being exercised by pgbench (loosely
based on TPC-B) running on the client. COLO achieves
82.4% of native performance in average and 85.5% of
native peak performance, which outperform Remus by
46% and 34%, respectively.

The output similarity of the PostgreSQL database
server is shown in Figure 16. In the case of one, four,
and sixteen client requests, the output similarity drops,
but it remains much greater than the duration of the VM
checkpoint as shown in Figure 17, and therefore CO-
LO is able to achieve very good performance. As the
number of client requests increases, the identical pack-
ets generated per TCP connection keep dropping slow-
ly. However, the overall output similarity re-bounces and
the cost of the VM checkpoint jumps, largely due to the
increased number of dirty memory pages. Dirty memory
page transmission and guest page table updating dom-
inate the cost of the VM checkpoint (80% in the case
of 64 client requests and 84% in the case of 256 client
requests), demonstrating the large potential for improve-
ment opportunities, as well as further reducing the VM
checkpoint cost and therefore improving performance.

Figure 18 shows the breakdown of output similari-
ty improvement with different optimizations, when run-
ning pgbench with 64 concurrent client requests. As in
Web Bench, modifying guest TCP/IP stack significantly
improves the output similarity by 10.3x in packet num-
ber, or 10.4x in duration.

2

2.5

3

3.5

500

600

700

800

ck
et

 #

Identical Packets # Duration

0

0.5

1

1.5

2

0

100

200

300

400

1 4 16 64 256

Du
ra

tio
n

(s
)

Id
en

tic
al

 P
a

Number of Request Clients

Figure 16: Output Similarity of Pgbench

20000

25000

30000

35000

600.00

800.00

ge
s #

t C
os

t (
m

s)

Mem_Trans Mem_Update Others Dirty Pages #

0

5000

10000

15000

20000

0.00

200.00

400.00

1 4 16 64 256

Di
rty

 P
ag

VM
 C

he
ck

po
in

t

Number of Request Clients

Figure 17: VM Checkpoint Cost in Pgbench

5.4 COLO Scalability for MP-Guest
This subsection will study the COLO performance when
the number of VCPU owned by the guest and the num-
ber of task threads scale up. WebBench and Pgbench are
used to test COLO performance in the cases of the web
server and the database server workloads, respectively.

Figure 19 illustrates performance of COLO with
WebBench for Multi-Processor guest with 2VCPU and
4VCPU, whose data are compared with 1CPU relative-
ly. We vary the concurrent thread number from 1 to 256.
It is shown that the performance of MP-guests does not
degrade for the guest with multiple processors in com-
parison with the single processor guest. The COLO with
MP can even perform better than the single processor
guest in leveraging the MP resources. It proves that CO-
LO in MP-guests does not show additional overhead and
has the potential to scale well with more VCPUs.

Figure 20 shows the performance of the PostgreSQL
database server when being exercised by Pgbench in
MP-guests, with different number of client request-
s (from 1 to 256 requests). The performance of Post-
greSQL in MP-guests is similar to that of guest with
uniprocessor, demonstrating that COLO can scale well
with more VCPUs as well.

5.5 COLO FailOver Time
This subsection will discuss the recovery mode agili-
ty of COLO, which means the time that SVM of CO-

600

700

800

900

250

300

350

m
s)

ke
ts

 #
Identical Packets # Duration

0

100

200

300

400

500

0

50

100

150

200

Baseline Timestamp Per-Conn Ack Nagle Window
Size

Du
ra

tio
n

(m

Id
en

tic
al

 P
ac

k

Figure 18: Different Optimizations Impact on Output Similar-
ity with Pgench

0.6

0.8

1

ro
ug

hp
ut

1-CPU 2-CPU 4-CPU

0

0.2

0.4

1 4 16 64 256

No
rm

al
ize

d
Th

r

Number of Threads

Figure 19: Performance of WebBench in MP-Guests

LO need to execute failover in case of the PVM failure.
WebBench and Pgbench are used to evaluate the CO-
LO failover time. WebBench in the client runs with 16
threads, and the PostgreSQL database server running pg-
bench in client with 16 concurrent requests. We have ex-
perimented with 100+ tests of failover and the SVM can
successfully take over in all tests. Our experimental re-
sults show that the SVM in COLO can successfully take
over and resume the service in 2.1s for the Web server
and 1.5s for the PostgreSQL database server.

In summary, the evaluation results in this section il-
lustrate that COLO performs significantly better than
Remus, when executing the workloads fo Web server,
FTP server as well as database server. The performance
improvements are achieved by the checkpoint overhead
mitigation from the output similarity, which is also il-
lustrated in this section. The employed benchmarks can
represent all major application scenarios in current cloud
computing and data-center infrastructure, so that the ef-
ficiency of COLO can be verified.

