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Abstract—Deep Neural Networks (DNN) are vulnerable to
adversarial samples that are generated by perturbing correctly
classified inputs to cause DNN models to misbehave (e.g., misclas-
sification). This can potentially lead to disastrous consequences
especially in security-sensitive applications. Existing defense and
detection techniques work well for specific attacks under var-
ious assumptions (e.g., the set of possible attacks are known
beforehand). However, they are not sufficiently general to protect
against a broader range of attacks. In this paper, we analyze
the internals of DNN models under various attacks and identify
two common exploitation channels: the provenance channel and
the activation value distribution channel. We then propose a
novel technique to extract DNN invariants and use them to
perform runtime adversarial sample detection. Our experimental
results of 11 different kinds of attacks on popular datasets
including ImageNet and 13 models show that our technique
can effectively detect all these attacks (over 90% accuracy) with
limited false positives. We also compare it with three state-of-the-
art techniques including the Local Intrinsic Dimensionality (LID)
based method, denoiser based methods (i.e., MagNet and HGD),
and the prediction inconsistency based approach (i.e., feature
squeezing). Our experiments show promising results.

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved very notice-
able success in many applications such as face recognition [41],
self-driving cars [6], malware classification [11], and private
network connection attribution [57]. However, researchers found
that DNNs are vulnerable to adversarial samples [89]. Attackers
can perturb a benign input (i.e., correctly classified input) so that
the DNN would misclassify the perturbed input. Existing attack
methods use two types of perturbation strategies: gradient based
approach and content based approach. In the gradient based
approaches, attackers view generating an adversarial sample as
an optimization problem and conduct gradient guided search
to find adversarial samples [10, 22, 42, 60, 68] (§II-C). In the
content based approaches, attackers craft patches to inputs that
are consistent with real world content of the inputs such as
watermarks on images and black spots caused by dirt on camera
lens to perturb the inputs [49, 72] (§II-C).

Real world applications, including many security critical
applications, are trending to integrate DNNs as part of their
systems. For example, iPhone X uses a face recognition system
for authentication (unlocking phone, authenticating purchase,

etc.). Many companies, e.g., Google and Uber, are developing
self-driving cars that use DNNs to replace human drivers.
However, the existence of adversarial examples is a fatal threat
to the thriving of these applications because misbehaved DNNs
would incur severe consequences such as identity theft, financial
losses, and even endangering human lives. Thus detecting or
defending against DNN adversarial samples is an important
and urgent challenge.

There are existing works aiming to defend against or detect
adversarial samples. Defense techniques try to harden DNNs
using various methods such as adversarial training [22] and
gradient masking [24]. The former tries to include adversarial
samples in the training set so that the hardened models
can recognize them. This technique is effective when the
possible attacks are known beforehand. The latter aims to mask
gradients so that attackers can hardly leverage them to construct
adversarial samples. Recently, attackers have developed more
advanced attacks against this type of defense. Some other
works [16, 23, 55, 56, 99] do not aim to harden or change the
models but rather detect adversarial samples during operation.
For example, Ma et al. [53] proposed to use the Local Intrinsic
Dimensionality (LID), a commonly used anomaly detection
metric to detect adversarial samples. Xu et al. [99] proposed
to examine the prediction inconsistency on an original image
and its transformed version with carefully designed filters.
MagNet [55] and HGD [45] propose to train encoders and
decoders to remove the added noises of the adversarial samples.
More detailed discussion of recent advances in defending and
detecting adversarial samples is presented later (§II-D).

In this paper, we analyze the internals of individual DNN
layers under various attacks and summarize that adversarial
samples mainly exploit two attack channels: the provenance
channel and the activation value distribution channel. The
former means that the model is not stable so that small changes
of the activation values of neurons in a layer may lead to
substantial changes of the set of activated neurons in the next
layer, which eventually leads to misclassification. The latter
means that while the provenance changes slightly, the activation
values of a layer may be substantially different from those in
the presence of benign inputs. We then propose a method NIC
(Neural-network Invariant Checking) that extracts two kinds of
invariants, the value invariants (V I) to guard the value channel
and the provenance invariants (PI) to guard the provenance
channel. Due to the uncertain nature of DNNs, neural network
invariants are essentially probability distributions denoted by
models. Constructing DNN value invariants is to train a set of
models for individual layers to describe the activation value
distributions of the layers from the benign inputs. Constructing
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provenance invariants is to train a set of models, each describing
the distribution of the causality between the activated neurons
across layers (i.e., how a set of activated neurons in a layer
lead to a set of activated neurons in the next layer). At runtime,
given a test input which may be adversarial, we run it through
all the invariant models which provide independent predictions
about whether the input induces states that violate the invariant
distributions. The final result is a joint decision based on all
these predictions.

We develop a prototype and evaluate it on 11 different
attacks (including both gradient based attacks and content
based attacks), 13 models, and various datasets including
MNIST [43], CIFAR-10 [40], ImageNet [78] and LFW [34].
The experimental results show that we can effectively detect
all the attacks considered on all the datasets and models,
with consistently over 90% detection accuracy (many having
100% accuracy) and an acceptable false positive rate (less
than 4% for most cases and less than 15% for ImageNet, a
very large dataset). We also compare our approach with state-
of-the-arts, LID [53], MagNet [55]/HGD [45], and feature
squeezing [99]. The results show that our proposed method
can achieve consistently high detection accuracy with few false
positives, while the other three detectors can achieve very
good results on some attacks but cannot consistently detect all
different types of attacks. We make the following contributions:

• We analyze the internals of DNNs under various
attacks and identify the two main exploit channels:
the provenance channel and the value channel.

• We propose a novel invariant based technique to
detect adversarial samples, including novel methods of
extracting value invariants and provenance invariants.

• To the best of our knowledge, we are the first one to
explore detecting content based adversarial samples,
which have significant different attack patterns.

• We also evaluate the robustness of our technique
by designing a strong white-box adaptive attack, in
which the attacker has full knowledge of our technique.
Compared to existing techniques, NIC significantly
increases the difficulty of constructing adversarial
samples, with 1.4x larger mean L2 distortion and 1200x
longer construction time for MNIST.

• We implement a prototype [14]. The evaluation results
show that our method can detect the 11 types of attacks
considered with over 90% accuracy (many 100%) and
limited false positives. Comparing with three state-of-
the-art detectors, NIC shows consistently good results
for all these attacks whereas other techniques perform
well on a subset.

II. BACKGROUND AND RELATED WORK

A. Neural Networks

A DNN can be represented as a function F : X → Y ,
where X denotes the input space and Y the output space.
It consists of several connected layers, and links between
layers are weighted by a set of matrices, wF . The training
phase of a DNN is to identify the numerical values in wF .
Data engineers provide a large set of known input-output pairs
(xi, yi) and define a loss function (or cost function) J(F (x), y∗)
representing the differences between a predicted result F (x)

and the corresponding true label y∗. The training phase is
hence to minimize the loss function by updating the parameters
using the backpropagation technique [43]. The training phase
is governed by hyper-parameters such as the learning rate. In
our settings (detecting adversarial inputs), models are given
and thus the hyper-parameters are fixed. In the testing phase,
a trained model is provided with unseen inputs Xt, and for
each input xt ∈ Xt, the classification model assigns its label
to be C(xt) = argmaxiFi(xt), where Fi(xt) represents the
probability of xt being recognized as class i. The classification
result is correct if the predicated result C(xt) is the same as
the correct label C∗(xt).

In this paper, we focus on m-class DNN classification
models. For such models, a model output is a vector with m
elements, and each of them represents the probability of the
input being in a specific class. We use notations from previous
papers [10, 70] to define a neural network:

y = F (x) = softmax(Z(x))
, where x ∈ X and y ∈ Y . In such models, Z(x) is known as
the logits and the softmax function normalizes the values such
that for an output vector y ∈ Rm, yi ∈ (0, 1) and

∑
yi = 1,

where yi represents the probability of the input being class i.
The final output will be the class with the highest probability.

B. Adversarial Samples

DNNs are vulnerable to adversarial samples [89]. Intuitively,
an adversarial sample is an input that is very similar to one
of the correctly classified inputs (or benign inputs), but the
machine learning model produces different prediction outputs
for these two inputs. Existing works try to generate adversarial
samples in two different kinds of approaches: gradient based
approach and content based approach.

Gradient based approach. Formally, given a correctly classi-
fied input x ∈ X with class C(x) (notice that C∗(x) = C(x)),
we call x′ an adversarial sample if

x′ ∈ X ∧ C(x′) ̸= C(x) ∧∆(x, x′) ≤ ϵ
, where ∆(·) denotes a distance function measuring the
similarity of the two inputs and ϵ is the adversarial strength
threshold which limits the permissible transformations. The
equation means that x′ is a valid input (x′ ∈ X) which is very
similar to x (∆(x, x′) ≤ ϵ), but the model gives a different
prediction output (C(x′) ̸= C(x)). Such adversarial samples are
usually referred to as untargeted adversarial samples. Another
type of attack is known as the targeted attack. In such attacks,
the output of the adversarial sample C(x′) can be a particularly
wanted class. For a given correctly classified input x ∈ X
(C(x) = C∗(x)) and a target class t ̸= C(x), a targeted
adversarial sample x′ satisfies

x′ ∈ X ∧ C(x) ̸= C(x′) ∧ C(x′) = t ∧∆(x, x′) ≤ ϵ.
Thus, finding/generating adversarial samples can be viewed as
optimization problems:

min ∆(x, x′) s.t. C(x′) = t ∧ x′ ∈ X (Targeted)
min ∆(x, x′) s.t. C(x′) ̸= C(x) ∧ x′ ∈ X (Untargeted).

