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Abstract
Most traditional software systems are not built with the arti-

ficial intelligence support (AI) in mind. Among them, some

may require human interventions to operate, e.g., the man-

ual specification of the parameters in the data processing

programs, or otherwise, would behave poorly. We propose a

novel framework called Autonomizer to autonomize these

systems by installing the AI into the traditional programs.

Autonomizer is general so it can be applied to many real-

world applications. We provide the primitives and the run-

time support, where the primitives abstract common tasks of

autonomization and the runtime support realizes them trans-

parently. With the support of Autonomizer, the users can
gain the AI support with little engineering efforts. Like many

other AI applications, the challenge lies in the feature se-

lection, which we address by proposing multiple automated

strategies based on the program analysis. Our experiment

results on nine real-world applications show that the autono-

mization only requires adding a few lines to the source code.

Besides, for the data-processing programs, Autonomizer im-

proves the output quality by 161% on average over the default

settings. For the interactive programs such as game/driving,

Autonomizer achieves higher success rate with lower train-

ing time than existing autonomized programs.

CCSConcepts • Software and its engineering→ Frame-
works; Runtime environments.

Keywords AI; Deep Learning; Software Autonomization;
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ACM Reference Format:
Wen-Chuan Lee, Peng Liu, Yingqi Liu, Shiqing Ma, and Xiangyu

Zhang. 2019. Programming Support for Autonomizing Software. In

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314593

Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’19), June 22–26, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 15 pages. https://doi.

org/10.1145/3314221.3314593

1 Introduction
Autonomous software systems have achieved incredible suc-

cess in specialized domains. For example, theworld is shocked

when the self-learning AlphaGo program defeated the hu-

man champions [1–4]. TheWaymo self-driving car has driven
flawlessly 25,000 miles each day on complex city streets [5],

which is valued at around $175B [6]. Inspired by the ex-

isting autonomous systems, we are intrigued by the ques-

tion whether the general software engineering problems can

benefit from the autonomization. In this work, we take the

initiative to answer this question and share the results.

1.1 Autonomization: Bringing the Intelligence to
Traditional Programs

In the following, we present two sets of general software

engineering problems, which are representative of the prob-

lems that the autonomization potentially applies to.

Parameterized Programs. Many traditional software sys-

tems, especially data processing, machine learning and scien-

tific computation programs, often carry the parameters that

affect the quality of the results. However, different inputs re-

quire different configurations to achieve the ideal results, i.e.,

no parameter configuration universally applies. Therefore,

the users need to manually configure the parameters, which

is difficult for normal users due to the great domain expertise

required and sometimes even difficult for the experts if the

parameter value space is huge (consider the neural network

hyperparameters [7]). To mitigate this problem, the users

may use the autotuning tools [8] to tune the configuration.

In either case, the users are faced with the dilemma that they

either need to tune the parameters for each input, which

prohibits the application to large volume of inputs, or have

to tolerate the unsatisfactory results.

Artificial intelligence, specifically the supervised learning

(SL), excels at learning the target values (i.e., the ideal param-

eter values) for different settings (i.e., inputs). According to

the experiments (Section 6), the parameter values predicted

by SL improve the quality of results over the default values

by around 70% for Canny, a popular edge detection program.
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Besides, the prediction of SL is very fast, in contrast with the

manual specification or the autotuning, which means the

programs equipped with SL can process large volume of in-

puts fast while offering good results. Therefore, we propose

to install AI into the traditional parameterized Programs.

Interactive Programs.Many software systems interact with

the environments, e.g., the monkey testing software which
interacts with the mobile UI environment [9], the Mario

game agent that interacts with the simulated game environ-

ment [10], the software that controls the cooling of the data

center [11] and many other cyberphysical system (CPS) soft-

ware. However, these pieces of software usually follow the

random behaviors [9] or the simple heuristics [11], which

do not behave effectively in practice.

We propose to install the AI, in particular the reinforce-

ment learning (RL) which is designed for the action selec-

tion, into the software systems such that they behave smart

and achieve better results, while offering the full automa-

tion. Deepmind researchers pioneer the study: They reduced

Google’s data centre cooling bill by 40% by leveraging the

AI in place of the simple heuristic-based control [11]. Earlier,

they built the control through deep reinforcement learning

and demonstrated it can surpass the human-level perfor-

mance on a set of Atari games [12]. Another work integrated

RL with the monkey testing and shown the effectiveness [13].

1.2 Problems and Challenges
We discuss potential problems and challenges of program

autonomization in the following.

Autonomization is Tedious and Not Portable. In existing

autonomous systems [1, 10–19], autonomization is imple-

mented manually, which requires a lot of engineering efforts.

In general, it needs to construct the neural network model

and select the feature variables, of which the runtime val-

ues are used as the inputs of the model. Besides, at runtime,

it needs to (1) collect the feature values, (2) save them to

database and load them back in batches, (3) feed them to the

model for training and prediction, (4) integrate the predicted

result into the execution, and (5) provide program check-

pointing/restore logic when the training (esp., reinforcement

learning) enters the ending state. Even worse, when moving

to a new application, the above process needs to be repeated.

Challenge on Feature Extraction. Similar to many other

neural network applications, the crucial challenge lies in

the feature selection, i.e., selection of the feature variables
for predicting the target variables specified by the users.

The target variables are the variables of which the values

are to be predicted and affect the quality of results, e.g., the

parameters in the parameterized programs or the actions in

the interactive programs.

Existing works usually use the raw program inputs (e.g.,

images) as the feature variables. For example, the autonomous

game agent work [12] uses raw images to train AI models,

which leads to very slow training process (e.g., ∼83 hours

of training to make an AI competitive with respect to hu-

man [20, 21]). The problem is that the neural network needs

several preprocessing layers, i.e., the convolutional neural net-
work (CNN) layers [22], to derive the high-level information

from the raw program inputs (e.g., images).

Our key insight is the high-level information (e.g., the

position of Mario or the image histogram information of

Canny) is already derived through the code logic and stored

as program variables. Therefore, we propose to use the pro-

gram variables (which provide the rich information) as the

feature variables, thereby obviating the preprocessing layers.

However, large number of program variables exist. Given

the user-specified target variables, it is important yet chal-

lenging to select the variables that are most semantically

relevant to the target variables as their feature variables.

Manual extraction of the feature variables [16] would impose

heavy burden on the programmers. We designed multiple

automated strategies atop the program dependence graph

and found through the extensive experiments that (1) the

selected feature variable and the target variable should be

correlated (share some common dependent), (2) the selected

feature variable closer to the common dependent leads to

better prediction quality. The feature extraction algorithms

are discussed in Section 4.

1.3 Our Design
In this paper, we propose a novel programming framework

Autonomizer which consists of the primitives
1
and the run-

time support, where the primitives abstract the common

components aforementioned while the runtime support does

the heavy lifting and realizes them transparently.

As shown in the experiments (Section 6), autonomizing

the programs, such as a widely used edge detection program

Canny [23] and a speech recognition program Sphinx [24],

only requires adding a few lines to the original source code.

For SL programs, the autonomization output quality is im-

proved by 161% on average over the baseline with execution

overhead no more than 0.64X. For RL programs, the train-

ing procedures only need 3.5-20.36 hours for the AIs to be

competitive with human players. Comparatively, prior art

typically requires at least 83 hours of training [21] to be

competitive with respect to human, which is not efficient.

