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ABSTRACT
We aim to debug a single failing execution without the assistance
from other passing/failing runs. In our context, debugging is a pro-
cess with substantial uncertainty – lots of decisions have to be
made such as what variables shall be inspected first. To deal with
such uncertainty, we propose to equip machines with human-like
intelligence. Specifically, we develop a highly automated debugging
technique that aims to couple human-like reasoning (e.g., dealing
with uncertainty and fusing knowledge) with program semantics
based analysis, to achieve benefits from the two and mitigate their
limitations. We model debugging as a probabilistic inference prob-
lem, in which the likelihood of each executed statement instance
and variable being correct/faulty is modeled by a random variable.
Human knowledge, human-like reasoning rules and program se-
mantics are modeled as conditional probability distributions, also
called probabilistic constraints. Solving these constraints identi-
fies the most likely faulty statements. Our results show that the
technique is highly effective. It can precisely identify root causes
for a set of real-world bugs in a very small number of interactions
with developers, much smaller than a recent proposal that does not
encode human intelligence. Our user study also confirms that it
substantially improves human productivity.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Debugging, Probabilistic Inference, Python
ACM Reference Format:
Zhaogui Xu, ShiqingMa, Xiangyu Zhang, Shuofei Zhu and Baowen Xu. 2018.
Debugging with Intelligence via Probabilistic Inference. In Proceedings of
ICSE ’18: 40th International Conference on Software Engineering , Gothenburg,
Sweden, May 27-June 3, 2018 (ICSE ’18), 11 pages.
https://doi.org/10.1145/3180155.3180237

1 INTRODUCTION
In this paper, we aim to tackle the traditional debugging prob-
lem – given a faulty program and a single failing run, identify the
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root cause of the failure. In our target scenario, an oracle to tell
the intended behavior for each step of execution is not available.
As such, debugging becomes an uncertain procedure, in which a
lot of decisions have to be made, such as which statements are
more likely faulty, which variables should be inspected first, and
whether a function execution shall be stepped into. Algorithmic
debugging techniques tend to avoid making decisions by conserva-
tively including all the possibilities. For example in dynamic slicing,
given a faulty output, all the executed statement instances that have
contributed to the output are included in the slice. While these tech-
niques can precisely model and reason about program semantics,
they lack the capabilities of making appropriate predictions in the
presence of uncertainty. The onus is hence on the developers to
inspect the large volume of analysis results. In contrast, during
human debugging, an experienced developer may not even start
from the vicinity of the faulty output. Instead, she may speculate
some places in the middle of execution that contain states critical
to the failure and inspect the corresponding variables. She decides
if a variable has a faulty value based on her experience and do-
main knowledge. In many cases, she can quickly identify the root
cause because she excels at collecting and fusing debugging hints
to make the correct decisions. On one hand, many of these hints are
highly uncertain (e.g., the variable name correlations between the
faulty output variable and the root cause) and hence can hardly be
leveraged by algorithmic debugging techniques. On the other hand,
humans do not have the capacity and stamina to reason about the
low level program semantics at a scale close to machines.

Human feedback driven debugging was hence proposed to in-
tegrate human reasoning and machine analysis [24, 26, 32]. For
instance, in a very recent proposal of interactive slicing [24], the
tool reports statement instances in a dynamic slice to the developer,
one at a time based on their distance to the faulty output. The de-
veloper can indicate if a reported instance is faulty; and if not, what
operands of the instance are faulty. The tool then recomputes the
dynamic slice from the faulty operands, precluding statement in-
stances that led to the correct operands (in the instance). However,
in most existing techniques including [24], the coupling between
machines and humans is very primitive: the machine analysis is
incapable of handling uncertainty and humans still have to make all
the decisions. As a result, they suffer from limitations such as exces-
sive requests for human intervention and false positives/negatives
due to human mistakes.

We develop a technique that allows machines to take over a large
part of the human reasoning of uncertainty, and couple such uncer-
tainty reasoning with precise modeling of low level program semantics
such that we can achieve the benefits of both human and machine
reasonings and mitigate their limitations. In particular, we model
debugging as a probabilistic inference procedure. Random variables
are introduced to denote the likelihood of statement instances and
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variables being correct/faulty. The semantics of each executed state-
ment is modeled as a conditional probability distribution, which is
also called probabilistic constraint in this paper (e.g., given “x=y”, if
x is likely correct, then y is likely correct). The outputs are modeled
as observations, e.g., the correct outputs are associated with proba-
bility 1.0 (of being correct) and the faulty outputs with probability
0.0. Human domain knowledge and feedback are also encoded as
probabilistic constraints (e.g., the likelihood of being buggy for a
variable with a name correlated to the name of the faulty output
variable is higher than others). These constraints can be resolved
by a probabilistic inference engine [1]. The inference procedure is
similar to solving SMT/SAT constraints. The difference lies in that
our inference results are posterior marginal probabilities (instead
of satisfying value assignments) that indicate the likelihood of each
statement instance and variable being correct/faulty (given the ob-
servations and the human feedback). The procedure is analogous to
applying forces to an elastic mesh, in which the observations and
human feedback are analogous to the forces and the correlations
between statements/variables derived from program semantics are
analogous to the mesh. When the mesh finally stabilizes, the state
of each node on the mesh reflects the effect of the joint force.