Recent and popular adversarial attacks usually use the Lp-
norm distance metric as the ∆(·) function. Three p values
are commonly used in adversarial attacks, leading to L0, L2

and L∞ attacks. Previous works [10, 55, 99] have detailed
comparison between them. In summary, (1) L0 distance limits
the number of dimensions an adversarial sample can alter, but
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does not limit the degree of change for each dimension. As a
result, such adversarial samples tend to have fewer perturbation
regions, but the change of each region is significant. (2) L∞
distance limits the maximum change in any dimension, but
does not limit the number of altered dimensions. That is to
say, the generated adversarial samples tend to have a large
number of altered regions, but the change of each region is
not substantial. (3) L2 distance (Euclidean distance) bounds
the accumulated change to achieve a balance of the number of
altered dimensions and the degree of change in each dimension.

Content based approach. Another way of generating adver-
sarial samples is to leverage the input content and provide
semantically consistent/restrained perturbations on an original
input to simulate real world scenarios. For example, images
may have black spots because of dirt on camera lens and
attackers can intentionally add multiple black spots to an image
to simulate this. Under such assumptions, the attackers do not
need to calculate the ∆(·) distance value, and avoid optimizing
the distance. As such, many such adversarial samples are human
recognizable but have large ∆(·) distances. There are a number
of such recent attacks [7, 15, 49, 72].

C. Existing Attacks

In this section, we discuss 11 existing representative attacks
for DNN models, including both gradient based attacks and
content based attacks. Note that while there are adversarial
attacks for machine learning models in general [5], we focus on
adversarial samples on DNN models in this paper. In Figure 1,
we show sample images of various attacks using the MNIST
dataset [43] to facilitate intuitive understanding. For gradient
based attacks, we show the generated adversarial samples as
well as the perturbations made (i.e., the colored regions). We
use yellow to highlight small changes and red to highlight large
changes. The lighter the color, the less the perturbation. For the
content based attacks, the boxed regions represent the newly
added elements to the original image.

Fast Gradient Sign Method (FGSM): Goodfellow et al.
proposed the fast gradient sign method to efficiently find
adversarial samples [22]. Existing DNNs usually use piece-
wise linear activation functions such as ReLU. These functions
are easy to optimize, making it feasible to train a DNN. For
such models, any change of the input is propagated to later
hidden layers till the output layer. As such, errors on inputs can
accumulate and lead to misclassification. The FGSM attack is
based on this analysis and assumes the same attack strength at
all dimensions and hence an L∞ attack. Also, it is an untargeted
attack. Formally, an adversarial sample is generated by using
the following equation:

x′ = x− ϵ · sign(∇xJ(F (x)))
, where ∇ represents the gradient and J(·) is the cost function
used to train the model. Essentially, it changes all pixels
simultaneously at a fix scale along the gradient direction. It
can quickly generate adversarial samples as it only needs the
gradient sign which can be calculated by backpropagation.
An adversarial sample for the attack is shown in Figure 1(b).
Observe that it makes small changes to many pixels.

Basic Iterative Method (BIM): The basic iterative method
[42] is an improved version of the FGSM attack. It generates
adversarial samples with many iterations, and in each iteration

it updates the generated sample with the following equation:
x′
i = x′

i−1 − clipϵ(α · sign(∇xJ(F (x′
i−1)))

, where x′
0 represents the original correctly classified input. In

FGSM, a single step is taken along the direction of the gradient
sign. BIM takes multiple steps, and in each iteration, it performs
clipping to ensure the results are in the L∞ ϵ-neighborhood
of the original input. As such, it is also known as the Iterative
FGSM (IFGSM). In practice, it can generate superior results
than FGSM (Figure 1(c)).

DeepFool: Moosavi et al. designed the DeepFool attack [60]
by starting from the assumption that models are fully linear.
Under this assumption, there is a polyhedron that can separate
individual classes. Composing adversarial samples becomes a
simpler problem, because the boundaries of a class are linear
planes and the whole region (for this class) is a polyhedron. The
DeepFool attack searches for adversarial samples with minimal
perturbations within a specific region by using the L2 distance.
The authors also adopt methods from geometry to guide the
search. For cases where the model is not fully linear, the attack
tries to derive an approximated polyhedron by leveraging an
iterative linearization procedure, and it terminates the process
when a true adversarial sample is found. In Figure 1(h), observe
that the changes are in the vicinity of the original object. It is
an untargeted attack.

Jacobian-based Saliency Map Attack (JSMA): Papernot et
al. proposed the Jacobian-based Saliency Map Attack [68]
which optimizes L0 distance using a greedy algorithm. The
attack is an iterative process, and in each iteration, it picks
the most important pixel to modify, and terminates when an
adversarial sample is found. To measure the benefits of changing
pixels, the attack introduces the concept of saliency map, which
calculates how much each output class label will be affected
when individual pixels are modified by using the Jacobian
matrix. The attack then changes the pixel with the largest
benefits (getting the target label). As an L0 attack, JSMA
modifies a very small number of pixels as shown in Figure 1(g),
but the perturbation is more substantial than L∞ attacks such as
FGSM or BIM. In the mean time, it has very high computation
cost (due to the need of computing the Jacobian matrix), making
it impractical for high dimension inputs, e.g., images from the
ImageNet dataset.

Carlini and Wagner Attack (CW): Carlini and Wagner
proposed three different gradient based attacks using different
Lp norms, namely, L2, L∞ and L0. We refer to them as CW2,
CW∞ and CW0 attacks, respectively. In the CW2 attack, Carlini
and Wagner are also solving the (targeted) optimization problem
using the L2-norm as the distance measurement. However, it
features a few new designs to make it very effective. First
of all, they use the logits Z(·) instead of the final prediction
F (·) in the loss function. This design was shown to be critical
for the robustness of the attack against defensive distillation
methods [10]. Secondly, they introduced a variable α (also
known as the optimal constant) to control the confidence of
the adversarial samples so that they can get a better trade-off
between the prediction and distance values. Another key design
in this attack is that it maps the target variable to the argtanh
space and then solves the optimization problem. This design
enables the attack to use modern optimization solvers such
as the Adam solver [39]. These techniques allow the CW2

attack to very efficiently generate superior adversarial samples
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(a) Original (b) FGSM (UT, L∞) (c) BIM (UT, L∞) (d) CW∞ (T, L∞) (e) CW2 (T, L2) (f) CW0 (T, L0)

(g) JSMA (T, L0) (h) DeepFool (UT, L2) (i) Trojan (T, CB) (j) Dirt(UT, CB) (k) Lighting (UT, CB) (l) Rectangle Patching (UT, CB)

Fig. 1: Adversarial images of different attacks on MNIST. T: targeted. UT: untargeted. L0, L2 and L∞ stand for different
distance metrics (gradient based attacks) and CB stands for content based attacks. Captions are the attack names. For gradient
based attacks, Figure 1(a) is the original image. For each attack, the first image is adversarial and the second image highlights
the perturbations. For content based attacks, red boxes highlight the added contents.

as shown in Figure 1(e). Comparing with the other L2 attack
DeepFool, CW2 perturbs fewer regions with smaller changes
on most pixels. Most adaptive attacks are based on similar
approaches (see §III-E and §IV).

DeepXplore Attack: In [72], Pei et al. observed that not all
neurons are activated during testing, and these (inactivated)
neurons can contain unexpected behaviors. Thus they proposed
a systematic way of generating adversarial samples to activate
all neurons in the network so that it can uncover unexpected
behaviors in DNNs. The proposed attacks are leveraging
semantic information (known as domain-specific constraints)
to perform the perturbation. Specifically for the image type
of inputs, they propose three methods: the Lighting attack,
Rectangle Patching attack and the Dirt attack.

In the Lighting attack, the attackers change all the pixels’
values by the same amount to make them darker or brighter.
This action simulates the images taken under different lighting
conditions (Figure 1(k)). In the Rectangle Patching attack, a
single small rectangle patch is placed on the original image to
simulate that the camera lens are occluded. Notice that in this
attack, the content in the rectangle region are controlled by the
adversary, and can be different for different images (Figure 1(l)).
The Dirt attack adds multiple tiny black rectangles to the image
for simulating the effects of dirt on camera lens (Figure 1(j)).

Trojan Attack and Adversarial Patch Attack: Liu et al. [49]
proposed a systematic way to perform Trojan attacks on DNNs.
The attacker first reverse-engineers the DNN to generate a
well-crafted image patch (known as the Trojan trigger), and
then retrains a limited number of neurons with benign inputs
and trojaned inputs (i.e., benign inputs patched with the Trojan
trigger, marked with the target output label) to construct the
trojaned DNN. The trojaned DNN will perform the trojaned
behavior (i.e., misclassifying images to the target label) for
trojaned inputs, while retaining a comparable (sometimes even
better) performance on benign inputs. This attack essentially
simulates many real world scenarios such as images patched
with watermarks or stamps.