Contributions.We made the following contributions.

• We proposed a novel idea of autonomizing traditional

software programs, which applies to the parameter

configuration of parameterized programs, the action

selection of interactive programs and many other po-

tential applications.

• We designed a novel programming framework which

consists of the primitives and the runtime support. The

1
It is also possible to use the language constructs instead of the library API.

However, it would require a specialized compiler and sacrifice the usability.
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primitives abstract common tasks of autonomization

and the runtime support realizes them transparently.

• We designed the strategies for feature extraction.

• We implemented our approach and evaluated it against

nine real world programs. The results are promising

as described above: the programs can be autonomized

with little effort; the autonomized version leads to

much better results while incurring the tolerable exe-

cution slowdown.

2 Autonomization Framework Overview
In this section, we show how to autonomize the Mario [25]

game, which is a representative of a large set of interactive

software applications that do not have autonomization in

consideration during design. We will explain how to anno-

tate and autonomize the game with reinforcement learning

using our proposed primitives. The game is autonomized

for two different purposes. We first autonomize the game

to play by itself normally and compare the results with the

model borrowed from DeepMind [12] which uses raw image

screenshots as model input. Then we show how to autono-

mize the game to do coverage testing. Note that here we are

not comparing our work with DeepMind but rather leverag-

ing its model. DeepMind’s contributions are orthogonal to
Autonomizer. DeepMind demonstrates human-like learning

by observing raw images. It does not focus on identifying an

efficient way to train a model to play games.

Primitives. The primitives are listed in Fig. 1, which are

the library calls in the same programming language as the

source program. While more details of the primitives will be

discussed in Section 3, we will explain them when they are

used in the example.

Library Calls :

@au_config(modelName,modelType, alдo ., layers, neuron1, ...) |
@au_extract(extName, size, data) |
@au_NN(modelName, extName1, ..., wbName1, ...) |
@au_write_back(wbName, size, data) |
@au_serialize(data1, ...) |
@au_checkpoint() |
@au_restore()

Figure 1. Primitives

Running Example. In this section, we show how to auton-

omize an interactive program, i.e., the Mario game, such that

it achieves the decent score without human assistance. In

Section 6.3, we further show that we can autonomize the

parameterized programs to achieve ideal parameter configu-

rations automatically on the fly.

In Fig. 2, we show how to autonomize the Mario game,

where the primitives are highlighted. Lines 24-50 show the

main game loop function of Mario. In each iteration, multiple

functions (lines 1-23) of the program are orchestrated to

make the game work. For example, lines 5-13 handle minion

collisions and lines 19-23 update Mario’s position.

First, the user specifieswith the primitiveau_write_back()
at line 44 the target variable (i.e., the output of the neural

network model) , which is the variable actionKey that holds
Mario’s action (line 46). Autonomizer then automatically ex-

tracts some program variables as the feature variables (i.e.,

the inputs of the model), which are also annotated with the

primitive au_extract() at lines 9-10, 17, and 21-22. The fea-

ture variables, e.g., the positions of Goombas at lines 9-10,

contain the important and relevant information for predict-

ing the target variable, e.g., Mario’s action at line 46. We refer

the readers to Section 4 for the feature extraction algorithms.

While executing the primitive au_extract(), the Autono-
mizer runtime automatically records the values of the feature

variables into a database and assigns names to them for later

reference. While executing the primitive au_write_back(),
e.g., at line 44, the Autonomizer runtime updates the target

variable actionKey with the predicted value of the target

variable. Note the value 5 means there are 5 possible actions.

During initialization, the neural network is configured

with the primitive au_conf iд() (line 2). In our example, the

model has two hidden layers with 256 and 64 neurons, respec-

tively. The size of the input and output layers is automatically

computed based on the input fed to the network and the out-

put to be predicted. We also provide a callback function in

which the users can create arbitrary neural networks from

scratch with Tensorflow, which is omitted due to space limit.

The program interacts with the neural network via the

primitive au_NN () at line 40. It works in two modes: the

training mode and the deployment mode. In the training

mode, the program sends data to train the model, in addi-

tion to generating the predicted value. In the deployment

mode, the program sends data solely to generate the pre-

dicted value. In practice, we produce two versions for the

modes. Autonomizer automatically writes the output value

predicted by the model to the database and index it with the

name output specified at line 43.

If Mario enters the end state (i.e., Mario dies), it is im-

portant to roll back to a previous checkpoint to avoid the

expensive full restart. We provide two primitives to achieve

this: The primitive au_checkpoint() checkpoints the program
state at line 27. The primitive au_restore() would restore the
program state at line 48. Note that the neural network states

of Autonomizer are not affected by this pair of primitives.

More details are explained in Section 5.

Execution Model. The simplified execution model is shown

in Fig. 3. Given the user-annotated target variable Y , Auton-
omizer first extracts the feature variable X for predicting Y
(Section 4). The variablesX is then annotated in the program.

The runtime execution is as follows. The original main

process executes normally until it reaches the au_extract()
primitive ( 1○). At this point, the value of the feature variable

X is saved to the database ( 2○).

The main process continues its execution until it reaches

the primitive au_NN (). At this point, the main process trans-

fers the control of the execution of the original program ( 3○)

to the execution of a piece of Python code ( 4○), which is
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1 void initGame() {
2 // ... Init game ...
3 au_config("Mario", DNN, QLearn, 2, 256, 64);
4 }
5 void minionCollision() {
6 for (int i=0; i<Minion.size(); i++) {
7 for (int j=0; j<Minion[i].size(); j++) {
8 // ... Update minion collision ...
9 au_extract("MnX", 1, minion[i][j]->X);
10 au_extract("MnY", 1, minion[i][j]->Y);
11 }
12 }
13 }
14 void checkObj() {
15 if (checkObj(player.front) == "PIPE")
16 ...
17 au_extract("OBJ", 1, player.front);
18 }
19 void updatePlayer() {
20 // ... Update player.x and player.Y ...
21 au_extract("PX", 1, player->X);
22 au_extract("PY", 1, player->Y);
23 }
24 void gameLoop() {
25 while (true) {
26 terminated = 0;
27 au_checkpoint();
28 // Reward calculation
29 if (moveForward(player)) reward = 2;
30 else reward = -1;
31

32 if (reachFlagPole(player)) {
33 reward = 10; terminated = 1;
34 } else if (dead(player)) {
35 reward = -10; terminated = 1;
36 }
37 // This line is only added for self-testing
38 if (checkNewCoverage()) reward = 30;
39

40 au_NN("Mario",
41 au_serialize("PX", "PY", "MnX", "MnY", "Obj"),
42 reward, term,
43 "output");
44 au_write_back("output", 5, actionKey);
45 // ... Act based on returned data ...
46 act(actionKey);
47

48 if (terminated) au_restore();
49 }
50 }

Figure 2. Autonomizing Mario. The highlighted statements

are added. Autonomizer primitives start with au.

Figure 3. Execution model

generated by Autonomizer based on the annotations and

performs the model training and testing using Tensorflow.

Besides, Autonomizer also feeds the input data X stored in

the database to the model, uses the model to predict the out-

put value (which corresponds to the target variable Y ) and
writes the value to the database.

Afterwards, the control of the execution is transferred

back to the main process. Note the output value is now stored

in the database. The primitive au_write_back() ( 5○) loads it

from the database to update the program variable Y .