Compared to the aforementioned existing feedback driven debug-
ging, (1) developers’ intervention/feedback is substantially reduced
as the technique can perform human-like reasoning in dealing with
uncertainty; (2) our technique allows developers to be uncertain
about their feedback and humanmistakes can be diluted and eventu-
ally over-powered by other evidences; and (3) it has the full capacity
of machine analysis by faithfully encoding program semantics.

Our contributions are summarized as follows.

• We propose the idea of modeling debugging (a single failing
run) as a probabilistic inference problem such that our tech-
nique can automatically perform both human-like reasoning
that features uncertainty handling and program semantics
based reasoning that features precision.
• We devise a comprehensive set of rules to encode both pro-
gram semantics, observations, domain knowledge, and hu-
man feedback as conditional probability distributions.
• We develop a prototype for debugging Python programs.
Our evaluation on real world bugs shows that on average
our tool can locate a root cause in 3 steps of interaction
with the developer for large projects, and 5 steps for smaller
programs from stackoverflow. In contrast, [24] requires more
than 10 steps and may miss the root causes. Our user study
shows that our tool can reduce debugging time by 34% on
average. The analysis time is within seconds for most cases.

2 MOTIVATION
Motivating Example. Fig. 1 shows a simplified code snippet from
a popular Python HTTP library Requests [2]. Line 18 invokes func-
tion path_url() defined in lines 1-12. Inside the function, the pro-
gram first splits the input url into path and query (line 2). With the
failure inducing input, the resulted values of path and query are
"/t%20c" and "x=1", respectively. Line 3 encodes the path segment
of the url by replacing special characters with their encodings (e.g.,
space to ‘%20’ and ‘%’ to ‘%25’) to translate it to the standard HTML

1: def path_url(url):
2: path, query = urlsplit(url)
3: path = encode(path)
4: if not path:
5: path = "/"
6: purl = []
7: purl.append(path)
8: if query:
9: purl.append("?")
10: purl.append(query)
11: purl_str = make_str(purl)
12: return purl_str

13: def make_str(lst):
14: s = ""
15: for i in lst:
16: s = s + i
17: return s

18: url=path_url("http://x.org/t%20c?x=1")
19: print url

Figure 1: Motivating example.

URI format. Hence, the encoded path has the value "/t%2520c" (af-
ter replacing ‘%’ with ‘%25’). Lines 4-5 validate that path is not
empty. Line 6 appends path to a list purl. Lines 8-10 further append
a separator symbol ‘?’ and query to the list. Line 11 calls the func-
tion make_str() to transform purl to a string. Inside make_str(),
lines 13-17 concatenate each item in purl and return the final value
"/t%2520c?x=1". This code snippet is buggy at line 3 because the
path is double encoded, and the correct version should check if it
has already been encoded before executing line 3. The expected
output should be "t%20c?x=1" with ‘%20’ the encoding of space.
Existing Methods. In manual debugging, developers use pdb [3]
and PyCharm [4] debugger (i.e., the Python version of gdb) to set
breakpoints at places that are considered suspicious and inspect
variable values at those points. In this procedure, developers have to
make a lot of decisions to deal with the inherent uncertainty. Many
of the decisions are made based on their experience. For example,
the library function append() is unlikely to be buggy so that the
developers do not need to step into its execution. However, the
effectiveness of manual debugging heavily hinges on the experience
of developers. Moreover, humans have limited capacity of reasoning
about low level program semantics. For example, it is difficult for
humans to use debuggers to follow a lengthy data flow path.

Many automated debugging techniques, such as delta debug-
ging [8–11] and fault localization [15–18, 20], are highly effective.
But they often require a passing run that closely resembles the
failing run, or a large set of passing and failing runs, to serve as the
reference to suppress uncertainty. However in practice, reference
run(s) with high quality may not be available.