Brown et al. [7] presented a method to create adversarial
patches (conceptually similar to Trojan triggers) which achieves
similar effects with the Trojan attack mentioned above. The
difference is that it does not require retraining. From the
perspective of detecting adversarial samples, there is no
difference between this attack and the Trojan attack, as we are

not aware if a model is trojaned and what the trigger is. Thus
we consider them as the same type of attack.

D. Existing Defense and Detection

Existing Defense. Defense techniques try to harden the NN
models to prevent adversarial sample attacks [77, 86, 98].
Papernot et al. [69] comprehensively studied existing defense
mechanisms, and grouped them into two broad categories:
adversarial training and gradient masking. Goodfellow et al.
introduced the idea of adversarial training [22]. It extends the
training dataset to include adversarial samples with ground truth
labels. There are also similar ideas that try to integrate existing
adversarial sample generation methods into the training process
so that the trained model can easily defend such attacks [54].
However, it requires prior knowledge of the possible attacks
and hence may not be able to deal with new attacks.

The basic idea of gradient masking is to enhance the training
process by training the model with small (e.g., close to 0)
gradients so that the model will not be sensitive to small
changes in the input [24]. However, experiments showed that it
may cause accuracy degradation on benign inputs. Papernot et
al. introduced defensive distillation to harden DNN models [70].
It works by smoothing the prediction results from an existing
DNN to train the model and replacing the last softmax layer
with a revised softmax-like function to hide gradient information
from attackers. However, it was reported that such models can
be broken by advanced attacks [8, 10, 67]. Athalye et al. [3]
also showed that hardening or obfuscating gradients can be
circumvented by gradient approximation. Papernot et al. [69]
concluded that controlling gradient information in training
has limited effects in defending adversarial attacks due to
the transferability of adversarial samples, which means that
adversarial samples generated from a model can be used to
attack a different model.

Existing Detection. Adversarial sample detection is to deter-
mine if a specific input is adversarial. Many previous researches
have studied to build detection systems [4, 21, 23, 29, 44, 56,
63, 65, 76]. We classify existing state-of-the-art works into
three major categories.

Metric based approaches. Researchers have proposed to
perform statistical measurement of the inputs (and activation
values) to detect adversarial samples. Feinman et al. [16]
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proposed to use the Kernel Density estimation (KD) and
Bayesian Uncertainty (BU) to identify adversarial subspace to
separate benign inputs and adversarial samples. Carlini and
Wagner [9] showed this method can be bypassed but also
commented this method to be one of the promising directions.
Safetynet [51] quantized activations in late-stage ReLU neurons
and used SVM-RBF to find the patterns that distinguish
adversarial and natural samples. This approach is only tested
on FGSM, BIM and DeepFool and requires adversarial samples
to find the patterns. Inspired by ideas from the anomaly
detection community, Ma et al. [53] recently proposed to use a
measurement called Local Intrinsic Dimensionality (LID). For
a given sample input, this method estimates a LID value which
assesses its space-filling capability of the region surrounding
the sample by calculating the distance distribution of the sample
and a number of neighbors for individual layers. The authors
empirically show that adversarial samples tend to have large
LID values. Their results demonstrate that LID outperforms BU
and KD in adversarial sample detection and currently represents
the state-of-the-art for this kind of detectors. A key challenge
of these techniques is how to define a high-quality statistical
metric which can clearly tell the difference between clean
samples and adversarial samples. Lu et al. [52] have shown
that LID is sensitive to the confidence parameters deployed by
an attack and vulnerable to transferred adversarial samples. Our
evaluation in §IV also shows that although LID is capable of
detecting many attacks, it does not perform well for a number
of others.

Denoisers. Another way of detecting adversarial sam-
ples is to perform a pre-process (denoiser) step for each
input [24, 55, 79]. These approaches train a model or denoiser
(encoders and decoders) to filter the images so that it can
highlight or emphasize the main component in the image.
Doing so, it can remove the noises of an image including
those added by attackers and thus correct the classification
result. For example, MagNet [55] uses detectors and reformers
(trained auto-encoders and auto-decoders) to detect adversarial
samples. The method has been shown to work well on many
attacks. But it is only tested on small datasets like MNIST
and CIFAR-10. Liao et al. [45] argued that these pixel guided
denoisers (e.g., MagNet) do not scale to large images such as
those in the ImageNet dataset. Thus they proposed a high-level
representation guided denoiser (HGD) for large images and
achieved state-of-the-art results on ImageNet. A limitation of
this kind of techniques is that denoisers are essentially trained
neural networks. Training them remains a highly challenging
problem (e.g., very time-consuming). Also, they are end-to-end
differentiable, making them potentially vulnerable to white-box
attacks [2, 99]. Moreover, the quality of denoisers depends on
the training dataset and collecting a high-quality training set is
also very demanding.

Prediction inconsistency based approaches. Many other
works are based on prediction inconsistency [13, 25, 90]. Tao
et al. [90] proposed to detect adversarial examples by measuring
the inconsistency between original neural network and neural
network enhanced with human perceptible attributes. However,
this approach requires human defined attributes for detection.
The state-of-the-art detection technique Feature Squeezing [99]
achieves very high detection rates for various attacks. The
authors pointed out that DNNs have unnecessarily large input
feature space, which allows an adversary to produce adversarial

samples. They hence proposed to use squeezing techniques (i.e.,
reducing the color depth of images and smoothing the images)
to generate a few squeezed images based on the seed input.
Feature squeezing essentially limits the degree of freedom
available to an adversary. Then the DNN model takes all
the squeezed images and the original seed image, and makes
predictions individually. Adversarial samples are detected by
measuring the distance between the prediction vectors of the
original seed input and each of the squeezed images. If one of
the distances exceeds a threshold, the seed input is considered
malicious. However, according to [99] and our experiments in
§IV, the technique does not perform well on FGSM, BIM and
some content based attacks on CIFAR and ImageNet. This is
because its performance highly depends on the quality of the
designed squeezers, which remains an open research challenge.

Furthermore, most existing works focus on detecting gradi-
ent based attacks. It is unclear if they can detect content based
attacks such as DeepXplore and Trojaning.

III. DESIGN

In this section, we first explain existing attacks are essen-
tially exploiting two channels (§III-A). Then we discuss that
guarding these channels can be achieved by invariant checking
(§III-B). Finally, we introduce our design details (§III-C).

A. Observations about DNN Attack Channels

We study the internals of individual layers of DNNs under
the various kinds of attacks discussed in §II-C. We identify
they mostly exploit two channels in the models: the provenance
channel and the activation value distribution channel.

Exploiting the Provenance Channel. In our discussion, we
say a neuron is activated if its activation function (e.g., ReLU)
returns a non-zero value. A (hidden) layer of a DNN can
be considered as a function that takes the activated neurons
from the previous layer, performs matrix multiplication with
the weight values in the layer, and then applies an activation
function to determine what neurons are activated in the layer.
We consider the relation that the activated neurons in the
preceding layer lead to the activated neurons in a given layer
the provenance of the layer.

Many attacks entail changing provenance. Intuitively, given
an adversarial sample x′ that is similar to x of class A, if
the goal is to make the model to misclassify x′ to B, the
provenance of x′ is often different from the typical provenance
of A or B. This is usually due to the internal instability of
the model such that small changes lead to a different set of
activated neurons.

Figure 2 and Figure 3 present normal operations of a DNN.
For simplicity, we only show three layers, two hidden layers
L1 and L2 and the output layer (that classifies A and B).
Figure 2 shows an input belonging to A and Figure 3 to B.
The colored nodes represent activated neurons, and white nodes
represent the inactivated neurons. Darker colors denote larger
values. Observe that some neurons are only activated by inputs
belonging to a certain class [61, 89], such as nodes 1 and 6
for class A and nodes 4 and 8 for class B. There are also a lot
of neurons that are activated by both kinds of inputs such as
neurons 2, 3, and 7. The gray regions across the first two layers
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denote the provenance. Observe that for A, neurons 1, 2, and
3 in L1 lead to 6 and 7 in L2; for B, neurons 2, 3, 4 lead to 7
and 8. Note that there are many possible provenance relations
even for the same class. Our example is just for illustration.

Figure 5 shows the operation of an adversarial sample which
is very similar to A although it is misclassified as B. Observe
neurons 1, 2, 3 in L1 lead to 7 and 8 in L2 and eventually
the misclassified label B. Namely, the provenance is different
from a typical B provenance as in Figure 3. The root cause is
that the model is very sensitive to small changes of neuron 1.

Trojan attack [49] is an example attack that exploits the
provenance channel. The objective of the attack is that a trojaned
model must not have performance degradation for benign inputs
and the model should misclassify any input with a Trojan
trigger to the target class. As such, it changes weight values at
specific layers so that the provenance has substantial deviation
in the presence of the Trojan trigger. A case study can be
found in §IV-G. L0 attacks also tend to exploit the provenance
channel. These attacks introduce substantial changes to a limited
number of elements in an input (see §II-C). As a result, different
neurons (features) got triggered but they are not typical neurons
(features) for the target class.