The main process continues its normal execution ( 6○) with

the updated Y value. Note that Autonomizer supports multi-

ple model instances in one execution.

Result and Comparison. Videos of the training process

and the autonomization result can be found at [26]. It took

around 5.7 hours to train Mario to have reasonable behavior

without using GPU. Furthermore, we compare the results

between our model (i.e., the model using extracted program

states) and the DeepMind model [12, 27] (i.e., a model using

raw image screenshots).

Low Engineering Efforts.With the support of Autonomizer,
the users achieve the autonomization with very few an-

notations, as highlighted in Fig. 2. The automatic feature

extraction of Autonomizer further alleviates the burden of

specification. Comparatively, existing work for Mario au-

tonomization [10] spends great engineering efforts in the

common tasks such as data collection, data saving/loading,

integration of the model and the original program.

Better Result and Faster Training.We stop the training if

the score of Mario is comparable with human (i.e., difference

< 20%) or if the training time exceeds 24 hours. Here the

score refers to the stage clearance rate of 10 runs.

According to the experiments, the DeepMind model is

trained for 8000 epochs before exceeding the 24 hours limit.

Comparatively, Our model is trained for only 2000 epochs.

Note each epoch corresponds to 100 iterations of the loop.

The results show that the DeepMind model achieves the

score 40% after 24 hours’ training, while our model achieves

the score 80% after only 5.7 hours’ training.

The reason for the difference lies in the feature selection.

The DeepMind model uses the raw images as the model

inputs and applies multiple convolution layers to derive high-

level information from the raw images. In particular, each

image is an 84x84x4 input array (after preprocessing). The

neural network has three convolution layers, each followed

by a max pooling layer, and finally two hidden layers with

256 and 64 neurons. Due to the complexity of the network,

the training requires very long time to achieve good result,

or equivalently, achieves bad result within a short time.

Comparatively, our key insight is that the programmers

derive the high-level information through the code and store

them in some internal program variables. Therefore, our

model directly uses such high-level information as the model

inputs, thereby obviating the need for the three convolution

layers in the DeepMind model. Our simpler model achieves

better results while requiring shorter training time.

The screenshots illustrate the difference more intuitively.

In Fig. 4, following our model, Mario jumps only when it’s

necessary. In Figure 5, the Mario following the DeepMind
model keeps jumping all the time, indicating the model is

still at the early stage of the training. Intuitively, if Mario

jumps too often, it is less likely to stay on the ground where

control can be applied, i.e., the chance of controlling Mario
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becomes lower. Thus, it easily hits the Goombas and dies as

shown in Fig. 5. The relevant videos can be found at [26].

Figure 4. Using internal data Figure 5. Using raw data

Autononmization for Software Self-Testing. To further

demonstrate the capability of software autonomization and

the flexibility of Autonomizer, we autonomize the Mario

game in a way that it performs the testing. All we need

to do is to update the reward so that it reflects the code

coverage improvement, in addition to the original reward

which reflects the stage clearing. Line 38 in Fig. 2 show the

added reward for code coverage, where the code coverage is

collected using gcov [28]. Intuitively, any improvement of

code coverage results in large reward. Note that we also need

the original reward to ensure Mario survives long enough

to reach the complex game logic. After training for 10 hours,

Mario is able to make many unexpected moves that lead to

good code coverage quickly. In 30 seconds of game play,∼65%

code coverage can be achieved. In contrast, the previous

AI model (which is not designed for testing) cannot reach

a similar code coverage after 10 mins, not to mention the

random testing in which Mario easily dies within seconds.

Fig. 6 shows the screenshot of the testing. Observe that

Mario has more interesting behaviors, e.g., Mario jumps

backward to eat the mushroom ( 1○-( 3○)) and then jumps into

the ditch ( 4○). TheAI even found two bugs during self-testing.

The videos of both bugs can be found at [26]. Fig. 7 shows

one of the bugs. Before falling to the ground of the dungeon,

Mario moves in some unexpected ways such as jumping

forward. As a result, Mario reaches the ceiling of the dungeon.

Then it tries to further jump forward and goes out of the

screen, which crashes the program. Code inspection discloses

that the developer missed a boundary check. This case study

illustrates the capabilities of Autonomizer in enabling future

research along this line.

Figure 6. Coverage testing Figure 7. Bug

3 EXECUTION MODEL: SEMANTICS
Autonomizer features a novel set of primitives and a unique

execution model that are particularly designed for software

autonomization. After compilation and linking with Autono-
mizer runtime, an executable with two execution modes is

generated. One for training, and one for deployment (or pro-

duction run). Training is piggybacking on normal software

execution to derive an AI model (or multiple models). During

production run, the model is used to replace human interac-

tions/decisions. Supervised and reinforcement learning are

supported by default. Autonomizer is also extensible through
its interface with Tensorflow to support other methods.

To support learning from software operation,Autonomizer
needs to monitor software execution, trace values of feature

variables that would be used by the model to make decision,

record the desirable decisions made by human users to serve

as the objective of learning (i.e., desirable model output),

and roll back software execution state but not the model

state (during reinforcement learning). In supervised learn-

ing, model training is conducted offline after execution. In

reinforcement learning, model training is conducted online

and the training execution interleaves with software execu-

tion. Intuitively, Autonomizer collects model inputs/outputs

for a window of time (e.g., a few game loop iterations) and

then invokes the training method to use the collected data.

During production runs, Autonomizer intercepts values
of feature variables and passes them to the model to make

prediction. The predicted results are then copied to some pro-

gram variables (such as the variable denoting the next move

ofMario) to drive execution. Note that all the aforementioned

complexities are transparent to the users. In the following,

we discuss the semantics of individual primitives, which is

important to precisely understand how Autonomizer works.

3.1 Definitions
Definitions related to the operational semantics are pre-

sented at the top of Fig. 8. Autonomizer has two stores, the

Program Store σ for original program states, which can be

intuitively considered as a hash map that projects a variable

to its current value, and the Database Store π which stores

the extracted feature variable values. It is a mapping from a

string to a list of values. The value of a program variable ex-

tracted by the primitive @au_extract() will be appended to

a list in the database store indexed by a string name. Further-

more, the outputs returned by the underlying model are also

put in the database store before they are written back to tar-

get program variables with the primitive @au_write_back()
(to affect the execution). The two stores are isolated. Trans-

ferring data between the two should be explicitly requested

by the programmer through the primitives.