Dynamic slicing identifies a subset of executed statements that
contributed to an observed faulty output based on program depen-
dencies. It makes very conservative assumptions in dealing with
uncertainty. For instance, line 16 concatenates two substrings –
right-hand-side (rhs) s and i, to produce the left-hand-side (lhs) s.
If the lhs s is observed faulty, it assumes both the rhs s and i are
potentially faulty and includes both in the slice. In our example,
the dynamic slice of the printed value of variable url at line 19
includes all the statements presented in this example, and also the
bodies of functions urlsplit() and encode() that are omitted. It
hence requires a lot of manual efforts to go through statements in
the slice in order to identify the root cause.
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Recently, an interactive approach [24] was proposed. It gradually
presents statement instances in a dynamic slice to the developer,
who provides feedback such as whether an instance itself is faulty.
If not, the developer shall indicate which operand of the instance is
faulty. The technique then computes a new slice starting from the
faulty operand. It essentially prunes part of the original slice related
to the correct operand(s). Consider our example, it first computes
the slice of line 19. The slice includes all the executed statement
instances. It first presents lines 19, 18 and 17 to the developer, one
at a time. The developer indicates that those statements themselves
are not faulty but rather their operands are faulty. It then presents
line 16 to the developer, who indicates that the rhs s is faulty but i
is not. As such, the technique computes a new slice on s, precluding
i and its dependencies. Although the technique does improve over
slicing, its integration between machines and humans is primitive.
The algorithm is fully deterministic and does not handle uncertainty,
and the developer merely serves as an oracle. As such, the number
of human interactions required can be large. In our example, it
requires 7 interactions until the root cause is identified. Moreover,
it does not handle/tolerate human mistakes. For example, if the
developer mistakenly determines i at line 16 is faulty and the rhs s
is correct, the root cause can never be reached.
Our Idea.We propose an automated technique that couples human-
like reasoning (e.g., handling uncertainty, leveraging domain knowl-
edge, and fusing debugging hints from various sources) with precise
low level program semantics based analysis. As such, a large part
of the human workload can be shifted to machines. The idea is
to formulate debugging as a probabilistic inference problem. We
introduce random variables to denote the likelihood of individual
statement instances and variables being correct/faulty, encode pro-
gram semantics, human reasoning rules as probabilistic constraints,
and inputs, (faulty) outputs, human feedback as observations that
are denoted as prior probabilities (i.e., probabilities before inference).
The prior probabilities and constraints are fed to the probabilistic
inference engine to compute the posterior probabilities of individ-
ual statement instances and variables being correct/faulty. The
posterior probability of a variable is often different from its prior
probability, denoting a better assessment after fusing information
from other related variables.

Next, we will walk through the example to intuitively explain
how our technique identifies the root cause. Before inference, url at
line 19 is associatedwith a constant prior probability LOW = 0.05 to
indicate it is faulty and url at line 1 is associated withHIGH = 0.95
to indicate that it is correct. It is standard in probabilistic inference
not to use 0.0 or 1.0, but rather values very close to them [50].
Since we have no observations on other program variables, their
prior probabilities are set to a constant UNCERTAIN = 0.5. The
inference engine takes the prior probabilities and the probabilistic
constraints derived from program semantics, and computes the
posterior probabilities. Next, we present some of the computed
posterior probabilities and explain their intuition.

From the program semantics constraints, url is faulty at line
19 suggests that url at 18 and purl_str at line 12 are likely faulty,
with posterior probabilities (of being correct) computed as 0.0441
and 0.0832 after inference. The procedure of computing posterior
probabilities from prior probabilities will be explained in later sec-
tions. The posterior probabilities model the following. There are

two possible reasons leading to the faulty value of url. One is the
executed statement at line 12 is buggy (but the operand purl_str

is correct) and the other is the value of operand purl_str is faulty.
Since there is no other observation indicating the simple return
statement is faulty, the computed posterior probabilities indicate
that it is more likely that purl_str has an incorrect value. Note
that a variable being faulty does not mean our tool reports it to
the developer as all the variables along the failure propagation
path (i.e., the dependence path from the root cause to the faulty
output) are faulty but we are interested in the root cause, which
is a statement instance. Leveraging data flow constraints, our tool
further infers that variable purl_str being likely faulty at line 12
entails that s at line 17 is likely faulty and hence s at line 16 likely
faulty (with probability being 0.1176). Line 16 is executed three
times, producing three s values, namely, "/t%2520c", "/t%2520c?"
and "/t%2520c?x=1". When comparing the generated output with
the expected output, our tool also marked the correctness of individ-
ual bytes. Hence, at this point, it can factor in the observation that
the output substring "20c?x=1" created by the last two instances
of line 16 is correct. This suggests that the root cause is unlikely
at line 16, reflected by the computed posterior probability 0.6902.
Instead, the first instance of i at line 16 is likely faulty.