5.6 COLO Performance Limitation
As aforementioned, COLO maintains the storage device
as the internal state of the guest OS, and the snapshot-
ing of storage state as part of the VM checkpointing will
introduce the heavier overhead. This degrades the per-
formance for I/O intensive workload, such as storage ac-

0.6

0.8

1

t (
CO

LO
/N

at
ive

)

1-CPU 2-CPU 4-CPU

0

0.2

0.4

1 4 16 64 256

No
rm

ali
ze

d T
hr

ou
gh

pu

Number of Request Clients

Figure 20: Performance of Pgbench in MP-Guests

cess especially for writting operations. This effect has
been illustrated by the evaluations with benchmarks as
Kernel Build (Figure 7-8), FTP server (Figure 9), and
Pgbench (Figure. 15). More efficient storage and other
device lock-stepping schemes should be explored in the
future. However, this can be considered as a reasonable
cost for achieving high availability, and COLO outper-
forms Remus significantly in these experiments resuls
which verifies the efficiency of COLO.

Moreover, COLO suffers from scalability problem a-
long with the concurrent thread number increases as
shown in Figure 11-12, where it under-performs na-
tive one. These are introduced by the non-deterministic
multi-thread scheduling in the guest OS, where differ-
ent thread execution sequence may commit the different
result orders to network output protocol stack and gen-
erate output divergence between PVM ans SVM. This
is the prevailing problem for all lock-stepping solution-
s that maintain the replications standby to take over the
service immediately for failover. It can be considered as
the withstood cost for active lock-stepping, and this is
the reason why some current active lock-stepping solu-
tions normally support single process VM [19]. In this
paper, we have enabled COLO to support MP-guest ef-
ficiently, but there is still further improvement potentials
for output similarity as our future work.

We have also illustrated how our proposed output
similarity optimization methods can improve the perfor-
mance one by one in Figure 13 and Figure 18. This veri-
fies that our work concentrated on the crucial points and
of course other sophisticated optimization methods can
be applied to COLO as discussed in Section 4.5.

Although COLO achieves high availability effectively
for the above cases, it may have the cases where the out-
bound response packets may diverge largely between the
PVM and SVM, which therefore may make COLO not
work well. Figure 21 shows an example that we upgrade
the guest Linux from RHEL5U5 (kernel version 2.6.18)
to SLES11 (kernel version 3.0.13), which uses sendfile
with unblock writing scheme rather than our previous

Native Remus-20 Remus-40 COLO Blocking COLO non-blocking

1000

600

800

(M
bp

s)

400

600

ug
hp

ut

200Th
ro

u

0

1 4 16 64 256

Number of Thread

Figure 21: Performance Degradation of COLO from non-
block Sending in WebBench

blocked writing experimental scenarios. We re-conduct
the experiments in Figure 11, and compare the COLO
performance with blocking and non-blocking sendfile
schemes. It is observed that the checkpointings are in-
curred about per 100-200 packets even with COLO co-
herence efforts, which dramatically degrade the COLO
performance (worse than Remus) as shown in Figure 21.

6 Related Work
OS and application-specific solutions are proposed for
fault tolerance and non-stop service. TFT [12] inter-
posed a supervisor agent between the application and
the operating system to coordinate replicas at the system
call interface for deterministic computing without con-
sidering multi-processor situations. PLR [33] used the
additional runtime systems for process level redundan-
cy in single-thread models. Determinator [9] modified
the OS to support deterministic parallel computation, in-
troducing a new parallel programming model. They al-
l suffered from usage model limitations and/or OS and
application modifications. xsyncfs [29] is an external-
ly synchronous file system to provide high-performance
synchronous I/O with software-only approaches.

Deterministic replay for multi-threaded programs is
explored. Scribe [23] provided application record-replay
with new operating system mechanisms, rendezvous and
sync points to record non-deterministic interactions. O-
DR [8] was a replay system that reproduces bugs, re-
laxing its fidelity guarantees. SMP-Revirt [19] replayed
execution of multiprocessor virtual machines for debug-
ging. Dthread [25] enforced determinism in the face of
data races and deadlocks by exploding multi-threaded
applications into multiple processes, with private, copy-
on-write mappings to shared memory. None of them pro-
vided an efficient solution for non-stop service.