We abstract a neural network model θ as a mapping from

a model name to a list of parameter values. Intuitively, one

can think of them as the weight values of matrices in indi-

vidual model layers. By default, Autonomizer supports two
model types: fully connected neural network (DNN) as well

as CNN and two popular algorithms: Q [29] for RL as well

as AdamOpt [30] for SL. Execution mode ω denotes the two
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Definitions: ProдStore σ ::= Var → Value DBStore π ::= Str inд → �Value Model θ ::= Str inд → �Parm
ModelType δ ::= DNN | CNN Alдor ithm α ::= Q | AdamOpt Mode ω ::= TR | TS
Str inд t, mdName, extName, wbName ::= [a − zA − Z 0 − 9]+ Int i ::= [0 − 9]+
Stmt s ::= ... | runModel(�Parm, ṽ) | gradient(�Parm, ṽ) | mkSnapshot(σ , π ) | rtSnapshot() |

loadModel(mdName) | buildModel(mdName, δ, α, l, n1, ...) | concat(ṽ1, ṽ2)

Statement Rules: σ , π , θ, ω : s
s
−→ σ ′, π ′, θ ′, ω, s′

σ , π , θ, ω : x := v
s
−→σ [x 7→ v], π , θ, ω, skip [ASSIGN ]

σ , π , θ, TR : @au_config(mdName, δ, α, l, n1, ...); s
s
−→

σ , π , θ ′, TR : s , in which if θ (mdName) ≡ ⊥ then θ ′ = θ [mdName 7→ buildModel(mdName, δ, α, l, n1, ...)] else θ ′ = θ [CON F IG −TRAIN ]

σ , π , θ, TS : @au_config(mdName, δ, α, l, n1, ...); s
s
−→

σ , π , θ ′, TS : s , in which if θ (mdName) ≡ ⊥ then θ ′ = θ [mdName 7→ loadModel(mdName)] else θ ′ = θ [CON F IG −T EST ]

σ , π , θ, ω : @au_extract(extName, size, x ); s
s
−→

σ , π ′, θ, ω : s , in which π ′ = π [extName 7→ concat(π (extName), x [0], ..., x [σ [size] − 1])] [EXTRACT ]

σ , π , θ, ω : @au_write_back(wbName, size, x ); s
s
−→

∀i ∈ [0, σ (size)), σ [x [i] 7→ π (wbName)[i]], π , θ, ω : s [WRIT E − BACK ]

σ , π , θ, ω, TR : @au_NN(mdName, extName, wbName); s
s
−→

σ , π [wbName 7→ runModel(θ ′(mdName), π (extName)), extName 7→ ⊥], θ ′, TR : s , in which
θ ′ = θ [mdName 7→ θ (mdName) − gradient(θ (mdName), π (wbName))] [TRAIN ]

σ , π , θ, ω, TS : @au_NN(mdName, extName, wbName); s
s
−→

σ , π [wbName 7→ runModel(θ (mdName), π (extName)), extName 7→ ⊥], θ, TS : s [T EST ]

σ , π , θ, ω : @au_serialize(t1, t2); s
s
−→σ , π [strcat (t1, t2) 7→ y], θ, ω : s , in which y = concat(π (t1), π (t2)) [SERIALIZE]

σ , π , θ, ω : @au_checkpoint(); s
s
−→σ , π , θ, ω : mkSnapshot(⟨σ , π ⟩); s [CHECKPOINT ]

σ , π , θ, ω : @au_restore(); s
s
−→σ ′, π ′, θ, ω : s , in which ⟨σ ′, π ′⟩ := rtSnapshot() [RESTORE]

Figure 8. Operational Semantics

modes supported:TR for training andTS for production runs
(or testing). Autonomizer runtime provides a list of API func-

tions denoted as statement extensions (e.g., buildModel()
for initializing a model inside Tensorflow). The semantics of

many primitives are resolved to these API functions.

3.2 Rules
The semantics rules are in the lower part of Fig. 8. As indi-

cated by the configuration (in the box), each rule is a transi-

tion of statement s to s ′ while updating the two stores and

the model. We organize the rules to two groups: (i) model

construction/training/testing and (ii) checkpointing/restore.

3.2.1 Model Construction/Training/Testing
Model Construction. In Rule [CONFIG −TRAIN ], Auton-
omizer in the training mode creates a new model if model

exists in memory by executing the statement buildModel,
where the model namemodelName , the model type δ , the
training algorithm α , the number of layers l and the num-

ber of neurons n1 are specified by the programmer. In Rule

[CONFIG −TEST ], Autonomizer in the testing mode simply

loads an existing trained model with the specified model

namemodelName by executing the statement loadModel.

Model Training and Testing. In Rule [EXTRACT ], Auton-
omizer appends the variable value(s) to a list in the database

store indexed by a unique name extName . Note that if the
primitive au_extract() is inside a program loop that iter-

ates multiple times before invoking the au_NN () primitive,

the list contains multiple values. In Rule [TRAIN ], Auton-
omizer trains the model by gradient descent [31], i.e., up-

dating model parameters �Parm along the largest gradient.

Then, themodel output generated by executing the statement

runModel on the model input retrieved by π (extName) is
put in the database store with indexwbName . Afterwards,
themodel input is reset to an empty list (bymapping extName
to ⊥ in π ). Rule [TEST ] is similar to rule [TRAIN ] except
that it does not update the model. It simply uses the model.

In Rule [WRITE − BACK], Autonomizer writes the value
with name wbName from the database store back to the

program variable x . Rule [SERIALIZE] concatenates multi-

ple lists of values into a single list through primitive concat().
The names of those lists are also concatenated through strcat().
This feature helps to combine multiple extracted values into

one list and feed it to the underlying model. Note that neural

network models only take vector inputs. For example, at line

41 of Fig. 2, six lists of extracted values are combined into
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one list of values and fed to the neural network as input.

Note that Autonomizer supports serializing multiple lists.

3.2.2 Checkpointing/Restore
In Rule [CHECKPOINT ],Autonomizer checkpoints the states
of current program store and database store by making the

snapshot through the statement mkSnapshot(). Note that

although model state in θ is part of the software process, it

is not checkpointed because we want the model to accumu-

latively learn. In Rule [RESTORE], Autonomizer restores the
states of program store and database store with the previ-

ously made snapshot through rtSnapshot(). Note that the
states between both stores need to be consistent, so their

states have to be checkpointed and restored together.

4 Feature Variables Extraction
In this section, we discuss how to extract program variables

that correspond to important features. The values of these

variables will be extracted as model inputs. The analyses are

different for supervised learning and reinforcement learning.

We adopt dynamic dependency analysis instead of static

analysis which incurs too many false positives.

Supervised Learning. In our settings, the supervised learn-

ing (SL) is used to predict the ideal value of the parameters

(i.e., the target variables) that affect the quality of the result

based on the relevant internal program states (i.e., the fea-
ture variables). While the target variables are specified by the

users, which is an easy task according to our experiments,

it is non-trivial (e.g., labor-intensive and error-prone) for

the users to specify the feature variables. To lift the bur-

den, we automatically extract the feature variables by com-

bining heuristics and program analysis. We also conducted

extensive experiments to validate the effectiveness of the

heuristics (Section 6).

First, we observed the ideal values of the target variables

(or parameters) vary for different program inputs, meaning

that they are sensitive to the inputs. Therefore, we identify

the input variables and those that transitively depend on

them as the candidate feature variables. Furthermore, we

conduct correlation analysis to determine the subset of can-

didate feature variables correlated with each target variable.

Intuitively, we say two variables are correlated if they are

depended upon by the same variable. Lastly, to refine the

subset of feature variables, we rank the feature variables

heuristically according to their “distances” to the correlated

target variable, and select the top-ranked variables for predic-

tion. According to the experiments (Table. 3), the refinement

leads to better prediction results.

In the following, we explain the automatic extraction and

the involved terms in details.

Algorithm 1 takes three inputs: In, Trд, and GDep . In is

the set of input variable set, Trд is the set of target variable,

and GDep is the pre-computed dynamic dependency graph.

Algorithm 1 Automatic SL Feature Extraction

Input: In, T rд, GDep
Output: Feature
1: Candidate ← In ∪ dep(In)
2: Feature ← Map()
3: for each v ∈ T rд do
4: for each w ∈ Candidate do
5: if dep(w ) ∩ dep(v) , ∅ then
6: Feature[v] ← Feature[v] ∪ {w, ∞}
7: for each w, dist ∈ Feature[v] do
8: dist ← BFS (GDep, w, f ir st (dep(w ) ∩ dep(v)))
9: Feature[v] ← {w, dist }
10: Sor t (Feature[v])
11: return Feature

First, we construct the candidate set, which consists of the

input variables and their transitive dependents.