Our tool also encodes various human domain knowledge as
probabilistic constraints. For example, the name of the faulty output
variable and the name of a function that contains the root cause tend
to have some correlation in terms of natural language semantics. As
such, function path_url() is consideredmore relevant than function
make_str(), reflected by larger prior probabilities for statements in
the former. The first instance of i at line 16 being faulty suggests
that the resulted purl at line 7 (inside path_url()) is likely faulty
(i.e., posterior probability 0.2892 being correct). Again, there are
two possible sources that lead to the faulty state of purl at 7: (1)
the append() function is faulty and (2) path is faulty. Our tool has
encoded the domain knowledge that an external library function
is less likely faulty than user code. This leads to (2) out-weighting
(1) during inference. Note that it is not a problem for our tool even
if the heuristics do not apply (e.g., the root cause does reside in
library instead of user code) as our technique is probability based.
The effect of a heuristic can be out-weighted by evidences collected
from other sources.

Variable path at line 7 being faulty suggests either (A) the rhs
path at line 3 is faulty or (B) line 3 itself is faulty. The observation
that input url at line 1 being correct (as it is from the input) leads
to path and query at line 2 are likely correct because they are iden-
tical to parts of url. This further suggests the rhs path at line 3
is likely correct. As such, (B) is likely true and hence line 3 is the
statement instance with the lowest posterior probability (0.1075)
being correct. Note that statement instance probabilities are dif-
ferent from variable probabilities as the former indicates where
the root cause is. Although we describe the procedure step-by-step,
our tool encodes everything as prior probabilities and probabilistic
constraints that are automatically resolved. In other words, the entire
aforementioned procedure is conducted internally by our tool and
invisible to the developer. Also observe that the inference procedure
is bidirectional, e.g., the backward reasoning from the output at
line 19 and the forward reasoning from the input at line 1. It is
iterative as well and terminates when a fixed point is reached. These
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Figure 2: System Framework.

features distinguish our technique from iterative slicing (e.g., [24])
or techniques that present a dynamic slice to the developer through
interactions (e.g., [32]), as slicing does not conduct any bidirectional
or fixed-point (probabilistic) reasoning, but rather traverses program
dependencies. The statement instance with the largest probability
to be faulty is reported to the developer. If the developer disagrees,
she can further provide her assessment about the likelihood that the
operands in the reported statement instance are faulty. The feed-
back is encoded as a new observation, i.e., new prior probabilities
that can be propagated backward and forward, and another round
of inference is performed to identify the new root cause candidate.
Note that human mistakes in feedback can be tolerated as they do
not lead to the exclusion of the root cause but rather just a fewmore
extra rounds before locating the root cause. This faithfully mimics
how human mistakes are tolerated in real world manual debugging.
In our example, our tool correctly reports the true positive in the
first round, which is much more effective than [24].

3 OVERVIEW
In this section, we give an overview of our system.
Framework. Fig. 2 presents the system architecture of our tool.
It consists of four components: the tracing component, the prob-
abilistic constraint encoding component, the probabilistic infer-
ence engine and the feedback component. The tracing component
takes the buggy program and a test input and generates the trace
of a failing execution. The probabilistic constraint encoding com-
ponent automatically encodes prior probabilities and constraints
from various resources. It consists of two subcomponents: variable
correctness/faultiness probabilistic constraint encoder and statement
instance correctness/faultiness encoder. The former generates prior
probabilities to indicate initial observations of variable correctness/-
faultiness. Such prior probabilities have three possible constant val-
ues: HIGH = 0.95 to denote a variable having a correct value (e.g.,
an input variable or an output variable holding a correct value),
LOW = 1 − HIGH = 0.05 to denote a variable having a faulty
value (e.g., a faulty output variable), and UNCERTAIN = 0.5 to
denote we have no observation/prior-knowledge about a variable
(most variables fall into this category). It is standard to use these
constant values as prior probabilities [50]. We will study the effect
of having different HIGH configurations in Section 6. Besides prior
probabilities, it also generates constraints that correlate probabili-
ties according to program semantics (e.g., x = y dictates the strong
correlation between x and y’s probabilities). The inference engine
takes the prior probabilities and the constraints, performs proba-
bility inference to compute posterior probabilities. The inference
procedure can be intuitively considered as a process of fusing hints

x ∈ RuntimeV ar iableSet inst ∈ ExecutedStatement InstanceSet
P (x/inst ) asserts a variable x or a statement instance inst is correct.
S (inst ) asserts a statement instance inst is correct from the program structure.
N (inst ) asserts a statement instance inst is correct from the naming convention.
C : a

p
−→ b represents a probabilistic constraint denoting predicate a has a

propagation probability p implying predicate b .