TCP-specific solutions were proposed for non-stop
service. ST-TCP [27] and CoRAL [7] modified the TCP
protocol excessively to tolerate TCP server failures, and
FT-TCP [35] modified select applications to be free
from non-deterministic instructions, respectively. They

require extensive software engineering efforts.
VM replication enables application-agnostic, non-

stop service, surviving hardware fail-stop failures. A
fine-grained instruction level VM lock-stepping [13]
[30][31][21] solution are proposed, however it suffer-
s from excessive lock-stepping overhead due to non-
deterministic memory accesses in MP-guests. Period-
ic checkpointing is then proposed to address the ex-
cessive overhead, by checkpointing VM state per e-
poch [17][28]. Additional optimizations are conducted
to reduce the overhead of memory checkpoints [26][36],
however they suffered from extra network latency due
to output packet buffering and the overhead of frequent
checkpointing. Neither of them provides highly efficien-
t, non-stop service for different usage models.

7 Conclusion and Future Work
This paper proposed a revolutionary solution for high
availability with active/active virtual machine with
Coarse-grained lock-stepping method. COLO provides
an efficient and generic application-agnostic solution to
non-stop service for networked client-server systems,
and provides efficient dependable infrastructure as a ser-
vice for a variety of workloads in cloud computing envi-
ronments. Using output similarity between the primary
and the secondary VMs, it eliminated the excessive lock-
stepping overhead in traditional instruction level lock-
stepping solutions [18][31][21], which suffer from ex-
cessive instruction replay overhead for memory accesses
in MP-guests. Compared to periodic checkpointing so-
lutions, COLO eliminates the overhead due to frequen-
t checkpointing and extra-long network latency, due to
output packet buffering [11].

COLO can construct replicas for non-stop service,
and the initial results show that it is a very attrac-
tive direction for continuing research and industry ex-
periments. We plan to further improve COLO perfor-
mance for production use and extend support to Win-
dows guests. We intend to further study on the response
similarity of different network workloads and additional
optimizations to optimize similarity as discussed in Sec-
tion 4.5. We expect to investigate the use of COLO in
disaster recovery situations with long distance deploy-
ment, and with multiple secondary servers to survive
from t fail-stop failures with t +1 replicas.

Acknowledgements
The other members who contributed to this study include
Kun Tian, Jiangshan Lai and Congyang Wen. We would
like to thank Richard Uhlig for his excellent insights and
mentoring; and would like to thank Honesty Young for
his great support to the project. This work was support-
ed by Major Program of Chinese Ministry of Education
(No. 313035) and Singapore NRF CREATE programme
E2S2.

References

[1] Very secure ftp daemon (vsftpd).
http://www.nlm.nih.gov/mesh/jablonski/syn
drome title.html.

[2] Web bench,. http://home.tiscali.cz/ cz210552/
webbench.html.

[3] Xen summit 2012. http://www-
archive.xenproject.org/xensummit/xs12na talks
/agenda.html.

[4] S. Abood. Hp non stop server. http://www.hp.com,
Jun 2002.

[5] S. Abood. Intel R©82576 and 82599 gigabit eth-
ernet controller datasheet,. http://www.intel.com,
Jun 2002.

[6] S. Abood. Sysbench.
http://sysbench.sourceforge.net/, Jun 2002.

[7] N. Aghdaie and Y. Tamir. Coral: A transparent
fault-tolerant web service. Journal of Systems and
Software, 82(1):131–143, 2009.

[8] G. Altekar and I. Stoica. Odr: output-deterministic
replay for multicore debugging. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 193–206. ACM, 2009.

[9] A. Aviram, S.-C. Weng, S. Hu, and B. Ford.
Efficient system-enforced deterministic parallelis-
m. Communications of the ACM, 55(5):111–119,
2012.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. ACM SIGOPS
Operating Systems Review, 37(5):164–177, 2003.

[11] R. Bhargava, B. Serebrin, F. Spadini, and
S. Manne. Accelerating two-dimensional page
walks for virtualized systems. ACM SIGARCH
Computer Architecture News, 36(1):26–35, 2008.

[12] T. C. Bressoud. Tft: A software system for
application-transparent fault tolerance. In Fault-
Tolerant Computing, 1998. Digest of Papers.
Twenty-Eighth Annual International Symposium
on, pages 128–137. IEEE, 1998.

[13] T. C. Bressoud and F. B. Schneider. Hypervisor-
based fault tolerance. ACM Transactions on Com-
puter Systems (TOCS), 14(1):80–107, 1996.

[14] N. Burton-Krahn. Hotswap-transparent server
failover for linux. In USENIX LISA’02: Sixteenth
Systems Administration Conference, pages 205–
212, 2002.