Feature is a map that maps a target variable to its fea-

ture variables, which is returned eventually. For each target

variable v in Trд, if a candidate feature variable w shares

some common dependent with v (line 5), thenw is a feature

variable correlated with v . For prediction purpose,w is not

considered as feature variable if it depends on v .
To rank a candidate feature variablew , we use its depen-

dency graph distance, which is defined as the number of

edges betweenw and the first common descendent ofw and

v . In lines 7-9, the shortest distance from eachw to the com-

mon descendent is found by BFS on the dependency graph

GDep . In line 10, the feature variables are sorted according

to dist , which allows us to further select the top-ranked fea-

ture variables. Intuitively, the shorter the distance, the more

abstract (and the more important) the feature variable.

Fig. 9 demonstrates the example of extracting feature vari-

ables in Canny. Variable lo is a target variable and the remain-

ing are candidate feature variables. Variable hist is ranked
first to predict lo because it has distance 1 to first common

descendent result . Feature variable sImд has distance 2 so it

is ranked lower than hist .
Reinforcement Learning. We propose a feature variable

identification technique for the reinforcement learning (RL)

applications. Unlike SL programs, RL programs are usually

not for one-time data processing like Canny. Instead, they of-
ten have some main loop that continuously updates program

states, such as the game loop in game applications and the

control loop in autonomous vehicle control software. Intu-

itively, variables that represent these continuously updated

states are candidate feature variables. Note that they may

not be dependent on external inputs (e.g., user key strokes).

For a target variable, other program variables that share

common descendent with it are considered correlated with

it. Those program variables are candidate feature variables.

According to our observation, variables that correlate with

target variable contain program states that affect the pre-

diction result of target variable in RL applications. Our ex-

periment results in Section 6 also justify the observation.

For simplicity, Autonomizer only checks variables that are
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Algorithm 2 Automatic RL Feature Extraction

Input: T rд, U seFunc, ProдV ar, ϵ1, ϵ2
Output: Feature
1: Feature ← Map()
2: for each v ∈ T rд do
3: Candidate ← Map()
4: for each w ∈ ProдV ar and w , v and

U seFunc[dep(v)] ∩U seFunc[w ] , ∅ and
dep(v) ∩ dep(w ) , ∅ do

5: Candidate[w ] ← Scale0−1(T racinд(w ))
6: for each w, T racew ∈ Candidate do
7: for each x, T racex ∈ Candidate and x , w do
8: if EucDist (T racew , T racex ) ≤ ϵ1 then
9: Delete(Candidate[x ])
10: if Var iance(T racew ) ≤ ϵ2 then
11: continue
12: Feature[v] ← Feature[v] ∪w
13: return Feature

used in the same functions as variables that depend on the

target variable. After finding all candidates, Autonomizer
prunes redundant or unchanging variables based on runtime

values of each variable’s trace according to two thresholds

set by the user. The remaining variables are combined and

returned as features. Note that ranking is not as effective as

in SL because most feature variables would have loop-carry

dependencies due to the iterative updates.

Algorithm 2 takes five inputs: Trд, ProдVar ,UseFunc , ϵ1
and ϵ2. Trд is the target variable set, and the ProдVar set

contains all program variables. MapUseFunc maps a variable

to its usage functions. Thresholds ϵ1 and ϵ2 are used to prune
redundant and unchanging variables respectively.

At line 4, if program variablew is used in the same func-

tion as target variable v’s dependent variable, and both v
andw have common descendents, thenw is considered cor-

related with v and is added to the map Candidate with its

runtime trace Tracew which contains w’s runtime values

in a profiled time sequence. The sequence of trace values

are scaled [32] between 0 and 1 (line 5). In lines 8-9, the

similarity between w and x is computed according to the

distance between Tracew and Tracex using the euclidean

distance formula.
2
For example, assume Tracew contains

[0.1, 0.3, 0.4] and Tracex contains [0.1, 0.2], the similarity is√
(0.1 − 0.1)2 + (0.3 − 0.2)2 + (0.4 − 0)2 =

√
0.17. If the simi-

larity is less than ϵ1, x is considered redundant and pruned.

In lines 10-12, if the variance ofw’s trace values is smaller

than ϵ2,w is considered unchanging and pruned. Intuitively,

a rarely changing variable is not a good feature. Real pruning

examples are shown in the TORCS autonomization case study.

Fig.10 shows an example of extracting feature variables in

Mario to predict the target variable right, whichmakesMario

move right. Variable Player->X is a feature variable because

it depends on itself and shares the same descendent with

speed (and transitively with right). Another feature variable
isMinion->X as it shares the descendent collide with pX (and

2
If the sequences’ lengths are different, we append zeros to the shorter one.

Figure 9. Alg.1 on Canny Figure 10. Alg.2 on Mario

transitively with right). Variable mX is pruned by ϵ1 because
it is a duplicate of Minion->X.

5 Implementation
We leverage Tensorflow [33] to support model training and

execution. Tensorflow is an open source software library

with strong support for machine learning applications. Au-
tonomizer essentially stitches the execution of Tensorflow

with the execution of the original software. In other words,

both executions occur in the same process space. Since Ten-

sorflow has a comprehensive Python interface, at compile

time, Autonomizer generates a Python template for each

injected model. The template essentially provides the API

functions used in the semantics (e.g., runModel()). These
functions further invoke Tensorflow functions to realize their

functionalities. Templates have to be generated based on

primitive annotations because different model structures,

model input sizes, and learning algorithms (in au_conf iд()
and au_NN ()) lead to different templates. To make a source

program interact with its Python template, a communica-

tion channel (Fig. 3) is implemented with the Python C/C++

extensions [34]. Details are elided.

Checkpointing and Restore. In our context, we need to

checkpoint very complex software states in addition to mem-

ory states (e.g., thread and socket), and memory mapped I/O

states. Simple software checkpointing by forking does not

work. Even existing process level virtualization techniques

(e.g., criu [35] or docker [36]) do not provide the guarantees

of arbitrary-scale program states checkpointing/restore. We

hence leverage KVM [37] to create checkpoints.

As mentioned earlier, we only checkpoint software states

and database states but not model states. However, this is

difficult to achieve as all these states are in the process space

and indistinguishable for KVM. As such, before restoring to

a checkpoint, Autonomizer saves the current model states to

persistent storage. After restoring, it overwrites the model

states with those saved in storage. Details are elided.

6 Evaluation
In Autonomizer, the feature variable extraction component

is implemented using Valgrind-3.14.0 [38, 39]. The language

and runtime are implemented in C++/Python. It is publicly

available at [26]. Experiments were run on a machine with

Intel i7-2640M 2.80GHz processor, 16GB RAM. We use a
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Table 1. Program analysis statistics

Program LOC

Added

LOC

Trg

Vars

Candidate

Vars

Feature

Vars

[SL] Canny 1.1K 8 3 26 1/23/23

[SL] Rothwell 1.3K 6 3 8 1/8/8

[SL] Phylip 12K 7 3 42 1/1/28

[SL] Sphinx 28K 37 2 107 13/14

[RL] Flappybird 0.8K 40 2 19 4

[RL] Mario 21K 73 5 345 25

[RL] Arkanoid 1K 39 - - -

[RL] TORCS 150K 89 2 370 20

[RL] Breakout 153K 65 - - -

Arkanoid and Breakout are emulator games so we annotate

the emulator and use the exported game information directly.

