
HProve: A Hypervisor Level Provenance System to
Reconstruct Attack Story Caused by Kernel Malware
Chonghua Wang1, Libo Yin1,∗, Jun Li1, Xuehong Chen1, Rongchao Yin1, Xiaochun Yun2, Yang
Jiao3, Zhiyu Hao3,

1China Industrial Control System Cyber Emergency Response Team, Beijing, China, 100040
2National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing, China,
100029
3Institute for Information Engineering, Chinese Academy of Sciences, Beijing, China, 100093

Abstract

Provenance of system subjects (e.g., processes) and objects (e.g., files) are very useful for many forensics tasks.
In our analysis and comparison of existing Linux provenance tracing systems, we found that most systems
assume the Linux kernel to be in the trust base, making these systems vulnerable to kernel level malware. To
address this problem, we present HProve, a hypervisor level provenance tracing system to reconstruct kernel
malware attack story. It monitors the execution of kernel functions and sensitive objects, and correlates the
system subjects and objects to form the causality dependencies for the attacks. We evaluated our prototype
on 12 real world kernel malware samples, and the results show that it can correctly identify the provenance
behaviors of the kernel malware with a minor performance overhead.

Received on 12 November 2018; accepted on 17 December 2018; published on 25 January 2019
Keywords: Provenance Tracing; System Logging; Kernel Malware; Forensic Investigation
Copyright © 2019 Chonghua Wang et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.8-4-2019.157417

1. Introduction
Nowadays, enterprises are suffering from rapidly
increasing serious attack threats, especially Advanced
Persistent Threat (APT). Compared to traditional
attacks, APT attacks are stealthier and more sophisti-
cated by employing multi-step intrusive attacks. This
kind of attacks would impose disastrous impacts on the
systems if the associated attack vector aims at kernel [1–
3, 6, 7]. Detecting such attacks is an urgent matter in
enterprise environments, but is far from enough. In
addition to detecting the existence of the attacks, deep
investigation should be performed to find out where the
attacks are, how the attacks are derived, and when they
are introduced. For instance, a kernel mode attack can
modify kernel objects or entities, which is potentially
more dangerous. Acquiring such details about how the
kernel objects and entities are manipulated is crucial to
understand the attack for forensic investigations.

Provenance1 tracing [8, 12, 24, 29, 33, 34, 44] is
an useful technique for security investigation that can

∗Corresponding author. Email: yinlibo@cics-cert.org.cn

provide a detailed record of the origin and evolution of
events and entities in a system. Given a corrupted entity
(e.g., a file, a data structure, a pointer, etc.), it could help
to answer two questions:

1. What-provenance: What is the source/entry point
of the corrupted entity? Which other entities in
the system were derived from (and corrupted by)
the entity?

2. How-provenance: Building causality dependencies
to show the events /entities that led to the
corruption of the entity and those that have been
further corrupted by the entity.

For a provenance system, the provenance information
should be complete and faithful to provide the holistic
view of the events occurred in the system for forensic
applications. If the investigator fails to foresee the
need for a particular kind of provenance information
to be captured, then it would be difficult to rebuild
the complete causality dependencies. Whereas an
1The term provenance comes from the art world, where it refers to
the ability to trace all activities related to an piece of art, in order to
establish that is genuine[11].

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

http://doc.eai.eu/publications/transactions/latex/

untrusted kind of provenance information could infer
an innocent source.

State-of-the-Art: Lots of existing works employ
audit logging to record events (e.g., memory reads
and writes, process reading a file, messages being
sent or received, etc.) during system execution and
then correlate these events for building the causality
dependencies during investigation [8, 12, 24, 29, 33,
34, 44]. Specifically, Bates et al. [12], present Linux
Provenance Modules (LPM) framework to capture
whole-system provenance including a detailed record
of processes, IPC mechanisms, network activities and
the kernel itself. LPM takes the kernel mechanisms,
provenance recorder and storage back-ends as the
Trusted Computing Base (TCB). There is no mechanism
for protecting LPM from the rest of the kernel meaning
that it trusts the kernel code. These systems assume the
Linux kernel to be in the trusted computing base (TCB),
making these systems vulnerable to kernel malware. If
an intruder employs a kernel malware to compromise
the kernel, it is trivial to cheat or even undermine the
audit logging, thus leading to inaccurate provenance
results. However this assumption does not hold in
practical settings in the examples of kernel malware.

Our approach: The key to solve the above
problem is to backtrack an untrusted kernel using an
external monitor. Thus, we choose to use virtualization
techniques to solve this problem. The kernel itself
is excluded from our TCB and we only trust the
hypervisor. The hypervisor in general has a smaller
code base, and is more trustworthy [32]. In specific, we
present a hypervisor level provenance tracing system,
HProve, to address the above problems and complement
existing provenance systems. On one hand, HProve
ports the logging module to the hypervisor to keep
the log recorded trustworthy, especially for kernel
malware. On the other hand, in order to obtain
complete provenance information, HProve employs
lightweight record and replay techniques to record
the whole execution of system and replay the system
meanwhile instrumenting hypervisor for provenance.
For efficiency, execution traces recorded do not include
the state of emulated hardware devices focusing on
the provenance tracing process rather than replaying a
generic VM. HProve is able to replay and analyze a trace
without having access to the VM image that was used
for recording. Meanwhile to reduce runtime overhead,
the instrumentation code is inserted into the hypervisor
only when necessary during replay. After obtaining the
execution traces, the backtracking technique is applied
to the kernel APIs to find out the caller-callee chain
using function call convention.2. HProve achieves this by
our provenance tap points uncovering technique.

In summary, we make the following contributions:

- We present HProve, a hypervisor level provenance
tracing system that can replay kernel level
malware attack to acquire accurate provenance
details.

- To provide valuable insights about how kernel
malware impacts on the kernel internals, we
devise a novel approach to backtrack the ker-
nel for acquiring caller-callee chain of kernel
functions reversely and correlate malware behav-
iors with tampered kernel objects to explore the
causality dependencies.

- We have built a proof-of-concept prototype
of HProve to demonstrate the feasibility of
our approach. We have conducted extensive
experiments with a variety of representative
malware samples collected in the wild, and
demonstrated that our system could correctly
build the causality dependencies within the
victim system.

2. Background and Motivation
In this section, we give a brief introduction of kernel
malware and describe the motivation of our approach.

2.1. Background
A kernel malware is typically used by loading a
malicious kernel module into the kernel and then
interacting with the kernel data to hide itself without
being detected. As an example, an investigator may
employ monitoring tools to find malicious files in
directories, whereas a kernel-based malware may first
detect such attempts and delete the malicious files
before the kernel returns the identification of the files
or return an empty result. To achieve an malicious
goal, the kernel-mode components of malware typically
employ hooking or DKOM (Direct Kernel Object
Manipulation) strategies [4]. For hooking, the malware
hijacks the key functionalities of the operating system
such as the system call table, VFS (Virtual File System)
functions, or IDT(Interrupt Descriptor Table) and then
points to malicious functions. They are loaded in terms
of LKM (Loadable Kernel Module) that have the same
privilege of kernel. For DKOM, adversaries directly
tamper with pointers fields or data values of sensitive
kernel objects to hide or manipulate the OS semantics.
DKOM adversaries are loaded through the kernel
memory devices such as /dev/kmem. Such devices give
access to the memory region occupied by the running

2A function call convention is a scheme to pass function arguments
and a return value. We use the conventions for the x86 architecture
and the gcc compiler.