Exploiting Activation Value Distribution. Some attacks may
not exploit the provenance channel. In other words, the
provenance of an adversarial sample is no different from that
of a benign input. In such cases, to cause misclassification, the
activation value distribution of the activated neurons has to be
different from that of a benign input. The exploitation can be
illustrated by Figure 6, in which the adversarial input has the
same provenance as a benign B input (Figure 3). However,
the substantially different activation values in L2 lead to the
output value of class A larger than B.

L∞ attacks (e.g., FGSM attack in Figure 1(b)) limit the
change degree made to individual dimensions but do not limit
the number of changed dimensions. For example, they tend to
alter a lot of pixels, but the change of each pixel is small as
shown in Figure 1. Thus they lead to substantially different
value distributions in the first few layers. Note that in the first
few layers, many neurons tend to be activated for both benign
and adversarial inputs so that their provenance relations do not
differ much.

Some adversarial samples exploit both channels such as
L2 attacks, which do not limit the number of perturbations
01: def fib(n):

02:   assert(n>=0)

03:   assert(from line 6 or 10)

04:   if n == 0 or n == 1:

05:     return n

06:   return fib(n-1)+fib(n-2)

07:

08: def main():

09:   x = input('Input a number:')

10:   print fib(x)

01: def dnn(x, M): # input:x, model:M

02:   L = M.layers

03:   for i in range(1, L.size): 

04:     L[i] = L.w[i]*L[i-1]+L.b[i]

05:     for j in range(1, L[i].size):

06:     if L[i][j] < 0:

07:     L[i][j] = 0

08:     assert(PI, L[i], L[i-1])

09:     assert(VI, L[i])

10: return M

Fig. 7: Program invariant and DNN invariant

or the degree of each perturbation, but rather constrain the
total change using the Euclidean distance. Depending on the
search procedure of an L2 attack, it may exploit either value
or provenance. Some attacks (e.g., DeepXplore) even exploit
neurons that do not represent unique features for any class,
leading to unique value distribution.

B. Detection As Invariant Checking

The aforementioned DNN exploit channels are analogous
to the ways that traditional attacks exploit software defects.
Exploiting the provenance channel shares similarity to control
flow hijacking [1], in which a regular execution path is hijacked
and redirected to malicious payload. Exploiting the activation
value distribution is analogous to state corruption [32], which
represents a prominent kind of defective software behaviors
that cause incorrect outputs but not necessarily crashes.

A classic approach to detecting software attacks is invariant
checking. Specifically, to detect control flow hijacking, control
flow integrity (CFI) techniques check control flow invariants
(i.e., the control flow predecessor of an instruction must be
one of a predetermined set of instructions). To detect state
corruption, programmers explicitly add assertions to check pre-
and post-conditions of individual program statements. Figure 7
shows an example of program invariants. It is a program
that computes Fibonacci number. Observe that at line 2, the
programmer uses an assert to ensure n cannot be negative. Line
3 ensures that there are only two possible statements that can
invoke the fib() function, namely, statements 6 and 10. Note
that in many cases, such invariants are merely approximation
due to various difficulties in program analysis (e.g., dealing
with variable aliasing).

DNN computation is essentially a process of taking a model
input and producing the corresponding classification output,
which has a program structure like the one on the right of
Figure 7. It iterates through the individual layers (lines 3 to
9). For each layer, it computes the activation values (line 4)
from those of the previous layer, the weight of this layer (i.e.,
L.w[i]) and a bias factor L.b[i]. After that, an activation
function (we use ReLU as an example, line 6-7 in Figure 7)
is applied and a conditional statement is used to determine
what neurons are activated in this layer (lines 5-7). Observe
that exploiting the provenance channel is essentially altering
the branch outcome of the conditional (line 6) while exploiting
activation values is changing the distribution of the computed
values at line 4.

Therefore, our overarching idea is to check invariant
violations during DNN computation (lines 8 and 9 on the
right). Our invariants are approximate as they cannot be
precisely specified due to the uninterpretability of DNN. They
are essentially probabilistic distributions constructed through
learning. Different from other learning based techniques that
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require both benign and adversarial samples, our invariants are
only learned from benign samples and their computation, and
hence can provide general protection against a wide spectrum
of attacks.

Intuitively, we define the distribution of the activation values
of two consecutive layers as the provenance invariant (PI)
of the layers. Later in §III-C, we show that learning such a
distribution is too expensive so that we learn a reduced model.
We further define the activation value distribution of a given
layer as its value invariant (V I). Figure 4 shows the PIs
and V Is for the sample DNN (derived from benign inputs).
Observe that the PI of L1 and L2 is denoted as two vectors,
representing neurons 1, 2, 3 leading to neurons 6, 7 (for class
A), and neurons 2, 3, 4 leading to 7 and 8 (for class B). In
Figure 5, the observed provenance (OP ) for the adversarial
input x′, which is misclassified as B, violates the provenance
invariant (i.e., does not fit the distribution). In Figure 6, the
observed values (OV ) for layer L1 is substantially different
from V IL1 (denoted by their different colors), even though
the OP is consistent with PI . Note that our V I technique is
different from estimating LID [53]. The estimated LID measures
the distances between a sample and a number of its neighbors
whereas V I trains models to explicitly describe activation value
distributions. More importantly, as shown in the evaluation
section, our PI and V I methods are complementary, together
constituting an effective and robust solution outperforming LID.

C. System Design

1) Overview: Figure 8 shows the overview of our approach.
It is a training based approach, and we do not make any
modification to the original trained model so that it does not
affect the performance of the original model. We only use the
benign inputs as our training data so that our technique is not

specific to a certain attack. In step A (Figure 8), we collect
activation values in each layer for each training input. We then
train a distribution for each layer for all benign inputs. These
distributions (e.g., V IL1 and V IL2) denote the value invariants.

Ideally for PIs, we would train on any two consecutive
layers to construct distributions of a concatenation of the
activation values of the layers. However, a hidden layer may
have many neurons, (e.g., 802,816 in one of our evaluated
models). Such a distribution is often of high dimension (e.g.,
2*802,816), very sparse and hence has limited predictive
precision. Thus we train a reduced model that is of lower
dimension and denser. Particularly, in B , for each layer l (e.g.,
L1, L2), we create a derived model by taking a sub-model from
the input layer to l and appending a new softmax layer with
the same output labels as the original model. Observe that L1’s
derived model has the input layer, L1 of the original model
and a new softmax layer (dashed arrows). Then we freeze the
sub-model weights, and re-train the softmax layer in the derived
model. As it only trains one layer, it usually takes very limited
amount of time to train a derived model. Intuitively, a derived
model of layer l is to predict the output class label based on
the features extracted at l. Hence, a derived model of an earlier
layer (e.g., L1) uses more primitive features while a derived
model of a later layer (e.g., L2) uses more abstract features.

In step C , we run each benign training input through all
derived models, we collect the final outputs of these models
(i.e., the output probability values for individual classes). For
each pair of consecutive layers, we train a distribution for
classification results of their derived models. The trained
distribution is the PI for these two layers. Essentially, we
leverage the softmax functions in derived models to reduce the
dimensions of the PI models. Intuitively, we are computing
an approximate notion of the provenance, namely, how the
prediction results may change from using features in a specific
layer to using features in the next layer.

For example, assume in a model that predicts a bird, bat, or
a dog, an early layer extracts low level features such as beak,
wing, tooth, feather, fur, tail, and claws whereas its next layer
extracts more abstract features such as four-leg and two-wing.
The derived model of the early layer would have a softmax that
introduces strong connections from beak, feather, claws to bird;
from wing, tooth, fur to bat; and from tooth, fur, claws, tail to
dog. The derived model of the next layer associates four-leg to
dog and two-wing to both bird and bat. The PI model of the
two layers hence would associate the prediction results of the
two respective layers such as ⟨bat, bat⟩ (meaning the derived
models of both layers predict bat), ⟨bat, bird⟩, and ⟨dog, dog⟩.
Note that while the early layer may classify an input as bat
and then the next layer classifies it as bird, the PI model
tells us that it is unlikely the early layer says dog whereas
the later layer says bird. Essentially, the PI model provides
a way of summarizing the correlations between the features
across the two layers. Ideally, we would like to train the PI
models to associate the primitive features to the corresponding
abstract features (e.g., beak, feather to two-wing). However,
such models would have input space of very high dimensions,
much higher than our current design. Our results in §IV indicate
our design is very effective.

At runtime (step D ), for each test input t (e.g., the image of
4 in Figure 8), besides running the input through the original
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model, we also run it through all the derived models. We
collect the activation values of each layer in the original model
as the observed values (OV ) (e.g., OV (L1, t) on the bottom
of Figure 8) and the classification results of derived models
of consecutive layers (in pairs) as the observed provenance
(OP ) (e.g., OP (L1, L2, t)). Then (step E ), we compute the
probabilities D that OV s and OP s fit the distributions of the
corresponding V Is and PIs. All these D values are aggregated
to make a joint prediction if t is adversarial.

In the remainder of the section, we discuss more details of
individual components.