Table 2. Model statistics

Program

Raw Med Min Raw/Min

Checkpoint

Time(s)

Restore

Time(s)

Trace

Size(MB)

Model

Size(MB)

Trace

Size

Model

Size

Trace

Size

Model

Size

Trace

Size

Model

Size

[SL] Canny 48 215 48 215 14 113 3.43 1.9 - -

[SL] Rothwell 49 215 143 215 143 215 0.34 1 - -

[SL] Phylip 4 21 1 1.8 1.2 1.9 3.33 14 - -

[SL] Sphinx 157 172 36 15 36 15 4.36 11.66 - -

Raw All Raw/All

[RL] Flappybird 781042 0.58 - - 13.93 0.25 56069.06 2.32 27.38 6.23

[RL] Mario 68359 0.58 - - 100.41 0.51 680.79 1.13 25.11 7.51

[RL] Arkanoid 351562 0.59 - - 57.13 0.23 6153.72 2.57 26.82 6.21

[RL] TORCS 25313 1.9 - - 714.8 0.47 35.41 4.04 25.33 6.91

[RL] Breakout 304018 0.62 - - 11.44 0.21 26575 2.95 26.12 6.71

GPU of NVIDIA GeForce 1060 with 6GB RAM for supervised

learning tasks. We use a wide variety of C/C++ benchmarks

in our experiments. All programs have multiple datasets that

can be found online or come with the program. We only

selected those that have the ground truth (for SL).

In Section 6.1, we present the statistics that expose details

about our approach. In Section 6.2, we conduct a comparative

study of the effectiveness of our approach. In Section 6.3, we

conduct in-depth case studies for more insights.

6.1 Statistics
The statistics of our approach are presented in Table 1.

Lines of Code Added. Column 2 shows the lines of code

(LOC) of the programs and Column 3 shows the lines of code

added for autonomization. According to Column 3, only a

few lines are required for autonomization. In other words,

with the help of our language support, the users introduce

the advanced AI capability to the programs with little effort.

Feature Variables. Column 4 shows the number of target

variables, column 5 shows the number of candidate feature

variables, and column 6 shows the feature variables available

for selection.

Supervised Learning. Any feature variables in column 6

are available for use. To assist the selection, they are ranked

as discussed in Section 4. For example, only around 15 out of

the 100+ candidates are available in the Sphinx application.
The results suggest that a lot of candidates are pruned.

Reinforcement Learning. For RL applications, we made

similar observation that a large number of candidates are

pruned during the selection. By pruning the redundant and

unchanging candidate feature variables, our approach keeps

the prediction focused, thereby making it more effective (as

confirmed in Section 6.2). All feature variables are combined

to predict multiple target variables due to the large overlap

of the feature variable sets.

Model Construction. Table 2 shows the statistics related to

the model, including (1) the size of the trace collected which

consists of the input to the model, and (2) the size of the

trained Tensorflow model.

Supervised Learning. To study the effect of distance (Al-

gorithm 1) upon the model statistics, we compare three ver-

sions: Raw in Columns 2-3 which selects feature variables

with the maximum distance (i.e., input variables), Med in

Columns 4-5 which selects the feature variables with the

median distance, and Min in Columns 6-7 which selects the

feature variables with the minimum distances. For fairness,

all versions use the same neural network architecture except

for the input layer which accounts for different input size.

In columns 8-9, we show the ratio of Raw and Min in

terms of the trace size and the model size, respectively. Both

the trace size and the model size of Raw is much larger

than Min. The reason is that the model of Raw usually has a

larger number of input neurons than Min because the model

inputs of Raw are typically raw data which are usually larger.

Specially, for Rothwell, Min has larger trace size. This is

because Raw and Min have a similar number of inputs but

Raw represents themwith the char type whileMin represents
them with the float type.

Reinforcement Learning. Results are compared between

two settings: Raw andAll. Raw uses theDeepMindmodel [12],

which takes the scaled images as the inputs. All uses a four-
layer fully connected neural networks. It combines and uses

all feature variables identified by Algorithm 2 as inputs. For

the RL programs, since game executions do not terminate as

SL programs, we collected the statistics for a time window of

a fixed length. In columns 8-9, we show the ratio (Raw/All)
in terms of the trace size and the model size, respectively.

According to column 8, the size of the trace collected by

Raw is 35-56069 times the size of All. This is because Raw
collects raw images which are typically much larger than

the (extracted) internal states collected by All. For instance,
in Flappybird, a raw images collected by Raw is 700x800x4

bytes while a vector of internal data collected by All is only
32 bytes. The fact that RL usually requires many iterations

further amplifies the difference. Besides, according to col-

umn 9, the model size of Raw is larger than All. The reason
is that the model of Raw has more layers where the first few

layers extract the visual features from the raw images. Com-

paratively, All does not need such layers because it takes the

710



PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Wen-Chuan Lee, Peng Liu, Yingqi Liu, Shiqing Ma, and Xiangyu Zhang

program states of the feature variables as the input, which

already hold the important feature information.

Checkpointing/Restore. Column 10 and 11 represent the

time for creating and restoring a checkpoint. Only RL pro-

grams need checkpointing/restore. Creating a checkpoint

takes around 26 seconds. Although it takes non-trivial time,

it only needs to be done once at the beginning. After that,

Autonomizer can restore the checkpointed state when end-

ing states (e.g., Mario dies) are encountered during training.

Restoring takes around 7 seconds.

6.2 Effectiveness
In this section, we present the study of the effectiveness of

our approach. In particular, we are interested in how our

autonomization affects the quality of the results. The results

are shown in Table 3.

6.2.1 Experiment Settings
We first discuss the settings for gathering the results.

Comparisons. For the SL applications, we compare four ver-

sions: the baseline, Raw, Med, and Min, where the baseline
refers to the execution with the default parameter configu-

rations and the others three versions are explained in Sec-

tion 6.1. For the RL applications, we compare three versions:

the players version, Raw, and All, where the players ver-

sion accounts for the average of 10 human players and the

remaining two versions are explained in Section 6.1. Each

experiment is repeated 10 times to compute the average.

Scoring. The quality of the results is measured with the score

assigned to the results. We will explain how the score is

assigned soon. Note that higher quality does not necessarily

correspond to higher score. We put a mark in Column 1

to specify whether higher quality corresponds to a higher

score or a lower score. For the SL programs, we use the

built-in score functions shipped with the programs. For the

RL programs, the score functions are not available. Instead,

we define the score for each program that accounts for the

progress or the success rate. For Flappybird, the score stands

for the progress (i.e., how far the bird flies in terms of the

percentage of the whole distance). For Mario, the score is a

pair in the X /Y form, where X stands for the progress (i.e.,

how far Mario goes) and Y is the success rate (i.e., the rate

of taking down the flag). For Arkanoid, the score is also a

pair X /Y , which respectively stands for the progress (i.e., the

percentage of cleared bricks) and the success rate (i.e., the

rate of clearing all bricks). For Torcs, the score represents

the driving progress (i.e., how far the car drives) without

bumping the wall before finishing. For Breakout, the score

represents the number of hit bricks before missing the ball.