Chonghua Wang et al.

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

kernel. It is possible to overwrite kernel at the runtime
and thus perform arbitrary modifications. We collect
a variety of kernel malware samples and manually
analyzed them. In summary, there are several categories
that kernel malware falls into: system service hijacking
(e.g., hooking system call table entries and replacing
system call table), dynamic kernel object hooking (KOH,
e.g., VFS hooking) and DKOM [36, 40].

2.2. Motivation
Kernel malware is considered as one of the most
stealthy threats in computer security field and becomes
a major challenge for security research communi-
ties [10, 13, 40] since it has the equal privilege as the
kernel and often higher privileges than most security
tools. Recently lots of work were proposed to tackle
this attack: kernel rootkit detection [21, 22, 37, 43, 48],
kernel rootkit prevention [26, 36, 38, 42] and kernel
rootkit profiling [23, 27, 39, 45]. However, these works
suffer from several drawbacks. Specifically, detection is
done after the victim system has been attacked, but the
malware behaviors may have been missed. Prevention
is adapted to detection systems, which is mainly to
enforce kernel integrity, whereas it lacks the under-
standing of what had happened in the past. Profiling
is capable of producing malware traces, such as hook-
ing behavior, target kernel objects, user-level impact
and injected code [45]. However, profiling does not
focus on obtaining the connections among these traces.
These systems do not meet the goal of comprehensively
revealing the causality dependencies among kernel
malware behaviors and impacts on the victim system.
For this goal, we need to solve three key challenges:
1) What kernel functions, kernel APIs and system calls
have been called by malware?, 2) What kind of kernel
objects (e.g., pointer fields and data values, etc.) have
been accessed or damaged by malware?, 3) How to
connect kernel malware behaviors and impacts on the
victim system?

Provenance tracing is an efficient approach to address
these challenges since it can associate these events
together to find the causality dependencies among
them. The provenance records provide the holistic
view of the whole system, thus can be well suited to
system forensics. Even though the system is subverted
by malware, provenance points out the possibility to
restore the victim system to a good state in confidence.

Limitations of the State-of-the-Art. Existing systems [12,
24, 25, 29, 34] make the assumption that the kernel
is trusted, which is usually not the case. There are
following concerns on these systems: Circumvention),
the adversary may attempt to hide its behaviors
by circumventing the provenance recorder. As an
example, the malware may unlink itself from the
module list provided by /proc/modules, which makes the

malware behaviors stealthy; Deception), the adversary
may trick the provenance recorder to collect inaccurate
information. For example, the adversary may use a
malicious system call handling function to send fake
behavior to the system; Termination), the adversary may
kill the provenance recorder process to make the system
unable to track provenance.

Regarding these concerns, we have studied prove-
nance systems like LPM [12], BEEP [24], LogGC [25],
ProTracer [29], Hi-Fi [34] and analyzed their features in
terms of system objects, provenance collector and prove-
nance handler. We illustrate these features regarding
provenance systems aiming at user space and kernel
space malware respectively. System objects are critical
for provenance systems to be recorded. They are mainly
composed of files, processes, IPCs, sockets, etc in user
space malware provenance, whereas kernel malware
provenance is aimed at kernel APIs, kernel data struc-
tures, memory regions, instructions, etc. The granu-
larity of recorded system objects determines whether
the provenance information collected is complete or
not. Provenance collector is responsible for observing
and recording system objects and the related events.
For user space malware provenance, the provenance
collector mainly places hooks and analysis codes into
the kernel or user space to capture a variety of events:
file reads and writes, process communication, network
communication, etc. For kernel malware provenance,
the provenance collector should trace the entire kernel
to capture kernel API calls, kernel objects changes,
memory accesses, etc. Note that, user space malware
provenance systems trust the kernel, whereas kernel
space malware provenance systems exclude the kernel
from the Trusted Computing Base . To achieve fidelity,
the provenance collector can be deployed to hypervi-
sors. Provenance handler is responsible for correlating
the events and system objects to build the causality
dependencies. For user space malware provenance sys-
tems, it is implemented in user space whereas kernel
malware provenance systems implement provenance
handler in hypervisor level. Many provenance applica-
tions can be deployed atop provenance handler, such
as interpreting, processing and storing collected prove-
nance data. User space malware provenance systems
(e.g, BEEP [24], ProTracer [29], etc.) may aim to find
out which process/thread (e.g, firefox, pine, etc.) or the
specific link within a program brings in the malware
source. Whereas kernel malware provenance systems
concern on the entire impacts on the kernel.

Table 1 presents our analyzed results. Specifically,
the second column shows the aimed system objects of
these systems. The third and fourth columns present
log information and implementation of the provenance
collector respectively (e.g., ProTracer employs trace-
point, implemented in kernel space, to log selective
syscalls that can induce causality with system objects

HProve: A Hypervisor Level Provenance System to Reconstruct Attack Story Caused by Kernel Malware

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

Table 1. Study of State-of-the-art Provenance Systems

Systems System Objects Provenance Collector Provenance Handler
Log Implementation Applications Implementation

BEEP Sockets,processes,
files,IPC,etc

All syscalls Linux audit /user Attack entry
point

User

LogGC Sockets,processes,
files,IPC,etc

All syscalls Linux audit /user Attack entry
point

User

ProTracer Sockets,processes,
files,IPC,etc

Selective
syscalls

Tracepoint
/kernel

Attack entry
point

User

Hi-Fi Sockets,processes,
files,IPC,etc

Syscalls,vfs
hooks

Linux security
module /kernel

Attack
recording, etc

User

LPM Users,groups,processes,
inodes,sockets,
memory,IPC

Kernel func-
tion hooks

Linux security
module/kernel

Attack footprint,
etc.

User

Figure 1. An abstract diagram to illustrate a scenario that needs
kernel malware attack provenance. W denotes write operation, R
denotes read operation and K.x denotes kernel object x. The end
that the dash line points to is the source of the data read by
benign LKMs.

or other processes). The fifth and sixth columns show
provenance applications that can be deployed atop the
provenance handler (e.g., ProTracer backtracks the
entry points of attack) and implementation layer of the
provenance handler.

Motivating Scenario. Suppose a user wants to install
a kernel driver and downloads a LKM without being
aware that it is malicious. The malicious LKM subverts
important kernel objects (e.g., K.x, K.y and K.z as shown
in Figure 1) to hide itself and transfers confidential
information. The system investigator inspects the
victim system and starts scanning and monitoring work
as usual. But nothing has been detected for some days
which may raise questions to the administrator. Also
the user may download more than one malicious LKM
which manipulates multiple kinds of kernel objects.
What the system investigator needs to know is which
LKM tampered with what kind of kernel objects.
He has to design some investigation techniques to
detect dependences among LKMs, files, kernel objects
and memory accesses or even instructions and build
causality dependencies through causal analysis of the
historical events.

Fig. 1 shows that three different kernel malware issue
malicious activities (e.g., hide processes, hide files and
directories, etc.) by tampering with kernel objects (e.g.,
x, y, z, etc.) at different time t1, t2 and t3 respectively.
At time t4, t5 and t6, the benign LKMs begin to read the
tampered objects as usual. How the investigator knows
where the kernel objects read by the benign LKMs come
from? Have they been modified by the malicious LKM A
or B or C? All these questions can be answered by kernel
malware provenance.