Figure 3: Basic Definitions.

from various observations (i.e., HIGH/LOW prior probabilities)
through the propagation channels dictated by the constraints. At
the end, many variables that had UNCERTAIN prior probabili-
ties now have posterior probabilities different fromUNCERTAIN ,
indicating their likelihood of being correct/faulty.

The second subcomponent, the statement instance encoder, au-
tomatically generates constraints to infer if individual statement
instances are correct/faulty from variable probabilities and domain
knowledge. The earlier inference results of variable correctness/-
faultiness are provided as prior probabilities to the statement in-
stance inference procedure. Eventually, the statement instances are
ranked by their posterior probabilities. The one with the largest
probability of being faulty is reported as the root cause candidate. If
the developer disagrees, she provides feedback to indicate whether
the reported statement instance contains faulty variable(s), which
may trigger another round of encoding and inference. The process
is iterative till the root cause is identified.
Motivation Example Walk-through.We simplify the execution
trace of themotivating example in Fig. 1 as the following to illustrate
the workflow of our technique.

e1: url2 = url1 (L1)

e2: p1 = url2[0] (L2)

e3: path1 = m1[p1] (L3)

e4: s1 = path1 + "?" (L16)

e5: s2 = s1 + query1 (L16)

e6: url3 = s2 (L17)

Table 1: SimplifiedTrace of theMotivating Example in Fig. 1.
All the runtime variables in the trace are transformed to the

Static Single Assignment (SSA) form so that each of them is defined
exactly once. The subscript of a variable is used to identify a specific
instance of the variable. The line numbers of these trace events
are also shown on their right (e.g., L2 means line 2). The value of
variable url3 is faulty whereas url1 and query1 are correct.
Phase I: Inferring Variable Correctness/Faultiness Probabilities. With
the execution trace, our encoding component first performs dy-
namic slicing from the faulty output variable(s) and then encodes
the semantics of each event in the slice. With the simplified trace in
Table 1, the faulty output is url3, whose dynamic slice contains all
the events. Take event e5 as an example. Given the basic definitions
shown in Fig. 3, the variable constraints are encoded as follows.

P (s1) ∧ P (query1)
0.95
−−−→ P (s2) (1)

P (s2) ∧ P (query1)
0.95
−−−→ P (s1) (2)

P (s1) ∧ P (s2)
0.95
−−−→ P (query1) (3)

Since we do not know which step executes a faulty statement in
this phase, we initially assume every executed statement instance
is likely correct. Therefore, given the assumption that the addition
statement is correct in event e5, constraint (1) represents if both
operands are correct, the produced value is also correct with a high
probability (HIGH = 0.95). This probability is associated with the
constraint (instead of a variable) and called the propagation probabil-
ity. Intuitively, it can be considered as an information flow throttle
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during inference, controlling how much s2’s probability is affected
by those of s1 and query1. Note that the power of probabilistic in-
ference lies in automatically correcting initial beliefs/assumptions
by fusing information. For instance, observations about s2 or values
computed from s2 (in other statement instances) would allow the
engine to adjust the probability of s2 in e5 and potentially the belief
about the correctness of e5.

Constraints (2) and (3) represent if the result as well as either one
of the two operands are correct, the other operand is likely correct.
Intuitively, since it is a one-to-one mapping between the operands
and the result value for an addition, the propagation probability is
HIGH . The propagation probability is lower for other statements
that denote many-to-one mapping. For instance, for the statement
executed at event e3, if we know both path1 andm1 are correct, the
likelihood of the index p1 being correct is dependent on if there
exist multiple indexes whose corresponding array values are the
same as the value of path1. If there are no other array elements
that have the value of path1, p1 is correct. If there are many such
elements, we essentially get no hints about p1’s correctness. The
detailed computation rules of the propagation probability for each
kind of statement are presented in Section 5.1. Besides encoding
constraints, our tool also encodes prior probabilities (for inputs and
outputs). For example, we have the following prior probabilities in
the parentheses for the trace in Table 1.