Note all scores are averaged over 10 runs.

Training. For SL programs, we train each version (except

the baseline version which does not need training) until

convergence (i.e., the score stops changing). For RL applica-

tions, training RL applications is normally considered non-

stationary and hard to converge. Thus, we force the training

to time out after 24 hours.

For each setting, we show the training time and the execu-

tion time, which correspond to the time taken by the training

run and the testing run, respectively. Specifically, for the RL

applications, the execution time stands for the time taken by

each iteration of the game loop.

6.2.2 Experiment Results
Here we discuss the efficiency and effectiveness of using

program internal features extracted by Autonomizer through
execution time, training time, and evaluation score.

Comparing to Baseline and Human Players. We com-

pare a baseline with the corresponding best setting. (Min for

SL programs and ALL for RL programs).

Supervised Learning. The Min version (Columns 11-12)

improves the baseline results by 161% on average. Besides,

the overhead is less than 0.64X. It shows that autonomization

improves the data processing results with small overhead.

Reinforcement Learning. The extracted feature variables

help the All version (Columns 11-12) to achieve scores close-

to/better-than the results of human players. The execution

overhead ranges from 0.89X to 6.14X. Although 6.14X looks

substantial, the incurred overhead does not cause any no-

ticeable delay
3
because the execution time is computed for

each time frame and the overhead is not human perceptible

if the number of frames that the program can handle in a

time unit exceeds a certain threshold.

Comparison among Different Settings. We compare the

results between different autonomization settings for SL and

RL programs.

Supervised Learning. Although all settings (Columns 5-

6, 8-9, and 11-12) outperform the baseline, the quality of

improvements are different. Specifically,Min,Med , and Raw
versions improve the baseline results by 161%, 141%, and

120% on average respectively. It shows that feature variables

that close to the target variable are more important.

Reinforcement Learning. The All version (Columns 11-12)

achieves good performance. On the other hand. the Raw
(Columns 5-6) version cannot achieve similar score (differ-

ence < 20%) of human players and times out after 24 hours

of training for most benchmarks. Furthermore, the execu-

tion overhead of Raw is higher (3.16X-23X) than All because
Algorithm 2 helps All to prune many redundant feature

variables and only retain the most representative ones. We

further compare the All version with the Raw version using

the most representative Breakout benchmark from Deep-
Mind [12]. The Raw version uses the model in DeepMind.
Observe that both the Raw and the All versions can com-

pete with the human players and the All version has higher

3
The execution videos can be found at [26]
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Table 3. Benchmark experimental results.

Program

Baseline Raw Med Min
Training Time

Raw/Min
Exec.

Time(s)
Score

Train

Time(s)
Score

Train

Time(s)

Exec.

Time(s)
Score

Train

Time(s)

Exec.

Time(s)
Score

[23] [SL] ↑1 Canny 1.32 0.45 1791.52 1.58 0.543 1719.34 1.39 0.69 817.62 1.47 0.763 2.4

[40] [SL] ↑ Rothwell 1.14 0.49 1978.1 1.63 0.64 1540.68 1.62 0.68 1616.37 1.53 0.705 1.22

[41] [SL] ↓ Phylip 1.49 1.013 46.91 2.23 0.96 6.079 2.01 0.63 5.56 2.15 0.54 8.44

[24] [SL] ↑ Sphinx 0.86 0.108 4001.52 1.52 0.57 3898.22 1.61 0.581 141.73 1.41 0.6323 28.23

Players Raw All Raw/All

[42] [RL] ↑ Flappybird 0.0101 91.4% t/o
2

0.071 1.3% - - - 12781.32 0.028 95.7% -

[25] [RL] ↑Mario 0.0243 92%/90% t/o 0.101 63%/40% - - - 18465.42 0.046 84%/80% -

[43] [RL] ↑ Arkanoid 0.0041 77.2%/60% t/o 0.049 1.5%/0% - - - 41328.13 0.015 88%/60% -

[44] [RL] ↑ TORCS 0.003 100% t/o 0.072 7.8% - - - 73323.59 0.018 100% -

[45] [RL] ↑ Breakout 0.0071 29.8 68902.14 0.058 25.3 - - - 34452.74 0.012 28.5 1.99

1. ↑: Higher scores are better; ↓: lower scores are better.
2. "t/o" means using raw data cannot achieve the similar score (i.e., difference < 20%) of 10 human players.

score. Note that DeepMind aims to demonstrate feasibility

of human-like learning (from raw images). It does not focus

on efficient training or automating the procedure.

Training Time. For SL programs, training Min only take

1

28
∼ 1

1.22 of the time taken by Raw . For RL programs, the

training time for All version ranges from 3.5 to 20.36 hours

while Raw times out for most RL benchmarks except the

Breakout benchmark. The reason that the Raw version can

be trained within the time limit for this benchmark is that

the playing field for this game is not as complex as other

benchmarks (e.g., Mario). Besides, after following the prepro-

cessing steps (e.g., greyscale conversion and image cropping)

in DeepMind [12], the input images become much less noisy.

These factors make the Raw version model training easier

compared to other RL benchmarks. For the All version, its
training overhead is 1.99X less than the Raw version, which

demonstrates the advantage of using internal program states.

6.3 Case Studies
In this section, we study the details of autonomizing two

representative programs with SL and RL.

Canny.Canny [23], a popular edge detection tool, carries the
parameters that affect the quality of the edge detection. To

achieve the ideal result, each input image requires a specific

parameter configuration, i.e., no universal optimal parameter

configuration generally applies. Thus, users either have to

manually tune [46] or auto-tune [47] the configuration for

each image, which prohibits the application from handling

a large volume of images with satisfactory results. Com-

paratively, Autonomizer automatically predicts the proper

parameter values on the fly without human intervention.

With the support of Autonomizer, Canny can process a large

volume of diverse images and provide satisfactory results.

Ease of Use. Fig. 11 shows the user specification for au-

tonomization, specifically for theMin version. Initially, the

user only needs to annotate the three important parameters

of Canny (i.e., the target variables): low, high and sigma,
where the former two are for edge traversal (lines 6-7) and

the last one is for Gaussian smoothing (line 18). Then our

extraction algorithm automatically recommends imaдe (line
19) as the feature variable for predicting sigma and hist (line

1 char *hysteresis(mag, lo, hi)
2 {
3 hist = computeHist(mag);
4 au_extract("HIST", 32767, hist);
5 au_NN("MinNN", "HIST", "LO", "HI");
6 au_write_back("LO", 1, &lo);
7 au_write_back("HI", 1, &hi);
8

9 return do_hysteresis(hist, lo, hi);
10 }
11

12 void canny(image, sigma, lo, hi) {
13 // 1. Gaussian smooth
14 au_config("SigmaNN", DNN, AdamOpt, 6, ...);
15 au_config("MinNN", DNN, AdamOpt, 6, ...);
16 au_extract("IMG", 62500, image);
17 au_NN("SigmaNN", "IMG", "SIGMA");
18 au_write_back("SIGMA", 1, &sigma);
19 sImg = smooth(image, sigma);
20

21 // 2. Magnitude computation
22 mag = magnitude(sImg);
23

24 result = hysteresis(mag);
25 }

Figure 11. Canny. Autonomizing with theMin version. The

highlighted statements are added.

9) as the variables for predicting low and high, which are

annotated at lines 16 and line 4, respectively. In total, we

need only 9 lines of extra code (i.e., the highlighted ones) as

shown in Fig. 11.