3. System Overview

3.1. Scope, Assumptions and Threat Model
In this paper, we do not differentiate the terms of kernel
malware and kernel rootkit. Both of them represent
the kernel-mode components of malicious behaviors.
According to what we have discussed in Section
2.1, kernel malware may issue malicious activities in
different ways, but the essence of them is the same: they
need to tamper with kernel objects. Regarding the scope
of different categories of kernel malware and to focus
on the provenance problem itself for kernel malware,
system call hooking is our initial implementation
decision for a prototype and our approach can be
extended with other approaches which handle DKOM
and VFS hijacking. Once the detection of DKOM and
VFS hijacking is included [47], our method can perform
provenance tracing from there. And we did not consider
kernel ROP or other advanced kernel malware in this
paper.

We assume we can acquire the knowledge of
kernel APIs, e.g., the kernel object allocation functions
(e.g., kmalloc/kfree, vmalloc/vfree, kmem_cache_alloc/
kmem_cache_free, etc.) so that we can instrument and
track the creations and deletions of the kernel objects,
and the kernel APIs as well as the function arguments.
In addition, we assume that we can get knowledge of

Chonghua Wang et al.

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

Figure 2. System Overview of HProve. PTP in the causality
dependences denotes Provenance Tap Points which are shortly
to be defined in next section.

the system call table and the corresponding entries so
that we can locate them in memory and reveal each
access on them. Meanwhile, we assume the function call
conventions is not variable so that we can infer the caller
of kernel APIs accurately. As HProve is implemented on
Linux, these assumptions are reasonable and practical.

We define a threat against HProve as any way of
compromising the fidelity or completeness of the
provenance information collected. HProve guarantees
that even though the kernel is compromised by the
adversaries, we can track the tampered objects and
further conduct provenance tracing. The hypervisor
level attack is out of scope of HProve, and we can
employ hypervisor integrity checking techniques such
as [28, 38] to ensure the intactness of the hypervisor
before conducting provenance tracing.

3.2. Overview
We present HProve to complement current provenance
techniques. HProve is designed to comprehensively
reveal the causality dependences among kernel mal-
ware behaviors and impacts on the victim system. It
is capable of obtaining a deep insight on what kind of
behaviors kernel malware may conduct. The prototype
of HProve is composed of the record, replay, instrumen-
tation, and provenance components as illustrated in Fig.
2.

First, it employs a lightweight recorder to record
whole system execution of the guest OS. The recorder is
lightweight since it dose not record the emulated hard-
ware devices. Then HProve leverages a replayer with an
instrumentation engine to analyze the execution traces
recorded by the recorder. The replayer supports on-
the-fly instrumentation. The instrumentation engine is
capable of keeping track of a series of kernel functions
(e.g., kmalloc, vmalloc, load_module, etc.) and tracing
memory access to sensitive kernel objects (e.g, system
call table, etc.) during the replay phase. HProve acquires
complete provenance information during replay phase.

The provenance component is responsible for retriev-
ing provenance information by analyzing the standard
function call conventions and building complete causal-
ity dependencies regarding impacts from kernel mal-
ware to a victim system. HProve supports off-the-shelf
Linux OSes of different guest kernel versions.

Since kernel malware could manipulate the entries
of the system call table via system call table hijacking,
HProve keeps track of the changes of these entries. Then
it obtains the allocated memory region of the system
call table in memory and records memory access of the
memory region. There are a few hundreds of entries
in the system call table (e.g., 350 and 312 entries in
Linux 3.2 kernel for 32-bit and 64-bit respectively), thus
only a few hundreds of memory addresses are to be
tracked by HProve. Writes to these entries are considered
as suspicious and recorded. Note that the writes to
system call table entries make the relative system
call service routine points to the malicious function
in kernel malware. The above process is achieved by
our technique : Memory Access Tracing. To associate
the memory access to these sensitive entries with the
impacts on the kernel, HProve captures the program
counter that initiates the access points and backtracks
the kernel starting from the kernel API that calls
the program counter. Backtracking makes it possible to
trace back to the original point at which malware has
been loaded into the kernel. This is achieved by our
technique: Provenance Tap Point Uncovering.

4. Design and Implementation
In this section, we first present several definitions used
in our approach. Then we describe the design and
implementation of HProve in details.

4.1. Definitions
Provenance Tap Points . We define a provenance tap

point, an execution point [15] in the kernel at which we
wish to capture a set of function callers. It is defined as
a four-tuple:

(call_site, func_entry, func_arg, func_ret_val),

where func_entry is the kernel function whose caller
to be tracked, func_arg refers to the argument of the
function, func_ret_val is the return value of the function
and call_site denotes the caller of the function_entry.
Before identifying the provenance tap points, we initially
identify instruction level tap points, which we call raw
tap points. Each raw tap point is defined formally as a
pair:

(call_site, program_counter),

where the call_site is the caller of the kernel function
and the program counter uniquely represents the

HProve: A Hypervisor Level Provenance System to Reconstruct Attack Story Caused by Kernel Malware

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

address of the instruction. To determine the call site,
we use the return address of the call to the func_entry.
In the instruction stream, the return address is the
address of the instruction after the call instruction.
Once a raw tap point is discovered, data-flow analysis
and memory introspection [19] are needed to correlate
the identified instruction with a certain argument of the
kernel function. Hence, we can eventually retrieve the
function level tap point: provenance tap points.

Memory Access Trace . Memory Access Trace is used to
connect the kernel events and function calls within the
kernel, where each access m is formatted as a four-tuple:

m=(addr, data, type, program_counter).

Addr is the address of memory being accessed. Data
is the amount of data written or read. Type is the
type of the memory access (either a read or a write).
Program_counter is the address of the instruction
invoking the access.

4.2. Design Goals
HProve employs kernel event replay to track the
provenance of kernel malware attacks. We have the
following goals for designing HProve.

- G1: Fidelity. The provenance information col-
lected should be secure and trustworthy for
obtaining true causality dependences.

- G2: Flexibility. It should be flexible to add
custom instrumentation code into malicious
code execution so that it can conduct various
provenance analyses depending on needs.

- G3: Efficiency. The efficiency for kernel malware
attack provenance tracing is considered in two-
fold: 1) It should be efficient to collect abundant
information to build causality dependencies;2)
The performance overhead for replay should be
acceptable.

The architecture of HProve is depicted in Fig. 2. The
record and replay modules are implemented in the
virtualization layer using QEMU to achieve fidelity
(G1). The instrumentation process is completed during
the replaying phase rather than the recording phase
which offers the provenance analysis with different
requirements determined in the off-line stage, ensuring
that the information to be collected is flexible to choose
(G2). Execution traces recorded do not include the
state of the emulated hardware devices to make the
recorder lightweight. HProve focuses on the analysis of
a process for provenance tracing rather than the replay
of a generic VM. HProve is able to replay and analyze a
trace without the access to the VM image that is used
for recording. Meanwhile to reduce runtime overhead,

Figure 3. Illustration on How Our Instrumentation Engine Works
during Replay

the instrumentation code is inserted into the translated
code only when necessary during replay (G3).