2) Extracting DNN Invariants: We extract two kinds of
invariants: provenance invariants (PI) and activation value
invariants (V I) from the internals of the DNN on the benign
training inputs. These invariants are probabilistic, represented
as distributions.

Recall that each layer of a DNN model is a function. We
use fk to represent the k-th layer, and fk = σ(xk · wT

k + bk)
where σ is the activation function, wk is the model weight
metrics, bk is the bias and xk is the input to this layer. Using
these notations, a DNN with n+ 1 layers can be written as:

F = softmax ◦ fn ◦ . . . ◦ f1.

The output of layer l is denoted as fl(xl). The value invari-
ant of layer l is a function that describes the distribution of the
activation values at l for benign inputs. Hence, 0 ≤ V Il(x) ≤ 1
predicts if a model input x is benign based on the activation
values at layer l . Hence, learning the weight w of the V Il
model is to solve the following optimization problem:

min
∑

x∈XB

J(fl ◦ fl−1 ◦ . . . ◦ f2 ◦ f1(x) · wT − 1)

, where XB represents the benign inputs and J(·) an error
cost function. Intuitively, we aim to maximize the chance that
V Il(x) predicts 1 for a benign input x.

As mentioned in §III-C, to compute PIs, we leverage
derived models to reduce learning complexity and improve
prediction accuracy. A derived model is constructed by taking
the first few layers of the original model and then appending
them with a new softmax layer. Thus the derived model Dl for
layer l is the softmax layer, and Dl can be defined as follows:

Dl = softmax ◦ fl ◦ fl−1 ◦ . . . ◦ f2 ◦ f1.

P Il,l+1(x) predicts the probability of x being benign based
on the classification outputs of the derived models of l and
l + 1 layers. Thus, training PIl,l+1 (i.e., deriving its weights
w) is an optimization problem as follows.

min
∑

x∈XB

J(concat(Dl(x), Dl+1(x)) · wT − 1)

, where concat() concatenates two vectors to a larger one.

3) Training Invariant Models: An important feature of our
technique is that the invariant models (i.e., V Is and PIs) are
trained from only benign inputs, which makes our technique
a general detection approach different from existing training
based approaches (see §II-D) that require adversarial samples
in training and hence prior knowledge about the attack(s).

We model the training problem without adversarial samples
as a One-Class Classification (OCC) problem. In OCC, most (or
even all) training samples are positive (i.e., benign inputs in our
context), while there will be all types of inputs (e.g., adversarial

(a) Linear (b) Ploy (c) RBF

Fig. 9: Effects of different SVM kernels [71]
samples from various attacks in our context) during testing.
OCC is a well studied problem [73, 91, 92]. Most existing
classification algorithms can be extended for OCC. While OCC
in general is not as accurate as techniques that leverage both
positive and negative samples, it is sufficient and particularly
suitable in our context as we use multiple invariant models
to make joint decisions, which allows effectively mitigating
inaccuracy in individual OCC models.

We use the One-class Support Vector Machine (OSVM) al-
gorithm [92], which is the most popular classification algorithm
for OCC problems and has a lot of applications [74]. The basic
idea of OSVM is to assume a shape of the border between
different classes (represented by different kernel functions), and
calculate the parameters describing the border shape. Figure 9(a)
uses a linear kernel function and the border of a class is
assumed to be a line. Figure 9(b) uses a polynomial kernel
and Figure 9(c) uses a radial basis function kernel (RBF). For
OSVMs, the most widely used kernel is RBF. In our case, since
most values in the input space are invalid (e.g., most random
images are not realistic) and the valid inputs cluster in small
sub-spaces, using the RBF kernel to achieve good accuracy.
Moreover, although RBF is expensive, we train models for
individual layers and consecutive layer pairs, which essentially
breaks the entire invariant space into sub-spaces that have more
regularity. While standard OSVM outputs a single number 0
or 1 to indicate if an input belongs to a group, we change the
algorithm to output the probability of membership. In other
words, we use the trained OSVM models to measure similarity.

During production runs, given an input x, we compute
V Il(x) and PIl,l+1(x) for all possible l. In other words, we
collect the probabilities of any invariant violations across all
layers. A standard OSVM classifier is further used to determine
if t is an adversarial sample based on these probabilities and
report the results. Details are elided.

D. Randomization

Adversarial samples may be transferable, meaning that
some adversarial samples generated for a model may cause
misclassification on another model as well [66, 93]. Such
a property makes it possible to attack a black-box system
(assuming no knowledge about training data, method, process,
hyper-parameters and trained weights). For example, Papernot
et al. [66, 67] proposed to use synthesized data that are labeled
by querying the target model to train a substitute model,
and demonstrated that the generated adversarial samples for
the substitute model can be used to attack the target model.
Moosavi-Dezfooli et al. [59] found the existence of a universal
perturbation across different images and demonstrated that such
images can transfer across different models of ImageNet. Liu
et al. [48] proposed an ensemble-based approach to generate
transferable adversarial examples for large datasets such as
ImageNet. Intuitively, a DNN model is an approximation (or
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fitting) of the real distribution. There is always a discrepancy
between the approximation (the trained DNN model) and reality,
which is the space of adversarial samples.

While our invariant checker essentially prunes the adversar-
ial space, the fact that our checker is training based suggests
that it is still an approximation. In other words, it is susceptible
to transferable adversarial samples just like other detection
techniques. Note that even proof-based techniques [19] suffer
the same problem as they can only prove that inputs must
satisfy certain conditions. They cannot prove a model is precise
as having a precise model itself is intractable.

An effective and practical solution is to introduce ran-
domization in the detectors. For example, MagNet [55] trains
multiple encoders beforehand, and at runtime, they randomly
select one encoder to use. In feature squeezing, Xu et al. also
introduce random clip operations in their squeezer to make the
attack harder. Even though theoretically such randomization
mechanisms cannot prevent all possible attacks (especially
when facing adaptive adversaries), they were shown to be very
effective in practice. With randomization, attacks take much
longer time and generate human unrecognizable inputs [55, 99].

As an integral part of our system, we also use randomization.
Our randomization is based on the observation that DNNs make
decisions by looking at all activated neurons rather than a subset
of them [61, 89]. Due to the large number of contributing
neurons, benign inputs are more robust to small neuron value
changes than adversarial samples. Thus when we train V Is and
PIs, we first apply a transformation function. It means that we
use gl ◦ fl instead of fl as the input to train V Is and PIs. We
prefer non-differentiable gl functions. Because if the attacker
wants to craft adversarial samples under the assumption that the
adversary knows the presence of detector, non-differentiable
functions would significantly increase the difficulty [28] due
to the lack of gradient information. In contrast, our technique
directly uses the output of gl ◦ fl to train V Is and PIs, thus
the introduction of gl does not affect our training. In this paper,
typical gl functions include random scaling combined with
discrete floor and ceiling functions. At runtime, we randomly
select a set of gl functions and the corresponding trained
invariant models in our detector. The results of randomization
are shown in §IV.

E. Threat Model

We assume that the adversary knows everything about the
original classifier including the trained weights so that they can
construct strong attacks such as the CW attacks, and the detector
is not aware of the methods used for generating the adversarial
samples. Depending on the information of the detector exposed
to the adversary, there are multiple scenarios.

The weakest attack scenario is that the adversary knows
nothing about the detector. In this case, the adversary generates
the attack purely based on the original classifier. In §IV, we
show that our detector can successfully detect a wide spectrum
of such attacks.

The strongest adversary has full knowledge of our detector.
Since the detector itself is also a classifier, this makes it
vulnerable to adversarial samples too [20]. Note that this
limitation is not specific to our technique as other existing

detection techniques suffer the same problem too. Under such
a strong threat model, our technique has better resilience
compared to other techniques. In particular, as discussed in
§III-D, we introduce randomization in our detector to improve
its robustness. During training of the detectors, we first apply
different transform functions gl on activated neurons to generate
multiple randomized activation vectors. This allows us to have
the flexibility of generating multiple detectors. At runtime, we
can use different detectors (or their combinations) to detect
adversarial samples. This substantially elevates the difficulty
level of generating adversarial samples. In §IV, we show the
effects of using the randomization technique. Note that complete
prevention of adversarial samples is intractable for approximate
models to which almost all practical DNNs belong. Our goal
is to have a general and practical solution to substantially raise
the bar for attackers.

IV. EVALUATION

In this section, we discuss the results of a large scale
evaluation. Most experiments were conducted on two servers.
One is equipped with two Xeon E5-2667 2.3GHz 8-core
processors, 128 GB of RAM, 2 Tesla K40c GPU, 2 GeForce
GTX TITAN X GPU and 4 TITAN Xp GPU cards. The other
one has two Intel Xeon E5602 2.13GHz 4-core processors, 24
GB of RAM, and 2 NVIDIA Tesla C2075 GPU cards.

A. Setup

Datasets. For gradient based attacks, we performed our
experiments on three popular image datasets: MNIST [43],
CIFAR-10 [40] and ImageNet [78]. MNIST is a grayscale image
dataset used for handwritten digits recognition. CIFAR-10 and
ImageNet are colored image datasets used for object recog-
nition. For the ImageNet dataset, we used the ILSVRC2012
samples [35]. We chose these datasets because they were the
most widely used datasets for this task and most existing attacks
were carried out on them.