[15] M. Castro and B. Liskov. Practical byzantine fault
tolerance and proactive recovery. ACM Transac-
tions on Computer Systems (TOCS), 20(4):398–
461, 2002.

[16] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migra-
tion of virtual machines. In Proceedings of the 2nd
conference on Symposium on Networked System-
s Design & Implementation-Volume 2, pages 273–
286. USENIX Association, 2005.

[17] B. Cully, G. Lefebvre, D. Meyer, M. Fee-
ley, N. Hutchinson, and A. Warfield. Remus:
High availability via asynchronous virtual machine
replication. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, pages 161–174. San Francisco,
2008.

[18] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. Revirt: Enabling intrusion analysis
through virtual-machine logging and replay. ACM
SIGOPS Operating Systems Review, 36(SI):211–
224, 2002.

[19] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman,
and P. M. Chen. Execution replay of multiproces-
sor virtual machines. In Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, pages 121–130.
ACM, 2008.

[20] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In ACM SIGOPS Operating
Systems Review, volume 37, pages 29–43. ACM,
2003.

[21] C. M. Jeffery and R. J. Figueiredo. A flexible ap-
proach to improving system reliability with virtu-
al lockstep. Dependable and Secure Computing,
IEEE Transactions on, 9(1):2–15, 2012.

[22] M. Kapritsos, Y. Wang, V. Quema, A. Clement,
L. Alvisi, and M. Dahlin. All about eve: execute-
verify replication for multi-core servers. In Pro-
ceedings of the 10th USENIX conference on Oper-
ating Systems Design and Implementation, pages
237–250. USENIX Association, 2012.

[23] O. Laadan, N. Viennot, and J. Nieh. Transpar-
ent, lightweight application execution replay on

commodity multiprocessor operating systems. In
ACM SIGMETRICS Performance Evaluation Re-
view, volume 38, pages 155–166. ACM, 2010.

[24] L. Lamport, R. Shostak, and M. Pease. The
byzantine generals problem. ACM Transactions on
Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[25] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads:
efficient deterministic multithreading. In Proceed-
ings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles, pages 327–336. ACM,
2011.

[26] M. Lu and T.-c. Chiueh. Fast memory state syn-
chronization for virtualization-based fault toler-
ance. In Dependable Systems & Networks, 2009.
DSN’09. IEEE/IFIP International Conference on,
pages 534–543. IEEE, 2009.

[27] M. Marwah, S. Mishra, and C. Fetzer. Tcp serv-
er fault tolerance using connection migration to
a backup server. In Proc. IEEE Intl. Conf. on
Dependable Systems and Networks (DSN), pages
373–382. Citeseer, 2003.

[28] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboul-
naga, K. Salem, and A. Warfield. Remusdb: Trans-
parent high availability for database systems. In
Proc. of VLDB, 2011.

[29] E. B. Nightingale, K. Veeraraghavan, P. M. Chen,
and J. Flinn. Rethink the sync. In In OSDI, 2006.

[30] H. P. Reiser and R. Kapitza. Hypervisor-based ef-
ficient proactive recovery. In Reliable Distributed
Systems, 2007. SRDS 2007. 26th IEEE Internation-
al Symposium on, pages 83–92. IEEE, 2007.

[31] D. J. Scales, M. Nelson, and G. Venkitachalam.
The design of a practical system for fault-tolerant
virtual machines. ACM SIGOPS Operating Sys-
tems Review, 44(4):30–39, 2010.

[32] F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: A tutorial.
ACM Computing Surveys (CSUR), 22(4):299–319,
1990.

[33] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi,
and D. A. Connors. Plr: A software approach
to transient fault tolerance for multicore architec-
tures. Dependable and Secure Computing, IEEE
Transactions on, 6(2):135–148, 2009.

[34] A. Thomson and D. J. Abadi. The case for deter-
minism in database systems. Proceedings of the
VLDB Endowment, 3(1-2):70–80, 2010.

[35] D. Zagorodnov, K. Marzullo, L. Alvisi, and T. C.
Bressoud. Engineering fault-tolerant tcp/ip servers
using ft-tcp. In Proc. IEEE Intl. Conf. on Depend-
able Systems and Networks (DSN), pages 393–402.
Citeseer, 2003.

[36] J. Zhu, W. Dong, Z. Jiang, X. Shi, Z. Xiao, and
X. Li. Improving the performance of hypervisor-
based fault tolerance. In Parallel & Distribut-
ed Processing (IPDPS), 2010 IEEE International
Symposium on, pages 1–10. IEEE, 2010.