4.3. Recording Non-deterministic Events
HProve leverages Panda [14], built atop on QEMU, to
record the non-deterministic events (e.g., IN, the data
entering the CPU on port input; INT, a hardware
interrupt and its parameters; DMA, the data written
to RAM during a direct memory access operation
from a peripheral device). Panda extends the original
recording process of the QEMU emulator and the
recorded information can be replayed deterministically
for the entire execution at any later time. Since the
execution traces recorded do not include the state
of emulated hardware devices, it does not support
the execution of device code during replay. However,
this feature satisfies our requirements. Eliminating the
execution traces of device code helps to reduce the
logging overhead significantly.

4.4. Instrumentation during Replay
Before discussing the instrumentation details during
replay, we introduce the QEMU Translation Block first.

QEMU Translation Block. The guest code is split into
"translation blocks" (corresponds to a list of instructions
terminated by a branch instruction). QEMU then
translates them into an intermediate language using
TCG (Tiny Code Generator), which provides the APIs
to insert additional code. This intermediate translated
block is converted into a corresponding basic block of
binary code that can be directly executed on the host.
Fig. 3 shows how the guest code is transformed into
translation blocks.

Instrumentation before/after Execution . HProve instruments
analysis code during replay to obtain the Provenance Tap
Point and Memory Access Trace. As seen in the dashed
translation block shown in Fig 3, analysis code can
be instrumented before or after the execution of each
translation block by the instrumentation engine. We
take LKM kernel malware as an example for describing
our techniques. At the conceptual level, HProve works as
follows.

Chonghua Wang et al.

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

Figure 4. Building Causality Dependencies among Kernel
Malware Behaviors and Impacts on the Victim System. PTP
denotes Provenance Tap Point

First, it conducts source code analysis of the typical
execution route of kernel malware and reveals the
common characteristics of them. We found that before
loading a LKM malware, it is inserted into the kernel
using utilities such as insmod or modprobe. Then the
kernel initializes the LKM through system calls, calls
load_module function to load the LKM, and allocates
memory space for it. We set the insmod or modprobe
operation as the start point and the allocating memory
operation as the end point of the work done by kernel
for all the LKMs. We define the timeline between the
start point and the end point as Top-Half, and the
timeline after the end point is defined as Bottom-Half.
The analysis of the events occurrs during Top-Half is
completed by Provenance Tap Point Uncovering. And the
events occur during Bottom-Half is analyzed by Memory
Access Tracing.

Uncovering Provenance Tap Points. No matter what kind
of objects will the kernel malware manipulate, its
execution file should be allocated into the memory.
Since HProve records whole execution of the running
kernel, it instruments analysis code into the recorded
traces to track the kernel allocation/deallocation
related functions (e.g., kmalloc/kfree, vmalloc/vfree).
Whenever these kinds of allocation/deallocation events
occur at runtime, HProve replays the execution for
capturing the allocated address range and location of
the code that calls the memory allocation function. As
defined in Section 4.1, HProve determines the call_site,
func_entry, func_arg, func_ ret_val for Provenance
Tap Point in the replay phase. HProve instruments
provenance code before (after) the execution of each
basic block during replay as depicted in Fig. 3. Take
an allocation function (e.g.,vmalloc) as a func_entry, the
address of objects being allocated can be determined by
the func_arg, and the size of object can be determined
by func_ret_val. Take a deallocation function (e.g., vfree)
as a fuc_entry, the address of objects being deallocated
can be determined by the func_arg. Call_site determines

which function calls the func_entry. Each item of the
Provenance Tap Point can be captured by analyzing
function call conventions within the hypervisor.

To capture the call_site, HProve uses the return address
of the call to func_entry. In the instruction stream, the
return address is the address of the instruction after
the CALL instruction. Func_arg and func_ret_val can be
captured through the stack or registers. Integers up to
32-bits as well as 32-bit pointers are delivered via the
EAX register. Func_arg is delivered through the EBP
with corresponding offsets. Func_arg and func_ret_val
are only available when func_entry returns to the
call_site. In order to capture func_arg and func_ret_val
at the correct time, HProve uses a shadow stack to
store these values. Specifically, HProve checks if it ends
with a CALL instruction after each basic block executes
during replay. If so, the return address is pushed into
a shadow stack. Correspondingly, before execution of
each basic block, HProve checks whether it matches a
return address on the shadow stack; If so, we know that
the current function has returned, thus HProve pops it
from the shadow stack and captures the return value
from the EAX register as well as the function arguments
from EBP with corresponding offsets. Then HProve reads
the value from the registers and memory addresses
using the introspection technique [19]. The obtained
values of provenance tap points will be stored in the
form of (calle_site, func_entry func_arg,func_ret_val) as
described in Section 4.1.

Memory Access Tracing. After malware being allocated
into the memory, it is able to start carrying out
malicious activities. These events occur in the phase
of Bottom-Half. Typically, LKM malware would try
some tricks (e.g., bypass CR0 protection and search for
System.map file) to get the entry address of system call
table, and manipulate the relative system call entries for
different purposes. Fortunately, there are only a few
hundreds of system call entries in Linux as discussed
in Section 3.2. HProve keeps track of these addresses
to check whether there is a write operation executed
on them with low overhead, if so it records the PC
that initiates the write operation. The retrieved values
of memory access traces will be stored in the form of
m=(addr, data, type, program_counter) as described in
Section 4.1.

4.5. Causality Dependencies
To build causality dependencies, HProve uncovers the
connections among the events occurr in the Top-
Half and Bottom-Half. When the allocation function
allocates memory for LKM malware, HProve acquires the
address range that is being allocated by interpreting the
func_arg. Then HProve gets a address range that is being
allocated for the LKM malware. Once the PC is captured
during Memory Access Tracing, HProve checks whether

HProve: A Hypervisor Level Provenance System to Reconstruct Attack Story Caused by Kernel Malware

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

the pc locates within one of the address range that
has been allocated for malware. If so, HProve correlates
the writes on system call entries with the func_entry
that execute the allocation. Then HProve determines the
call_site of the func_entry that executes the allocation
by the Provenance Tap Point Uncovering technique.
Through backtracking successively, HProve acquires the
complete call_site to determine the original malware
source that initials the write operation on system call
entries.

5. Evaluation
In this section we present the effectiveness of using
HProve to build causality dependencies among kernel
malware behaviors and impacts on the system. Then
we evaluate HProve’s efficiency to show that our
approach does not incur significant overheads. In our
experiments, the host machine is an Intel Core i5
desktop running Ubuntu 12.04. We use Linux kernels
as the guest VM. To validate our experiments results
with the ground truth, we have collected 12 kernel
malware samples that contain a mix of malicious
capabilities found in the wild, including 10 system
services hijacking malware (e.g., kbeast, xinqyiquan,
etc.), 1 DOH malware (e.g., adore-ng-.0.56), and 1
DKOM malware (e.g., hp rootkit).