For content based attacks, Liu et al. evaluated Trojan attack
on different datasets [49] (e.g., face recognition on LFW [34]).
Besides using their face recognition data in our case study,
we also ported the attack to two MNIST models, one Carlini
model [10] and one Cleverhans model [64]. The trojaned Carlini
model achieves 93% test accuracy on normal images and 100%
attack accuracy, and the trojaned Cleverhans model has around
95% test accuracy on the original dataset with 100% attack
accuracy. The evaluation of DeepXplore were conducted on
their provided datasets (i.e., MNIST and ImageNet), their pre-
trained models (i.e., LeNet-1, LeNet-4 and LeNet-5 for MNIST,
and VGG16, VGG19 and ResNet50 for ImageNet), and their
pre-generated adversarial samples on Github [72].

Attack. We evaluated our detection method on all the eleven
attacks described in §II-C. For FGSM, BIM, and JSMA attacks,
we used the implementations from the Cleverhans library [64]
to generate adversarial samples, and for the other attacks, we
used implementations from the authors [10, 49, 60, 72]. For
the four targeted gradient based attacks (JSMA and three CW
attacks), we evaluated on two different target settings: the next-
class setting (denoted as Next in result tables) in which the
targeted label is the next of the original label (e.g., misclassify
an input of digit 2 to digit 3); and the least-likely class setting
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(denoted as LL), in which the target label is the most dissimilar
to the original label (e.g., misclassify 1 to 8). Besides the
four targeted attacks, the other seven included three untargeted
gradient based attacks (FGSM, BIM and DeepFool) and four
content based attacks (Trojaning, Dirt, Lighting and Rectangle
Patching, with the last three from DeepXplore).

By default, we reused the same attack parameters used in
feature squeezing [99] to construct attack images for gradient
based attacks. DeepFool attack generates unrecognizable ad-
versarial examples for the MNIST dataset and it is ignored
by feature squeezing. As discussed in §II-C, the JSMA attack
requires heavyweight computation and does not scale to large
datasets like ImageNet. Thus we cannot test it on ImageNet.
To generate Trojan triggers for the Trojan attack, we used
the same configurations (e.g., size, shape and transparency) in
their original paper [49]. DeepXplore targets to cover inactivate
neurons, and it does not have extra attack parameters. For each
dataset, we randomly partitioned the whole dataset to training
data (60%, for training the detector), validation data (20%,
for evaluating the detector with various g functions mentioned
in §III-D) and test data (20%, to test performance). For each
attack, we generated 100 adversarial samples for each model.

Models. We evaluated our technique on thirteen popular models.
These models are representatives of their kinds and used in
the attacks under study [10, 49, 72]. For the MNIST dataset,
we have collected six models from the work by Carlini et
al. [10], the Cleverhans library (2 models) [64], and three
different DNNs in the LeNet family [43], i.e., LeNet-1, LeNet-
4 and LeNet-5. For the CIFAR-10 dataset, we used two
models, one from Carlini and Wagner [10] and the other
from DenseNet [12, 33]. For ImageNet, we used five models,
ResNet50 [26], VGG16 [83], VGG19 [83], Inceptionv3 [88]
and MobileNets [31, 58].

Comparison. We also compared NIC with other state-of-the-
art detectors. For the metric based approach, we compared with
LID [53]. Denoisers require a lot of parameter turning. Thus
we chose to compare with well-tuned models, MagNet [55]
for MNIST and CIFAR-10, and HGD [45] for ImageNet. For
prediction inconsistency based techniques, we chose to compare
with feature squeezing [99]. This paper only shows part of the
comparison results due to the space limit. The remaining results
are similar. For gradient based attacks on ImageNet, we used
the Inceptionv3 model, and for MNIST and CIFAR-10, we
adopted the same model used by Carlini and Wagner [10]. The
Trojan attack on MNIST was also based on this model and the
one from Cleverhans, and the attack on LFW was evaluated
on the VGG19 model provided by the original authors. For
DeepXplore attacks, the paper only shows the results for LeNet-
4 and LeNet-5 on MNIST and VGG19 on ImageNet.

B. Detecting Gradient Based Attacks

Table I shows the detection accuracy of our approach on
gradient based attacks. Columns 1 and 2 show datasets and
models. Column 3 shows the runtime overhead. It is measured
by the average time used to run through the whole test dataset
and adversarial samples (over 10 runs). Note that since we
reuse the inner layer activation values of the original model
when computing the results of V Is and PIs, invariant checking
can be largely parallel with the original model execution. Thus

the overhead is not significant. As shown in the table, for
simple models (e.g., MNIST and CIFAR-10), we have less
than 10% overhead. For complex models (e.g., ImageNet), it
is less than 30%. Considering that the inference time for each
image is very short (usually within a second), this is reasonable.
Column 4 presents the false positive rates (FP) using default
settings on each model, i.e., the number of benign inputs that
are incorrectly detected as adversarial samples. The remaining
columns show the detection results for each attack.

As shown in Table I, for the three MNIST models, NIC can
detect all gradient based attacks with 100% accuracy with less
than 3.8% false positive rate on benign inputs. Also the false
positive rates of NIC on CIFAR-10 models are 3.8% and 4.2%,
and the detection rates are all over 90%. For L∞ attacks on
CIFAR-10, our approach can get 100% detection rates for all
attack settings. For L2 attacks, NIC can achieve nearly 100%
detection rate on CW2 attacks, and 91%/93% detection rates
on DeepFool. The results of DeepFool are not 100% because it
is an untargeted attack, which has much smaller perturbations
compared to targeted attacks. For L0 attacks, we can detect
CW0 and JSMA attacks with over 92% success rate.

For the ImageNet dataset, the detection rates show a similar
pattern as the CIFAR-10 dataset. The images have a larger size
and are more diverse, which makes the detection harder. For
different models, the false positive rates range from 7.2% to
14.6%. In terms of detection rate, our detector can still achieve
very high accuracy (over 90% for most cases).

C. Detecting Content Based Attacks

We also evaluated our approach on content based ap-
proaches, namely the Trojan and DeepXplore attacks. The
results are summarized in Table II. The above part shows the
results of DeepXplore attacks, and the bottom part shows the
results of the Trojan attack. The table has the same structure
with Table I. The runtime overhead is similar and hence elided.

As shown in the table, NIC is able to detect all adversarial
samples generated by the Trojan attack and DeepXplore attacks
(100% for all cases) with a relatively low false positive rate (less
than 4% on MNIST and LFW, less than 16% on ImageNet).
More details of how they can be detected are described in
§IV-D. Similar to the gradient based attacks, NIC has relatively
high false positive rate on ImageNet than other datasets (e.g.,
MNIST), because of the large image size and content diversity.
The results show that NIC is capable of detecting such content
based attacks with high confidence and effectiveness.

D. NIC Invariants and Comparison

In Table III, we show the comparison between NIC and
other detectors (with gray background). Each row represents
a detection method and the columns contain the results for
different types of attacks (including both gradient based and
content based attacks). For NIC, we also studied the effects
of using only PIs or V Is on each attack to understand how
they work. The rows are marked as PI and V I in Table III.
From the table, we make the following observations.

NIC Invariants. For most L∞ attacks, using V Is alone has
better results than using PIs alone, and using both produces
the best results. This is because these attacks try to modify a
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TABLE I: Performance on gradient based attacks

Dataset Model OH FP FGSM BIM CW∞ DF CW2 CW0 JSMA

Next LL Next LL Next LL Next LL

MNIST
Cleverhans 4% 2.5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Cleverhans2 3% 3.8% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Carlini 4% 3.7% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

CIFAR Carlini 9% 4.2% 100% 100% 100% 100% 91% 96% 100% 98% 100% 94% 100%
DenseNet 8% 3.8% 100% 100% 100% 100% 93% 97% 100% 97% 100% 92% 99%

ImageNet

ResNet50 28% 14.6% 100% 100% 99% 100% 92% 96% 100% 95% 100% - -
VGG19 19% 9.9% 100% 100% 97% 100% 89% 93% 100% 100% 100% - -

Inceptionv3 21% 13.8% 100% 100% 99% 100% 90% 96% 100% 100% 100% - -
MobileNets 18% 7.2% 100% 100% 100% 100% 100% 100% 100% 100% 100% - -

TABLE II: Content based attacks

Dataset FP Model Dirt Lighting RP

MNIST
3.4% LeNet-1 100% 100% 100%
2.5% LeNet-4 100% 100% 100%
2.5% LeNet-5 100% 100% 100%

ImageNet
13.8% ResNet50 100% 100% 100%
15.2% VGG19 100% 100% 100%
15.9% VGG16 100% 100% 100%

Dataset FP Model Trojan - -

MNIST 3.7% Carlini 100% - -
2.5% Cleverhans 100% - -

LFW 2.4% VGG19 100% - -

lot of pixels with a small degree of change. As a result, the
OV s in the first few layers violate V Is significantly, which
makes it easy to detect. On the other hand, as the features
extracted by the first few layers are still very primitive, the
generated PIs are not of high quality. For most L0 attacks
where the perturbations happen for a very limited number
of pixels, but the per-pixel change is more substantial, using
PIs alone produces good results. Using V Is are not as good
because the number of activated neurons in each layer is large
but the ones perturbed are in a small number. As such, the
distance between V Is and OV s may not be sufficiently large.
On the other hand, these perturbed neurons alter the set of
activated neurons in later layers, leading to PI violations. L2

attacks bound the total Euclidean distance. As such, using PIs
or V Is alone has mixed results, depending on which channel
is being exploited. Our results indicate that either of them is
(or both are) violated. Overall, using one kind of invariants
alone is often not enough, and both kinds of invariants are very
important to detecting adversarial samples.