P (url3) = 1 (0.05) P (url1) = 1 (0.95)
P (query1) = 1 (0.95) (4)

We send the encodings to a probabilistic inference engine to
compute the posterior probability of each predicate P (x ) being true.
During probabilistic inference, a random variable is associated with
each predicate to indicate the likelihood of the predicate being true.
The inference engine transforms constraints and prior probabilities
to a factor graph and then uses the Sum-Product [30] algorithm to
compute the posterior probabilities. We will disclose more details
about probabilistic inference in the next section. For this example,
the posterior probabilities of predicatesP (s1),P (query1) andP (s2)
being true are 0.1302, 0.9197 and 0.0741, respectively.
Phase II: Inferring Statement Instance Correctness/Faultiness Proba-
bilities. In this phase, we leverage the variable probabilities (from
Phase I) and domain knowledge to determine the likelihood of each
executed statement instance being correct/faulty. Particularly, we
generate three kinds of constraints. First, we generate constraints
correlating variable probabilities and statement instance probabili-
ties. For event e5, we generate the following constraints.

Pe5 (s2) ∧ (Pe5 (s1) ∧ Pe5 (query1))
0.95
−−−→ P (inste5 ) (5)

¬Pe5 (s2) ∧ (Pe5 (s1) ∧ Pe5 (query1))
0.95
−−−→ ¬P (inste5 ) (6)

¬Pe5 (s2) ∧ (¬Pe5 (s1) ∨ ¬Pe5 (query1))
0.95
−−−→ P (inste5 ) (7)

Intuitively, constraint (5) represents if all the involved values
at event e5 are correct, the addition operation is likely correct.
Constraint (6) represents if the resulted value is faulty and both
operands are correct, the addition operation is likely faulty. Con-
straint (7) denotes if the resulted value is faulty and at least one
operand is faulty, the addition operation is likely correct. According
to constraint (7), since the probabilities of both P (s2) (0.0741) and

P (s1) (0.1302) are low, the statement instance e5 is likely correct
and the root cause is likely before e5.

Second, it generates constraints from program structure. In prac-
tice, programs often have modular design to achieve functional
coherence. Therefore, if a function includes a large number of state-
ments that are executed and included in the slice, the function is
likely to include the faulty statement (i.e., root cause). In our exam-
ple, more statements from function path_url() are included in the
slice than from make_str(), hence statement instances in the former
function are given priority over those in the latter. The constraint
related to e5 is shown in the following.

S (inste5 )
0.95
←−−→ P (inste5 ) S (inste5 ) = 1 (0.70) (8)

Predicate S (inste5 ) and its prior probability 0.70 represent the
prediction of e5 being correct based on its structure. Here, since e5
is inside make_str(), its prior probability (of correctness) is higher
than those in path_url(). The prior probability 0.70 is derived
through program analysis (see Section 5.2). During inference, it
adds weight to the posterior probability of P (inste5 ).

Third, our technique generates constraints from the naming
convention. We assume that function names and variable names,
including those of the observed faulty variables, follow certain
naming conventions and these names suggest functionalities to
some extent. If two variable names are correlated in the natural
language perspective, their functionalities are possibly related too.
For our example, the function name "path_url" is more similar to
the name of the observed faulty variable "url" than the function
name "make_str". It suggests that statement instances in function
path_url() have stronger correlations with the failure than those
in function make_str() and hence shall be given higher priority. For
example, the naming constraints of e3 are shown as follows.

N (inste3 )
0.95
←−−→ P (inste3 ) N (inste3 ) = 1 (0.275) (9)

Predicate N (inste3 ) denotes if e3 is predicted to be fault related
by naming convention. The prior probability 0.275 is derived from
NLP analysis (see Section 5.2).

Finally, we send these constraints and prior probabilities again
to the inference engine to compute the posterior probabilities of
statement instances. We report the most likely faulty instance. In
this example, event e3 has the smallest probability of being correct.
It is indeed the true root cause.

4 PROBABILISTIC INFERENCE
In this section, we illustrate how probabilistic inference is con-
ducted. First of all, we present some basic notations. We denote
each involved predicate P by an individual random variable x .
Given a set of probabilistic constraints C1, C2, ..., and Cm , we use
a set of corresponding probabilistic functions f1, f2, ..., and fm to
describe the valuation of these constraints. Formally, a probabilistic
function fi can be presented as the following.

fi (x1,x2, ...,xk ) =

{
p if the constraint Ci is true.
1 − p otherwise (10)

where x1, x2, ..., xk denote the random variables associated with the
constraintCi andp represents the prior probability of the constraint
yielding true. Probabilistic inference is essentially to satisfy all the



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Z. Xu, S. Ma, X. Zhang, S. Zhu and B. Xu