5.1. Effectiveness
Before verifying the effectiveness of HProve, we show
that kernel malware could bypass Linux audit utilized
by state-of-the-art provenance systems like BEEP [24],
LogGC [25], and ProTracer [29]. These systems employ
the audit system to log system calls for analysis. We
execute our collected kernel malware samples one
by one, then start the audit system and set some
rules [5] to record system calls triggered by the
malware. Since all LKMs loaded into the kernel can be
exported through /proc/modules directory, if everything
goes well, the audit system can log LKM lists by
monitoring /proc/modules. Take Kbeast as an example,
it manipulates the system call entry _NR_delete_module
to cheat kernel, thus the Kbeast would not be listed
through /proc/modules. As a result, the audit system fails
to log Kbeast, leading to inaccurate provenance results
by BEEP, LogGC and ProTracer. Other kernel malware
that employ similar hooking mechanisms would bypass
the audit system as well. We did not test LPM and Hi-
Fi that employ the Linux Security Module for logging.
However, since both of these systems intercept system
calls as provenance information and thus they could
be bypassed by kernel malware that manipulate system
call entries. To evaluate the effectiveness of our system,
we should obtain provenance tap points and memory
access traces of the targeted kernel objects accurately
with HProve. In the experiment setup, HProve loads 12

Figure 5. Illustration of Caller-callee Relationship Chain When
LKMs Are Inserted into Kernel. These functions on the left are
served as func_entry of the Provenance tap point. The right is
the kernel space address of the func_entry.

kernel malware samples and 6 benign LKMs into the
guest kernel. Once all of these modules are loaded into
the kernel, HProve starts recording whole execution of
the guest kernel with the lightweight recorder. Then the
recorded traces are instrumented with provenance code
during its replay to obtain provenance tap points, and
memory access traces. After that provenance information
is retrieved to build the causal dependencies.

Provenance Tap Points. As discussed in Section 4.4,
LKMs are inserted into the kernel by the insmod or
modprobe utility in Linux. These utilities encapsulate a
sys_init_module system call which performs initializa-
tion and calls the load_module function. This function is
responsible for loading the LKM from the user space
to the kernel space. First, it calls the copy_and_check
function which calls the vmalloc function to allocate
temporary memory for copying the LKM file into the
memory region. Second, the load_module function calls
layout_and_allocate to allocate the final memory for a
specific section of the LKM (e.g., core space, .init.text,
etc). The remaining caller-callee relationship chain is
shown as below:

layout_and_allocate−→move_module
−→ module_alloc_update_bounds

−→module_alloc−→__vmalloc_node_range.

After initialization, allocation and relocation are
finished, and the LKM can execute as expected. Fig. 5
shows the detailed caller-callee relationship chain after
LKMs are inserted into the kernel.

Chonghua Wang et al.

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

Table 2. Allocated Start Address Range for Each Kernel Malware

Address
range

Kbeast Xing-
yiquan

Suter-
usu

Knark Enye-
lkm

Synap-
sys

Rial Kis Kbdv3 Adore-
0.42

Adore-
ng0.56

Start
address

0xf86-
73000

0xf86-
82000

0xf86-
85000

0xf86-
83000

0xf86-
75000

0xf86-
77000

0xf86-
71000

0xf86-
89000

0xf86-
68000

0xf86-
79000

0xf86-
64000

Size/Bytes 215 308 276 413 356 218 196 525 298 418 382

Table 3. One of Memory Access Trace Table Obtained by HProve. _NR_open is the entry of system call sys_open and so forth.

Data Addr Type PC

_NR_open 0xc1541234 W 0xf867445f
_NR_read 0xc154122c W 0xf86743b4
_NR_write 0xc1541230 W 0xf86743c9
_NR_rmdir 0xc15412c0 W 0xf867411
_NR_unlink 0xc1541248 W 0xf86743f9
_NR_rename 0xc15412b8 W 0xf8674447
_NR_kill 0xc15412b4 W 0xf8674477
_NR_getdents64 0xc1541590 W 0xf86743e1
_NR_unlinkat 0xc15416d4 W 0xf867442c
_NR_delete_module 0xc1541424 W 0xf86743d4

With this prior knowledge, HProve treats these
functions shown in Fig. 5 as the function_entry of one
of the provenance tap points. Take __vmalloc_node_range
as an example, it is used for allocating specific pages in
physical memory for LKMs. We can infer other items of
provenance tap points (e.g., call_site, function_argument,
function_return_value) with provenance tap point
uncovering and memory introspection techniques [19].

Specifically, once we have inferred mod-
ule_alloc_update_bounds, HProve acquires the allocation
information of LKMs including the address range from
the provenance tap point. The address range is critical
for HProve to link the causality dependency between
Top-Half and Bottom-Half as discussed in Section 4.5.
In our experiments, HProve uncovers provenance tap
points for all kernel malware samples. The address
range allocated for each malware sample is shown in
Table 2. Since DKOM type malware are loaded into
kernel in terms of /dev/kmem, we do not list it in the
table.

Memory Access Traces. Before building the complete
causality dependencies, the memory region which the
LKMs belong to needs to be identified. HProve achieves
this by recording the memory access to the system
call table for the running malware. We then build the
Memory Access Trace tuple for each system call entry
manipulated by each kernel malware. In the tuple, PC is
critical field to determine which LKM is manipulating
the relative system call entry. As discussed above, HProve
acquires various memory regions that are allocated for
the LKMs loaded into the kernel. If PC follows in one of

the memory regions, then the two events are correlated.
A table for the Memory Access Trace tuples is constructed
for each kernel malware sample.

Table 3 shows one of the results obtained by HProve.
As we can see, in the second row, _NR_open entry is
located at 0xc1541234 and has been written by PC
0xf867445f. HProve refers to the result of Table 2 and
determines that this PC and other PCs in Table 3 belong
to the memory region allocated for Kbeast.

After correlating memory access traces with provenance
tap points, HProve is able to identify which malware
manipulates which kind of kernel objects. Table 4
shows the system call entries that are manipulated by
kernel malware samples of system services hijacking we
collect. For instance, Kbeast tampered with _NR_open,
_NR_read, _NR_write, _NR_rmdir, _NR_unlink, etc. We
also analyze the source code of all the malware samples
for the validation purposes, and it turned out that the
entries discovered by our provenance tracing method
correctly matched the malware behaviors in the source
code.

5.2. Efficiency
We conduct several experiments to evaluate the
efficiency of HProve. In the first experiment setup, we
insert all the LKM samples, including the malicious and
benign ones into the guest kernel and start HProve. Once
the kernel begins to load these samples, HProve records
the execution once, and then replays it multiple times
for different provenance requirements. In the following
experiments, we insert one malware sample into the

HProve: A Hypervisor Level Provenance System to Reconstruct Attack Story Caused by Kernel Malware

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

Table 4. Manipulated System Call Entries. ‘
√

’ denotes that the entry has been manipulated.

System call entry Kbeast Xing-
yiquan

Sute-
rusu

Knark Enye-
lkm

Syna-
psys

Rial Kis Kbdv3 Adore-
0.42

_NR_open
√ √ √ √ √ √

_NR_read
√ √ √ √

_NR_write
√ √ √ √

_NR_rmdir
√ √ √

_NR_mkdir
√

_NR_unlink
√ √ √

_NR_chdir
√ √

_NR_kill
√ √ √ √ √ √

_NR_fork
√ √ √ √

_NR_ioctl
√

_NR_close
√

_NR_clone
√ √ √ √ √

_NR_exit
√

_NR_execve
√

_NR_rename
√ √ √

_NR_utime
√

_NR_unlinkat
√

_NR_socketcall
√

_NR_getdents
√ √ √ √

_NR_gentdents64
√ √ √

_NR_getuid
√

_NR_getuid32
√

_NR_gettimeofday
_NR_quiry_module

√ √

_NR_init_module
√

_NR_delete_module
√

_NR_stat
√

_NR_lstat
√

kernel at a time and repeat 10 times. For each case, we
report the recording time, the size of a record, the size
of a memory trace, and the replay time in Table 5. The
second column of Table 5 presents the recording time of
the sample’s execution. The third column shows the size
of impact traces that are recorded by the lightweight
recorder of HProve. The forth column lists the size of
memory access traces of the system call entries. The
fifth and sixth columns present the replay time for
Provenance Tap Points Uncovering and Memory Access
Tracing respectively.