Running Example of Algorithm 1.We also created the Raw,
Med, and Min versions, which use different feature variables

to predict the target variable. Consider Fig. 9, given the tar-

get variables low and high, Algorithm 1 determines hist,
mag, sImg, and image as the candidate feature variables be-
cause they share the common dependent result with the

target variables. Algorithm 1 further sorts them based on

their distance (i.e., 1, 2, 3, 4 respectively) to the dependent.

Accordingly, Min uses the variable hist with the minimum

distance as the feature variable, Med uses the variable sImg
with the medium distance and Raw uses image with the

maximum distance.

Usefulness. To demonstrate how autonomization helps im-

prove data processing results, we show the results of baseline,

Raw, Med, and Min. For fair comparison, all versions use the
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Figure 12. Canny predictions of 10 datasets

Figure 13. Canny prediction score variation

same neural network structure, i.e., a six-layer fully con-

nected neural network inspired by [48], except for the input

layer. In particular, for input layer, both Raw and Med have
62500 neurons whereas Min has 32768 neurons. They differ

because Min uses hist for prediction, which is of a smaller

size than image and sImg used by Raw and Med.
We use the images from [49] to train the neural networks

with SL. We use 10 images from [46] for testing which are

associated with the ground truth specified by experts. Better

result has a higher score (the SSIM score [50]).

Fig. 12 shows the test scores of baseline, Raw, Med, and
Min. Each model is trained around 30 epochs. On average,

the improvement of Min over baseline is 70%, which clearly

shows thatAutonomizer significantly improves the quality of

the result. Meanwhile, the improvement of Raw andMed over
the baseline is around 20% and 53%. It shows that Algorithm 1

(in particular, the ranking) is useful for extracting the most

relevant feature variables.

Fig. 13 shows the change of the score along with the in-

crease of the number of the training epochs.Min consistently
has higher scores than all the rest versions. Furthermore, as

shown in Table 3, the training time of Min is about half of

Raw andMed, which is because the feature variables it adopts
have a smaller size.

Fig. 14 shows a list of sample images denoting the edge

detection results. Clearly, Min provides the outcome most

similar to the ground truth.

TORCS. TORCS [44] is an open source C++ 3D car racing

simulator. Many works [51–53] use it to study the applica-

tion of reinforcement learning to self-driving cars. In this

study, we autonomize TORCS by using the program internal

Origin Ground Truth Min Med Raw Baseline

Figure 14. Canny results

Figure 15. EucDict ≈ 0

Figure 16. Variance ≈ 0.007

Figure 17. Driving score

states Autonomizer automatically extracts as the feature vari-

ables. Comparatively, existing works either use the manually

extracted features [16], or the raw image features [15].

Ease of Use. To autonomize Torcs for the All version, we
annotate the variable steer for steering control as the target
variable, which determines the turning of wheel. We run

Algorithm 2 by setting ϵ1 to zero and ϵ2 to 0.01. If the traced

values of two variables are similar (i.e., the euclidean dis-

tance ≤ ϵ1), we can prune one of them. As shown in Fig. 15,

the traced values of the candidate feature variables posX
and roll are almost the same (EucDict(posX , roll) ≈ 0), so

roll is pruned. Besides, we prune the candidate feature vari-
ables whose values rarely change. For example, as shown

in Fig. 16, the variable accX is pruned because the variance

of its values is ∼0.007, which is less than ϵ2 (0.01). In total,

twenty feature variables are automatically extracted. The

annotation is similar to Mario (Section 2) and hence elided.
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Usefulness. To demonstrate how autonomization helps

self-driving without human intervention, we compare four

settings: Players, which represents the average score from 10

human players, Raw, which uses an existing model [15] that

takes screenshots as the input data, All, which is our version,

andManual, which uses an expert model [16] with manually

extracted/preprocessed program variables as the input data.

All models have the same output consisting of three actions:

left turn, right turn, and no turn. We compare the results

using the following criterion: how far the car drives without

bumping to the wall before finishing.

Fig. 17 presents the scores of all settings after training for

the same number of epochs. It also includes the average of

10 human players as a reference. Observe that All consumes

around 8000 epochs (20.3 hours) and Manual consumes 5000

epochs (14.5 hours) to have close-to human performance.

Although Manual learns quicker than All, it requires non-
trivial human effort (∼2000 lines of code) to extract and

preprocess input data. On the other hand, Autonomizer only
uses 89 lines of code as shown in Table 1.

For Raw , after training for 10000 epochs (∼40 hours), it

still performs bad. Furthermore, the improvement is really

slow. According to the author [15], it takes around 200000

epochs for Raw to learn reasonable behavior. Each epoch

consists of 100 neural network updates.

7 Related Work
Autonomizer is related to many proposed systems for pro-

gram autotuning or input selection [8, 47, 54–67]. Specifi-

cally, [8] is a white-box tuning framework that tunes pro-

gram parameters regarding program internal variables. How-

ever, with Autonomizer, no tuning or searching is needed

for the autonomized program to process each new input, so

the application to large volume of inputs becomes feasible.

Multiple works were proposed to observe program internal

behaviors [68, 69], but Autonomizer proposes a systematic

way to select important program variables as model inputs.

Some other works were proposed for solving software en-

gineering problems with machine/deep learning techniques,

such as test generation [70–73], fuzzing [74–76], and bug

repair [77–79]. Autonomizer has the potential of allowing
some learning tasks to piggyback on software operation.

Machine learning and deep learning techniques have a

wide range of applications such as computer vision [80–82],

speech recognition [83, 84], and bioinformatics [85, 86]. For

individual application, the developers have to compose the

learning procedures from scratch and use raw data. In fact,

many of these problems have been extensively studied and

they have existing solutions based on programs. The prob-

lem is that these programs are often heavily parameterized

and require human interventions. Autonomizer provides a
general technique to autonomize such programs.

While there are some works that leverage internal data

(e.g., in training AIs to play Mario [87] and a first-person

shooting game [88]), they are application specific.

Some frameworks have been proposed to train models for

playing games such as OpenAI Gym [17], Arcade Learning

Environment [89], and Mario AI competition [90]. However,

these frameworks are limited to specific platforms and the

training is a stand-alone process isolated from the original

system operation. In contrast, Autonomizer is general and
the training is piggybacking on software operation.

In [91], researchers propose a technique to playNES games

automatically. Unlike Autonomizer that works on source,

it works on executable. It first identifies the locations of

simulated NES memory that stores the progress (i.e., score

or game level) of the NES game. Then the objective function

is derived and learned accordingly in order to make progress.

Unlike Autonomizer that aims to support various software

systems, the work is specific to playing NES games.

8 Conclusion
We propose a novel technique that supports autonomization

of existing software systems that require human interaction-

s/interventions. It features a novel execution model facil-

itated by several programming primitives. The developer

can instruct an AI model to learn from the normal opera-

tions of the software by adding few invocations to these

primitives in the source code. Our system Autonomizer then
transparently weaves the model training and deployment

into program execution, hiding all the complexities such as

collecting data, extracting features, and replacing user inter-

actions/interventions with the AI model. Our experiments

on nine real world programs show that very little human

effort is required to autonomize these programs with Au-
tonomizer. The autonomized versions produce results with

higher quality. Autonomized games can play by themselves

and have performance competitive with human players with

less training time.
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