Table 2: Boolean Constraints with Probabilities.
x1 x2 x3 f1 (x1, x2, x3 ) f2 (x1, x2, x3 ) f3 (x2 ) f4 (x3 )
0 0 0 0.95 0.95 0.05 0.95
0 0 1 0.95 0.95 0.05 0.05
0 1 0 0.95 0.95 0.95 0.95
0 1 1 0.95 0.05 0.95 0.05
1 0 0 0.95 0.95 0.05 0.95
1 0 1 0.95 0.95 0.05 0.05
1 1 0 0.05 0.95 0.95 0.95
1 1 1 0.95 0.95 0.95 0.05

constraints. In this context, the conjunction of the constraints can
be denoted as the product of all the corresponding probabilistic
functions, as shown in the following.

f (x1,x2, ...,xn ) = f1 × f2 × ... × fm (11)

The joint probability function [30], which is essentially the normal-
ized version of f (x1,x2, ...,xn ), is defined as follows.

p (x1,x2, ...,xn ) =
f1 × f2 × ... × fm∑

x1, ...,xn
( f1 × f2 × ... × fm )

(12)

The posterior (marginal) probability of xi , denoted as p (xi ), is the
sum over all variables other than xi [30].

p (xi ) =
∑
x1

∑
x2

...
∑
xi−1

∑
xi+1

...
∑
xn

p (x1,x2, ...,xn ) (13)

Example.We use the example in Section 3 to illustrate more details.
For simplicity, we only consider the inference for constraints (1)
and (2) in phase I for the event e5. Let random variables x1, x2 and
x3 denote the predicate P (s1), P (query1) and P (s2), respectively.
Hence, we have the following formula for constraints (1) and (2).

C1 : x1 ∧ x2
0.95
−−−→ x3 C2 : x3 ∧ x2

0.95
−−−→ x1 (14)

We assume the prior probabilities of x2 and x3 are 0.05 and 0.95,
respectively. They are denoted as follows.

C3 : x2 = 1 (0.95) C4 : x3 = 1 (0.05) (15)

We then transform each constraint to a probability function, e.g.,
the probability function f1 for constraintC1 is presented as follows.

f1 (x1,x2,x3) =

{
0.95 if (x1 ∧ x2 → x3) = 1
0.05 otherwise (16)

Others are transformed similarly. Table 2 presents the values of
the probability functions. Assumewewant to compute the posterior
marginal probability p (x1 = 1), which means the probability of s1
being correct. The computation is as follows.

p (x1 = 1) =

∑
x2,x3

f1 (1, x2, x3 ) × f2 (1, x2, x3 ) × f3 (x2 ) × f4 (x3 )∑
x1,x2,x3

f1 (x1, x2, x3 ) × f2 (x1, x2, x3 ) × f3 (x2 ) × f4 (x3 )

=
0.95 × 0.95 × 0.05 × 0.95 + ... + 0.95 × 0.95 × 0.95 × 0.05
0.95 × 0.95 × 0.05 × 0.95 + ... + 0.95 × 0.95 × 0.95 × 0.05

=
0.1309
0.9927

= 0.1319

(17)

It is the sum of the product of valuationswithx1 = 1 (e.g., the first
item 0.95×0.95×0.05×0.95 is the product of f1 (x1 = 1,x2 = 0,x3 =
0) = 0.95, f2 (1, 0, 0) = 0.95, f3 (1, 0, 0) = 0.05 and f4 (1, 0, 0) = 0.95)
divided by the sum of the product of all valuations.
Implementation. In practice, the computation of posterior mar-
ginal probabilities is very expensive. In our implementation, we
represent all the probabilistic constraints with a graphical model
called factor graph [30], which supports efficient computation. We

A. Variable Constraints

P (pred ) ∧
∧

u∈U ses (e )
P (u )

HIGH
−−−−−−→ P (def ) [1]

foreach u ∈ U ses (e ) ⇒
P (pred ) ∧ P (def ) ∧

∧
x∈U ses (e )/u

P (x )
pu
−−−→ P (u ) [2]

P (def ) ∧
∧

x∈U ses (e )
P (x )

HIGH
−−−−−−→ P (pred ) [3]

B. Computation Rules of pu in [2]

s : z = υ | x | x bop y bop ∈ {+, −, ×, / }
pu = HIGH

[1TO1]

s : z = x mod y
px = U NCERTAIN

[MOD]

s : y = x .f V alues (y ) = v Values (x ) = o

px = ψ ( |ob jsW ithAttrV al (“f ”, v ) |) ∧ po .f = HIGH
[AR]

s : y = x [i] Values (x ) = o V alues (i ) = vi Values (y ) = v
px = ψ ( |cltsW ithIdxV al (vi , v ) |) ∧
pi = ψ ( |idxesW ithV al (v, o) |) ∧ po[vi ] = HIGH