As we can see, a record size in the table is at
most 30MB for the evaluated LKM samples, which
is acceptable for these samples executing millions of
instructions. Since there are only a few hundreds of
memory addresses to be tracked, the size of memory
traces is at most 17KB. The duration of replaying
Memory Access Tracing for all LKM samples is 113
minutes and the average duration of replaying Memory
Access Tracing for each malware sample is 32.2 minutes.
Replaying for uncovering Provenance Tap Points took 62

minutes for all LKM samples and 11.8 minutes for each
malware sample in average.

6. Discussion
In this section ,we discuss the limitations of HProve and
our future work.

HProve employs Panda [14] to record the whole
execution of system, it shares the overhead with Panda
for keeping track of instructions and the program
counter at the instruction level. Recording under
hardware virtualization of KVM and replaying using
CPU emulation would be a significant speedup. We plan
to migrate Panda to leverage such techniques to get
better performance.

Regarding the scope of different categories of kernel
malware and to focus on the provenance problem itself
for kernel malware, system call hooking is our initial
implementation decision for a prototype. HProve can
not deal with all the types of kernel malware (e.g.,
DKOM and VFS hijacking) as discussed in Section
2.1. The system will fail if an object that are not

Chonghua Wang et al.

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

Table 5. Evaluation for space and time for provenance

Sample Recording time Record size Memory traces size
Replaying time

Provenance
tap points

Memory
access tracing

kbeast 1.2 mins 26 MB 11 KB 13 mins 50 mins
xingyiquan 0.8 mins 17 MB 7 KB 12 mins 33 mins
suterusu 0.2 mins 4 MB 2 KB 10 mins 10 mins
knark 1.1 mins 24 MB 10 KB 13 mins 45 mins
enyelkm 0.3 mins 6 MB 3 KB 10 mins 12 mins
synapsys 1.1 mins 25 MB 12 KB 14 mins 51 mins
rial 0.4 mins 9 MB 3 KB 11 mins 13 mins
kis 1.5 mins 30 MB 17 KB 14 mins 78 mins
kbdv3 0.3 mins 5 MB 2 KB 10 mins 9 mins
adore-0.42 0.6 mins 14 MB 5 KB 11 mins 21 mins
All LKMs 11 mins 148 MB 80 KB 62 mins 113 mins

being tracked is modified (e.g., the malware creates
new kernel objects with altered semantics). We have
tested a type of DKOM and VFS hijacking malware (e.g.,
hp rootkit, adore-ng-0.56) that can elude our system.
But our approach can be easily extended with other
approaches which handle DKOM and VFS hijacking.
Once the detection of DKOM and VFS hijacking is
included [9, 47], our method can perform provenance
tracing from there. Other than system call table, we can
keep track of other sensitive kernel objects that DKOM
or VFS hijacking malware may manipulate. Note that if
the kernel malware disguises itself as a benign kernel
module such as a device driver, HProve still works.

Since HProve locates the address of an instruction
executing a malicious memory operation into the code
region of the kernel malware, it cannot handle kernel
ROP or other advanced kernel malware. We consider to
extend our system to adapt to more categories of kernel
malware in our future work.

7. Related Work
Kernel Malware: Many researchers have studied
the behaviors of kernel malware and proposed lots
of effective approaches to detect their existence.
HookFinder [27] identifies all the impacts made by the
malicious code and keeps track of the impacts flowing
across the system to identify the hooking behavior
of a rootkit in the kernel execution. HookMap [43]
employs a more elaborate method to identify all
potential hook in the execution path of kernel code
that could be utilized by the kernel level malware.
K-Tracer [23] discovers information about rootkit
capabilities through its data manipulation behavior
to help defend against rootkit as well as user-level
malware that gets help from them. PoKeR [39] is
a kernel rootkit profiler that generates multi-aspect
kernel rootkit profiles (e.g.,hooking behavior, targeted

kernel objects, user-level impacts and injected code)
during rootkit execution. Rkprofiler [45] is also a kernel
malware profiler that can track both pointer-based
and function-based object propagation, while PoKeR
only tracks the pointer-based object propagation.
To complement these work, our work analyzes the
behavior of kernel malware reversely (from bottom to
top and from impact to cause) which is orthogonal to
theirs.

Provenance Tracing: Provenance tracing provides
the ability to describe the history of a data object,
including the conditions that led to its creation and
the actions that delivere it to its present state. Hi-
Fi [34] leverages Linux Security Module to collect
a complete provenance record from early kernel
initialization through system shutdown. It maintains
the fidelity of provenance collection under any
user space compromise. BEEP [24] instruments an
application binary at the instructions and use the Linux
audit system to capture the system calls triggered
by the application. The log collected from the audit
system can be analyzed to investigate which application
brings the malware into the system for provenance.
LogGC [25] employs the garbage collection method
to prune some system objects such as temporary files
that have a short life-span and have little impact
on the dependency analysis to save space. ProTracer
[29] proposes to combine both logging and unit level
tainting techniques, aiming at reducing log volume to
achieve cost-effective provenance tracing. Bate et al.
[12] proposes Linux Provenance Module, a generalized
framework for the development of automated, whole-
system provenance collection on the Linux. However,
these systems rely on the safety of provenance collector
(e.g., Linux audit system, Linux Security Module). In
the events of kernel malware, the adversary is able
to compromise the provenance collector or even the

HProve: A Hypervisor Level Provenance System to Reconstruct Attack Story Caused by Kernel Malware

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

kernel, which makes the provenance results untrusted.
Our contribution is to complement these techniques by
porting the provenance collector as well as the analysis
module into the hypervisor for the resistance to kernel
level malware.
Deterministic Replay: Deterministic replay creates

an execution that is logically equivalent to an original
execution of interest. It records the not-deterministic
events(e.g., hardware interrupts, I/O inputs, DMA
events) and replays the system at a checkpoint
deterministically [14–18, 30, 31, 35, 46]. Deterministic
replay is helpful to roll back a victim system after
an attack for forensic analysis. Our system utilizes
the record and replay technique of Panda to obtain
the execution traces of the whole system. HProve
instruments the provenance code in the replay phase
to obtain causality dependencies among behaviors of
kernel malware and impacts on the victim system.
Kernel Monitoring: Kernel monitoring helps to

understand the exact execution of the whole system.
DRIP [20] is a framework for purifying trojaned kernel
drivers. It records all kernel API invocations from the
driver to the kernel, aim at eliminating malicious effects
from the driver. Gateway [41] isolates all drivers from
the kernel code by creating a separate address space for
drivers to monitor the interaction of drivers with the
core kernel. It records kernel APIs invocation by drivers
to monitor the untrusted kernel-mode execution.
Starting from the interface of system calls, the exported
kernel APIs, and the data structure definitions for
kernel driver developers, AutoTap automatically tracks
kernel objects, resolves their kernel execution context,
and associates the accessed context with the objects
[47]. Note that AutoTap does not build connections
among these objects or the causality dependencies
among the objects and the subjects that access
them.HProve is capable of monitoring some kernel
functions to backtrack causality dependencies among
kernel malware behaviors and impacts on the victim
system.