For the Trojan attack, the adversarial samples tend to have
the same activation pattern before the trojaned layer, and
substantially change the prediction results at the trojaned layer,
allowing them to be detected by PIs. Thus, Trojan attacks
often lead to substantial invariant violations, which will be
illustrated by a case study later in §IV-G. The DeepXplore
attacks are designed to generate adversarial samples that try to
activate inactivated neurons to uncover hidden behaviors. Thus,
it often significantly violates the invariants. In most cases, such
changes significantly alter the prediction results and violate
the PIs. In the Lighting and Rectangle Patching attacks, the
perturbations are substantial, leading to significant changes in
the activation value distributions. Thus using V Is can detect
most of them. In contrast, the Dirt attack adds a limited number
of black dots to the image, and some changes are not significant.
Thus using V Is alone cannot achieve very good performance.

Denoisers. Denoisers (i.e., MagNet and HGD) work well for
L∞ attacks on all three datasets. In the mean time, we found
that they do not perform well on L0 attacks. This is because
these denoisers are not guaranteed to be able to remove all
the noise in an image, and the L0 constraint limits the number
of modified pixels and lowers the chance of being denoised.
For most L2 attacks, its performance is also not very good
due to the same reason. As NIC also considers the effects of
such noises (e.g., a few noisy pixels will change the activation
pattern and violate the PIs), it can detect them as adversarial
samples when the effects are amplified in hidden layers.

For content based attacks, this approach can detect all
adversarial samples on MNIST and the RP attacks on ImageNet.

But it does not perform well on other attacks. For Dirt attack
which modifies relatively limited number of pixels, denoisers
cannot remove some of the noises. For the Lighting attack,
the whole color scheme is shifted with the same degree and
denoisers do not perform well. In many cases they actually
remove parts of the real objects. We believe it is because these
parts have color patterns that are rare in the original training set,
leading to some random behaviors of the denoisers. Denoisers
show relatively good performance on the Trojan attacks as they
transform the trigger to another representation, which lowers
the chance to trigger the trojaned behaviors.

Denoisers tend to have relatively high false positive rates
in most cases, meaning that the trained encoders and decoders
affect the clean images especially for the colored datasets like
ImageNet. Recall that denoisers are trained models. Training
them is challenging and time-consuming. It may take more
time than training the original classifier. One advantage of NIC
is that it breaks the problem into small sub-problems. The
detector consists of many small models and training them is
much easier, making it more practical.

LID. For the gradient based attacks, the results of LID show
that it is an effective approach for MNIST and CIFAR-10 with
93% and 90% average detection rates, respectively. However, it
does not scale well on ImageNet, with 82% average detection
rate. For the content based attacks, LID achieves relatively
good results for both the Trojan attack and the DeepXplore
attacks on the MNIST dataset, but relatively bad results on
ImageNet. This is because images in ImageNet contain more
noises and the clean images also have relatively large distances.
This makes it more difficult identifying the boundaries between
clean images and adversarial images. In the mean time, we
observed that its false positive rates are relatively high for all
cases (highest on ImageNet and LFW), meaning that it tends to
mis-identify clean images as adversarial samples, which makes
the detection results less confident.

Feature Squeezing. For gradient based attacks, feature squeez-
ing achieves very good results for a set of attacks, but does
not perform very well for FGSM, BIM and DeepFool attacks
on colored datasets (CIFAR-10 and ImageNet). For extreme
cases like FGSM attacks on CIFAR-10, the detection rate of
feature squeezing is about 20%. According to [99], this is likely
because that the designed squeezers are not suitable for such
attacks on colored datasets. It illustrates a limitation of feature
squeezing: requiring high quality squeezers for various models.
To this end, our approach is more general.

Feature squeezing does not perform well on the Trojan at-
tack with the detection rate ranging from 67% to 82%, which is
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TABLE III: Comparison with state-of-the-art detectors

Gradient-based Content-based

CW∞ CW2 CW0 JSMA DeepXplore
Detector Dataset FP FGSM BIM Next LL DF Next LL Next LL Next LL Dataset Model FP Dirt Lighting RP Dataset Model FP Trojan

PI 1.8% 84% 92% 94% 99% 95% 99% 96% 100% 100% 100% 100% 1.3% 100% 100% 100% 0.5% 100%
V I 1.9% 100% 100% 100% 100% 93% 100% 95% 90% 88% 85% 83% 1.2% 100% 100% 100% 3.2% 76%
NIC 3.7% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 2.5% 100% 100% 100% 3.7% 100%

MagNet 5.1% 100% 100% 96% 97% 91% 85% 87% 85% 85% 84% 84% 4.3% 100% 100% 100% 5.6% 100%
LID 4.4% 97% 96% 93% 92% 92% 92% 91% 92% 92% 96% 96% 4.2% 100% 100% 100% 4.5% 100%
FS

M
N

IS
T

4.0% 100% 98% 100% 100% - 100% 100% 91% 94% 100% 100%

L
eN

et
-4

3.9% 97% 39% 72%

C
ar

lin
i

4.0% 82%

PI 2.6% 52% 64% 68% 63% 69% 89% 89% 98% 100% 94% 100% 1.6% 100% 100% 100% 0.4% 100%
V I 1.2% 100% 100% 100% 100% 78% 82% 88% 63% 68% 58% 62% 0.9% 100% 100% 100% 2.1% 72%
NIC 3.8% 100% 100% 100% 100% 91% 96% 100% 98% 100% 94% 100% 2.5% 100% 100% 100% 2.5% 100%

MagNet 6.4% 100% 100% 85% 87% 87% 89% 91% 76% 74% 72% 74% 4.2% 100% 100% 100% 5.2% 99%
LID 5.6% 94% 96% 91% 91% 84% 86% 88% 90% 91% 92% 92% 4.0% 99% 98% 99% 3.9% 97%
FS

C
IF

A
R

4.9% 21% 55% 98% 100% 77% 100% 100% 98% 100% 84% 89%

M
N

IS
T

L
eN

et
-5

3.9% 96% 41% 71%

M
N

IS
T

C
le

ve
rh

an
s

3.6% 78%

PI 5.8% 30% 25% 53% 49% 81% 84% 86% 100% 100% - - 1.5% 97% 95% 100% 0.2% 100%
V I 1.4% 99% 100% 99% 100% 53% 90% 92% 29% 12% - - 1.0% 43% 100% 93% 2.2% 46%
NIC 7.2% 100% 100% 99% 100% 90% 96% 100% 100% 100% - - 2.5% 100% 100% 100% 2.4% 100%
HGD 9.7% 97% 95% 92% 92% 83% 83% 85% 81% 82% - - 6.2% 88% 69% 100% 4.7% 80%
LID 14.5% 82% 78% 85% 86% 83% 78% 80% 79% 80% - - 9.6% 83% 89% 91% 4.8% 75%
FS

Im
ag

eN
et

8.3% 43% 64% 98% 100% 79% 92% 100% 98% 100% - -

Im
ag

eN
et

V
G

G
19

3.9% 89% 40% 82%

L
FW

V
G

G
19

3.3% 67%

much lower than using our method. Through manual inspection,
it appears that after applying the squeezers, the effects of the
Trojan triggers (which lead to misclassification) are degraded
but not eliminated. As a result, many adversarial samples
and their squeezed versions produce the same (malicious)
classification results. For DeepXplore attacks, feature squeezing
can detect almost all the adversarial samples generated by the
Dirt attack, which adds black dots to the images to simulate
the effects of dirt. This attack is very similar to L0 attacks, on
which feature squeezing performs very well. It cannot handle
the Lighting attacks and Rectangle Patching (RP) attacks very
well. The Rectangle Patching attack is very similar to the
Trojan attack except that it generates a unique rectangle for
each adversarial sample. Lighting attacks are similar to FGSM
attacks but they change pixel values more aggressively. The
changes can hardly be squeezed away.

We notice that the false positive rates of feature squeezing
is relatively low. This shows that the designed squeezers are
carefully chosen to avoid falsely recognize clean images as
adversarial samples, which makes its results more trustworthy.

E. Adaptive Adversaries

The experiments in the previous sections are to detect
adversarial samples under the assumption that the attacker
is not aware of the existence of the detector (black-box attack).
As discussed in §III-D, we need to deal with a stronger threat
model, in which the attacker knows everything of the dataset,
the trained model and the trained detector including the method
used to train them as well as the model parameters after training.
Our method against this attack model is to train multiple
detectors using different g functions (§III-D). At runtime, NIC
randomly chooses the detector(s) to use for the final decision.
During this evaluation, we use three detectors and perform
majority voting for the final decision.