8. Conclusion
We develop HProve, a hypervisor level provenance
tracing system that can backtrack the causality
dependencies among impacts on a victim system
and kernel malware behaviors. It is capable of
understanding the kernel APIs triggered and the
objects manipulated by kernel malware. HProve is a
new system that provides the capability of replaying
kernel malware attack story for provenance tracing.
Such hypervisor level technique is needed in current
cloud computing environment, especially for large
enterprises. Due to the limitations of HProve discussed
in Sec. 6, more efficient designs for kernel malware
provenance are still highly needed.

References

[1] An analysis of a windows kernel-mode vulnerability
(cve-2014-4113). http://blog.trendmicro.com/
trendlabs-security-intelligence/an-analysis-

of-a-windows-kernel-mode-vulnerability-cve-

2014-4113/.
[2] Analysis of cve-2015-2360–duqu 2.0 zero day vul-

nerability. http://blog.trendmicro.com/trendlabs-
security-intelligence/analysis-of-cve-2015-

2360-duqu-2-0-zero-day-vulnerability/.
[3] Dissecting turla rootkit malware using dynamic analysis.

https://www.lastline.com/labsblog/dissecting-
turla-rootkit-malware-using-dynamic-analysis/.

[4] Dkom(direct kernel objectmanipulation). https:

//www.blackhat.com/presentations/win-usa-04/bh-
win-04-butler.pdf.

[5] Linux audit system. https://wiki.archlinux.org/
index.php/Audit_framework.

[6] Operation pawn storm ramps up its activities; targets
nato, white house. http://blog.trendmicro.com/
trendlabs-security-intelligence/operation-

pawn-storm-ramps-up-its-activities-targets-

nato-white-house/.
[7] Unmasking kernel exploits. https://

www.lastline.com/labsblog/unmasking-kernel-
exploits/.

[8] Ma, S, Lee, K., Kim, C., Rhee, J., Zhang, X., and
Xu, D. Accurate, low cost and instrumentation-free
security audit logging for windows. In Proceedings
of Annual Computer Security Applications Conference
(ACSAC), pages 401–410, 2011.

[9] Aristide, F. , Andrea, L., Davide, B., and Engin, K.

Hypervisor-based malware protection with AccessMiner.
Computers & Security, 9 April 2015.

[10] Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J.,
Srinivasan, D., Rhee, J., and Xu, D. Dksm: Subverting
virtual machine introspection for fun and profit. In
Proceedings of IEEE Symposium on Reliable Distributed
Systems (SRDS), pages 82–91, 2010.

[11] Bates, A., Pohly, D., Butler, K., Wang, C., Guan, Y., and
Kasera, S. Secure and Trustworthy Provenance Collection
for Digital Forensics, pages 141–176. 2016.

[12] Bates, A., Tian, D., Butler, K., and Moyer, T.

Trustworthy whole-system provenance for the linux
kerne. In USENIX Security, pages 319–334, 2015.

[13] Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., and
Jiang, X. Mapping kernel objects to enable systematic
integrity checking. In Proceedings of ACM Conference
on Computer and Communications Security (CCS), pages
555–565, 2009.

[14] Dolan-Gavitt, B., Hodosh, J., Hulin, P., Leek, T., and
Whelan, R. Repeatable reverse engineering with panda.
In Proceedings of the 5th Program Protection and Reverse
Engineering Workshop, pages 4:1–4:11, 2015.

[15] Dolan-Gavitt, B., Leek, T., Hodosh, J., and Lee, W.

Tappan zee (north) bridge: mining memory accesses
for introspection. In Proceedings of ACM Conference
on Computer and Communications Security (CCS), pages
839–850, 2013.

Chonghua Wang et al.

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

http://blog.trendmicro.com/trendlabs-security-intelligence/an-analysis-of-a-windows-kernel-mode-vulnerability-cve-2014-4113/
http://blog.trendmicro.com/trendlabs-security-intelligence/an-analysis-of-a-windows-kernel-mode-vulnerability-cve-2014-4113/
http://blog.trendmicro.com/trendlabs-security-intelligence/an-analysis-of-a-windows-kernel-mode-vulnerability-cve-2014-4113/
http://blog.trendmicro.com/trendlabs-security-intelligence/an-analysis-of-a-windows-kernel-mode-vulnerability-cve-2014-4113/
http://blog.trendmicro.com/trendlabs-security-intelligence/analysis-of-cve-2015-2360-duqu-2-0-zero-day-vulnerability/
http://blog.trendmicro.com/trendlabs-security-intelligence/analysis-of-cve-2015-2360-duqu-2-0-zero-day-vulnerability/
http://blog.trendmicro.com/trendlabs-security-intelligence/analysis-of-cve-2015-2360-duqu-2-0-zero-day-vulnerability/
https://www.lastline.com/labsblog/dissecting-turla-rootkit-malware-using-dynamic-analysis/
https://www.lastline.com/labsblog/dissecting-turla-rootkit-malware-using-dynamic-analysis/
https://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf
https://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf
https://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf
https://wiki.archlinux.org/index.php/Audit_framework
https://wiki.archlinux.org/index.php/Audit_framework
http://blog.trendmicro.com/trendlabs-security-intelligence/operation-pawn-storm-ramps-up-its-activities-targets-nato-white-house/
http://blog.trendmicro.com/trendlabs-security-intelligence/operation-pawn-storm-ramps-up-its-activities-targets-nato-white-house/
http://blog.trendmicro.com/trendlabs-security-intelligence/operation-pawn-storm-ramps-up-its-activities-targets-nato-white-house/
http://blog.trendmicro.com/trendlabs-security-intelligence/operation-pawn-storm-ramps-up-its-activities-targets-nato-white-house/
https://www.lastline.com/labsblog/unmasking-kernel-exploits/
https://www.lastline.com/labsblog/unmasking-kernel-exploits/
https://www.lastline.com/labsblog/unmasking-kernel-exploits/

[16] Dovgalyuk, P., Dmitriev, D., and Makarov, V. Don’t
panic: Reverse debugging of kernel drivers. In
Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages 938–941,
2015.

[17] Dunla, G., Lucchetti, D., Dominic, G., Fetterman, M.,
and Chen, P. Execution replay of multiprocessor virtual
machines. In Proceedings of ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environ-
ments (VEE), pages 121–130, 2008.

[18] Dunlap, G., King, S. T., Cinar, S., Basrai, M. A.,
and Chen, P. M. Revirt: Enabling intrusion analysis
through virtual-machine logging and replay. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 211–224, 2002.

[19] Garfinkel, T. and Rosenblum, M. A virtual machine
introspection based architecture for intrusion detection.
In Proceedings of Network and Distributed System Security
Symposium (NDSS), pages 191–206, 2003.

[20] Gu, Z., Sumner, W. N., Deng, Z., Zhang, X., and
Xu, D. Drip: A framework for purifying trojaned
kernel drivers. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 1–12,
2013.

[21] Jiang, X., Wang, X., and Xu, D. Stealthy malware
detection through vmm-based out-of-the-box semantic
view reconstruction. In Proceedings of ACM Conference
on Computer and Communications Security (CCS), pages
128–138, 2007.

[22] Kruegel, C., Robertson, W., and Vigna, G. Detecting
kernel-level rootkits through binary analysis. In
Proceedings of Annual Computer Security Applications
Conference (ACSAC), pages 91–100, 2004.

[23] Lanzi, A., Sharif, M., and Lee, W. K-tracer: A system
for extracting kernel malware behavior. In Proceedings
of Network and Distributed System Security Symposium
(NDSS), 2009.

[24] Lee, K., Zhang, X., and Xu, D. High accuracy attack
provenance via binary-based execution partition. In
Proceedings of Network and Distributed System Security
Symposium (NDSS), 2013.

[25] Lee, K., Zhang, X., and Xu, D. Loggc: garbage collecting
audit log. In Proceedings of ACM Conference on Computer
and Communications Security (CCS), pages 1005–1016,
2013.

[26] Li, J., Wang, Z., Jiang, X., Grace, M., and Bahram,

S. Defeating return-oriented rootkits with "return-less"
kernels. In EuroSys, pages 195–208, 2010.

[27] Liang, Z., Yin, H., and Song, D. Hookfinder: Identifying
and understanding malware hooking behaviors. In
Proceedings of Network and Distributed System Security
Symposium (NDSS), pages 41–57, 2008.

[28] Litty, L. and Lagar-Cavilla, H. A. Hypervisor
support for identifying covertly executing binaries. In
Proceedings of the 17th Conference on Security Symposium,
pages 243–258, 2008.

[29] Ma, S., Zhang, X., and Xu, D. Protracer: towards
practical provenance tracing by alternating between
logging and tainting. In Proceedings of Network and
Distributed System Security Symposium (NDSS), 2016.

[30] Malyugin, V., Sheldon, J., Venkitachalam, G., Weiss-

man, B., and Xu, M. Retrace: Collecting execution trace
with virtual machine deterministic replay. In Proceedings
of the Third Annual Workshop on Modeling, Benchmarking
and Simulation, 2007.

[31] Oliveira, D., Crandall, J., Wassermann, G., Wu, S.F.,
Su, Z., and Chong, F. Execrecorder: Vm-based full-
system replay for attack analysis and system recovery.
In Proceedings of the 1st Workshop on Architectural and
System Support for Improving Software Dependability,
pages 66–71, 2006.

[32] P. M. Chen and B. D. Noble. When virtual is better than
real [operating system relocation to virtual machines]. In
Proceedings Eighth Workshop on Hot Topics in Operating
Systems, pages 133–138, 2001.

[33] Pei, K., Gu, Z, Saltaformaggio, B., Ma, S., Wang, F.,
Zhang, Z., Si, L., Zhang, X., and Xu, D. Hercule:
Attack story reconstruction via community discovery on
correlated log graph. In Proceedings of Annual Computer
Security Applications Conference (ACSAC), pages 583–
595, 2016.

[34] Pohly, D., McLaughlin, S., McDaniel, P., and Butler, K.

Hi-fi: Collecting high-fidelity whole-system provenance.
In Proceedings of Annual Computer Security Applications
Conference (ACSAC), pages 259–268, 2012.

[35] Ren, S., Tan, L., Li, C., Xiao, Z., and Song, W.

Samsara: Efficient deterministic replay in multiprocessor
environments with hardware virtualization extensions.
In Proceedings of USENIX Annual Technical Conference
(ATC), pages 551–564, 2016.

[36] Rhee, J., Riley, R., Xu, D., and Jiang, X. Defeating
dynamic data kernel rootkit attacks via vmm-based
guest-transparent monitoring. In 2009 International
Conference on Availability, Reliability and Security, pages
74–81, 2009.

[37] Rhee, J., Xu,D. Riley,R., and Jiang, X. Kernel malware
analysis with un-tampered and temporal views of
dynamic kernel memory. In Proceedings of International
Symposium on Research in Attacks, Intrusions and Defenses
(RAID), pages 178–197, 2010.

[38] Riley, R., Jiang, X., and Xu, D. Guest-transparent
prevention of kernel rootkits with vmm-based memory
shadowing. In Proceedings of International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), pages
1–20, 2008.

[39] Riley, R., Jiang, X., and Xu, D. Multi-aspect profiling of
kernel rootkit behavior. In EuroSys, pages 47–60, 2009.

[40] Rudd, E., Rozsa, A., Gunther,M., and Boult, T. A survey
of stealth malware: Attacks, mitigation measures, and
steps toward autonomous open world solutions. IEEE
Communications Surveys Tutorials, PP(99):1–28, 2016.

[41] Srivastava, A. and Giffin, J. Efficient monitoring
of untrusted kernel-mode execution. In Proceedings
of Network and Distributed System Security Symposium
(NDSS), 2011.

[42] Wang, Z and Jiang, X. Hypersafe: A lightweight
approach to provide lifetime hypervisor control-flow
integrity. In Proceedings of IEEE Symposium on Security
and Privacy (S&P), pages 380–395, 2010.

[43] Wang, Z., Jiang, X., Cui, W., and Wang, X. Countering
persistent kernel rootkits through systematic hook

HProve: A Hypervisor Level Provenance System to Reconstruct Attack Story Caused by Kernel Malware

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

discovery. In Proceedings of International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), pages
21–38, 2008.

[44] Xu, Z., Wu, Z., Li, Z., Jee, K., Rhee, J., Xiao, X., Xu, F.,
Wang, H., and Jiang, G. High fidelity data reduction for
big data security dependency analyses. In Proceedings
of ACM Conference on Computer and Communications
Security (CCS), pages 504–516, 2016.

[45] Xuan, C., Copeland, J., and Beyah, R. Toward
revealing kernel malware behavior in virtual execution
environments. In Proceedings of International Symposium
on Research in Attacks, Intrusions and Defenses (RAID),
pages 304–325, 2009.

[46] Yan, L., Jayachandra, M., Zhang, M., and Yin, H. V2e:
Combining hardware virtualization and softwareemula-
tion for transparent and extensible malware analysis. In

Proceedings of ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE), pages
227–238, 2012.

[47] Zeng, J., Fu, Y., and Lin, Z. Automatic uncovering
of tap points from kernel executions. In Proceedings of
International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), pages 49–70, 2016.

[48] Zhang, L., Shetty, S., Liu, P., and J. Jing. Rootkitdet:
Practical end-to-end defense against kernel rootkits in a
cloud environment. In European Symposium on Research
in Computer Security (ESORICS), pages 475–493, 2014.

Chonghua Wang et al.

EAI Endorsed Transactions on
Security and Safety

12 2018 - 01 2019 | Volume 5 | Issue 18 | e5

	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation
	Limitations of the State-of-the-Art
	 Motivating Scenario

	3 System Overview
	3.1 Scope, Assumptions and Threat Model
	3.2 Overview

	4 Design and Implementation
	4.1 Definitions
	 Provenance Tap Points
	 Memory Access Trace

	4.2 Design Goals
	4.3 Recording Non-deterministic Events
	4.4 Instrumentation during Replay
	QEMU Translation Block
	Instrumentation before/after Execution
	Uncovering Provenance Tap Points
	Memory Access Tracing

	4.5 Causality Dependencies

	5 Evaluation
	5.1 Effectiveness
	Provenance Tap Points
	 Memory Access Traces

	5.2 Efficiency

	6 Discussion
	7 Related Work
	8 Conclusion