We designed a CW2 based white-box attack. The basic
idea is to view the two classifiers (i.e., the original model
and the detector) as a whole. In other words, we consider the
output of the detector as part of the loss function to generate
adversarial samples. The original CW2 attack tries to minimize

the L2 distance of the generated adversarial sample and the
original benign image such that the two images will lead to
different prediction results. With the presence of NIC, the new
attack modifies the optimization objective function. Now we
minimize the L2 distance of the two images as well as the
L2 distance of the activation neurons of the two images in
each hidden layer and the prediction output vectors of the two
images from all derived models (intuitively, minimizing V I
and PI violations). We choose to make the attack untargeted,
which tends to have less perturbation compared with targeted
attacks. As the g functions are not differentiable, we leverage
a random process to find an adversarial sample that cannot be
detected before the start of the optimization procedure.

If we limit the optimal constant (used to balance the amount
of perturbation and the adversarial strength) to a rationale range,
[10−3, 106], the same settings used in LID [53], the attack fails
to generate adversarial images for all cases. This demonstrates
that NIC is robust to such normal confidence attacks even
under such strong white-box attack model. Without such limits,
the attack can achieve 97% success rate on MNIST and CIFAR-
10. The mean L2 distortion of successful samples is 3.98 for
MNIST and 2.76 for CIFAR-10, which is higher compared
with other detectors (e.g., the L2 distortion of feature squeezing
is 2.80 on MNIST for adaptive, untargeted attacks [99]). This
shows that our technique increases the difficulty of constructing
adversarial samples.

Because of the complexity of the optimization objective
function, it takes significantly longer time to generate adver-
sarial samples. We performed an experiment on a desktop
equipped with an i7-3770 3.40GHz CPU and 28 GB of RAM.

Fig. 10: Adversarial Samples. 1st line shows seed inputs, 2nd
line shows without detector, 3rd line shows with 1 detector. Gray
boxes mean no adversarial samples found in 1000 iterations.
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TABLE IV: Effects of different OCC algorithms

Detector FGSM BIM CW∞ Next CW∞ LL DF CW2 Next CW2 LL CW0 Next CW0 LL JSMA JSMA Trojan Dirt Lighting RP

5NN 14% 11% 9% 10% 4% 5% 4% 3% 1% 1% 2% 26% 12% 2% 24%
Linear 22% 20% 17% 19% 8% 12% 15% 8% 12% 22% 24% 32% 34% 93% 45%
Poly 89% 86% 79% 82% 85% 88% 89% 84% 85% 84% 86% 94% 89% 99% 95%
RBF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Specifically, generating a normal adversarial sample (without a
detector) takes about 1 second, while generating an attack image
takes about 420 seconds on average in the presence of one
detector and around 1200 seconds on average in the presence of
three detectors. This shows that such randomization approaches
do increase the difficulty of generating adversarial samples.
This result is also consistent with the findings in [28, 99].
Furthermore, the adversarial samples generated in the presence
of a randomized detector usually have low confidence and are
human unrecognizable. Figure 10 shows some generated attack
images. The first row is the seed inputs, the second row shows
the attack images without any detector and the last row shows
the attack images to bypass one NIC detector. We can see that
many of the last row images are not human recognizable.

F. Choice of One Class Classifiers

In this part, we evaluated the effects of using different OCC
algorithms. We compared four algorithms using the Carlini
model on MNIST dataset: KNN-OCC (k=5), OSVM with linear
kernel, OSVM with poly kernel and OSVM with the RBF kernel.
The results are shown in Table IV. As we can see, KNN-OCC
performs badly for this task, and the more complex the kernel
is, the better results the OSVM algorithm can achieve. This is
because complex kernels are more expressive and can identify
the differences between clean images and adversarial samples.
Potentially, the model accuracy may be further improved with
better one-class classification algorithms.

G. Case Study

We use the Trojan attack on a face recognition model (with
2622 output labels) to demonstrate invariant violations. The pre-
trained VGG-face recognition model can be found at [49]. We
use the same datasets (VGG and LFW) to generate adversarial
samples to be consistent with the original paper [49]. Figure 11
shows the benign images (on the left of each subfigure) and
the image patched with the Trojan trigger (on the right of
each subfigure). The captions show the ground truth label. The
trojaned model misclassifies all the images with the Trojan
trigger to the target label A.J. Buckley. The attack triggers
both value and provenance invariant violations at layer L18. The
scale of the provenance invariant violation is more substantial.
Table V shows part of the PI for layers L17 and L18 (rows
3,4), and the three OP s for the three images with the Trojan
trigger (i.e., the three rows on the bottom). Each row consists
of the classification results of the derived model of L17 and the
results of L18. Since it is difficult to visualize PI , we show a
typical vector value in the PI instead. Observe that the OP s
are substantially different from the PI with the differences
highlighted in red. Intuitively, the PI indicates that if L17
predicates Mark with a high confidence, L18 very likely predicts
Mark with high confidence (slightly higher or lower than the
previous layer result, no significant change) too. However, the
first OP says that L17 predicts Mark with a high confidence
but L18 predicts A.J. Buckley with a high confidence. This

(a) Mark Pellegrino (b) Steven Weber (c) Carmine Giovinazzo

Fig. 11: Adversarial samples for the Trojan attack

A.J.
Buckley

Mark
Pellegrino

Steven
Weber

Carmine
Giovinazzo

PI
L17 0.0001 0.8857 0.0001 0.0004
L18 0.0001 0.9023 0.0001 0.0004

OP
L17 0.001 0.8734 0.0001 0.0004
L18 0.9273 0.0001 0.0001 0.0001
L17 0.0001 0.0001 0.7234 0.0001
L18 0.9736 0.0001 0.0001 0.0001
L17 0.0001 0.0001 0.0001 0.9243
L18 0.9652 0.0001 0.0001 0.0004

TABLE V: PI and OP s Fig. 12: V I and OV s
is a clear violation. The three adversarial samples cause value
invariant violations as well (Figure 12). The brown region
describes the V I distribution for L18. The adversarial samples
(red dots) are clear outliers. However, NIC is not able to
distinguish Trajoned models from those are simply vulnerable.

V. RELATED WORK

We have covered many adversarial sample attacks, defense
and detection works in §II. There are other types of attacks
on machine learning models especially DNNs [27, 30, 82, 84,
85, 97]. Liu et al. [47] noticed that existing works study the
perturbation problem by assuming an ideal software-level DNN,
and argued this is not enough. They investigated adversarial
samples by considering both perturbation and DNN model-
reshaping (used by many DNN hardware implementations).
Xiao et al. [96] utilized generative adversarial networks (GANs)
to learn and approximate the distribution of original inputs
so as to generate adversarial samples. Some works focus
on applying poisoning attacks on machine learning models
[36, 46, 80, 87]. Poisoning attacks aim at downgrading or
compromising machine learning models by providing malicious
training instances. Researchers have also proposed attacks to
steal the parameters or hyper-parameters of machine learning
models from open online services [94, 95]. Some works focus
on studying the potential privacy leakage issues of machine
learning [30, 37, 50, 62, 75, 84]. Fredrickson et al. [17, 18]
proposed membership inference attacks on machine learning
models by reverse engineering models to infer information of
training data. Sharif et al. [81] focused on facial biometirc sys-
tems. They defined and investigated attacks that are physically
realizable and inconspicuous, and allow an attacker to evade
recognition or impersonate anther individual.

Recently, researchers proposed a few DNN verification
frameworks [19, 38] that can verify DNN properties. Katz
et al. [38] proposed an SMT-solver based solution, Reluplex,
which can prove a network is δ-local-robust at input x, namely,

13



for every x′ such that ||x− x′||∞ ≤ δ, the network always as-
signs the same output label. And Gehr et al. [19] proposed AI2

based on abstract interpretation and over-approximation, and
they also used a similar local robustness property, namely, the
network must assign the same label for a region and the region is
defined for the Lighting attack in DeepXplore [72]. While these
works demonstrate the potential of DNN verification, they aim
to defend specific attacks. For example, the δ-local-robustness
property proposed by Reluplex may not handle attacks beyond
the L∞ attack category whereas the local robustness property
used in AI2 was mainly for the Lighting attack in DeepXplore.
To prove the aforementioned properties, the techniques require
the knowledge of attack parameters, such as δ for Reluplex and
the degree of change in Lighting attacks in DeepXplore, which
may not be feasible. Moreover, these techniques prove that
DNN does not misbehave for a specific given input. In practice,
it is difficult to enumerate all possible benign inputs. Due to
the cost of verification, experiments have been conducted on
small datasets. It remains unclear if such techniques can scale
to larger sets such as the ImageNet. In contrast, our technique
is more general and practical.

VI. CONCLUSION

We propose a novel invariant based detection technique
against DNN adversarial samples, based on the observation
that existing attacks are exploiting two common channels:
the provenance channel and the activation value distribution
channel. We develop innovative methods to extract provenance
invariants and value invariants which can be checked at runtime
to guard the two channels. Our evaluation on 11 different attacks
shows that our technique can accurately detect these attacks
with limited false positives, out-perform three state-of-the-
art techniques based on different techniques and significantly
increases the difficulty of constructing adversarial samples.
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