[SR]

s : if x == y then s1 else s2 Values (x ) = Values (y )

px = HIGH ∧ py = HIGH
[EQ]

s : if x , y then s1 else s2 Values (x ) , Values (y )

px = 0.5 ∧ py = 0.5
[NEQ]

Function Definitions:
ψ (n) = 0.5 + 0.5 × (2 × HIGH − 1) ×

1
n

V alues (x ) the value of x observed during execution
ob jsW ithAttrV al (a, v ) returns objects having attributea with value v
objsW ithAttr (a) returns the objects having attribute a
cltsW ithIdxV al (i, v ) returns collections having value v at index i
idxesW ithV al (v, c ) returns indexes containing value v in collection c

Figure 4: Variable Constraints.

compute marginal probabilities based on the Sum-Product algo-
rithm [30]. The algorithm is essentially a procedure of message
passing (also called belief propagation), in which probabilities are
only propagated between adjacent nodes. In a message passing
round, each node first updates its probability by integrating all the
messages it receives and then sends the updated probability to its
downstream receivers. The algorithm is iterative and terminates
when the probabilities of all nodes converge. Our implementation
is based upon libDAI [1], a widely used open-sourced probabilistic
graphical model library.

5 CONSTRAINT GENERATION
In this section, we present how to generate probabilistic constraints.
As discussed in Section 3, our analysis consists of two phases. In
the first phase, we generate variable constraints and in the second,
we generate statement instance constraints.

5.1 Variable Constraint Generation
In the first phase, constraints are constructed from the execution
trace to model the probabilities of variables and branch predicate
states. Note that in this phase we only reason about the correct-
ness/faultiness of variables, which will be used to infer statement
instance correctness/faultiness in the next phase. Intuitively, our
design can be understood as first finding the correctness/faultiness
of variables, then the statement instances that have operands likely
correct but the result variable likely faulty are likely buggy.
Encoding Rules. Fig. 4A presents the encoding rules. Rule [1] en-
codes the forward causality of a statement instance e , denoting the
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propagation of the likelihoods (of being correct) from the control
dependence predicate pred (i.e., e control depends on pred), the
uses (i.e., rhs operands of e) to the definition (i.e., lhs variable de f ).
Intuitively, if the uses and the control dependence are correct, there
is good chance the lhs variable has a correct state. Rule [2] encodes
the backward causality, denoting the propagation of correctness
likelihood from the lhs variable to one of the used variables. In-
tuitively, if the lhs variable, the control dependence, and all the
other rhs operands are correct, the remaining rhs operand u has pu
(not HIGH ) probability to be correct. Different kinds of statements
have different pu values. Details will be explained later. Rule [3]
represents the causality for predicates. If all the related variables in
a statement instance e have correct states, the control dependence
pred is likely correct (i.e., the correct branch has been taken).
Computation Rules of the Backward Propagation Probabil-
ity pu. Fig. 4B presents part of the computing rules of pu (in Rule
[2]). The essence of these rules is to determine pu based on whether
the computation is a one-to-one or many-to-one mapping. Rule
[1TO1] specifies the computation rule for statements denoting one-
to-one mappings. In this case, pu is HIGH to indicate if the lhs is
correct, a rhs operand is determined to be correct when all other
rhs operands are correct (e.g., when z = x +y, z and x likely correct
indicates y likely correct). [MOD] specifies for a mod operation z
= x mod y, z and y being correct does not hint x is correct. This
is reflected by px = UNCERTAIN (0.5), which means there is no
evidence indicating the correctness of x . Intuitively, given a specific
y value (e.g., y = 10), there are many possible values of x that yield
the same z value (e.g., z = 1) by z = x mod y (e.g., x=11, 21, 31, ...).
Hence, x ’s correctness is unknown.

[AR] is for an attribute read. It means that y and x correct in-
dicates the attribute read o. f is likely correct (i.e., po .f = HIGH )
with o the object in x . On the other hand, if y and o. f correct, the
likelihood of x being correct depends on the number n of objects
that have the same f field and the same field valuev . It is computed
as ψ (n). Particularly, when n = 1, the probability is HIGH . If n is
large, the probability tends to be 0.5 (i.e., correctness is unknown).
The rule for attribute write is similar and hence elided.

[SR] specifies the rule for an element read of a collection, which
includes three uses, i , x , and x[i] and one definition y. The rule
means when y, i , and x[i] are correct, the likelihood of x correct,
px , depends on the number of collection objects that have value v
at indexvi ; when y, x[i], and x are correct, the likelihood of i being
correct, pi , depends on the number of indexes in the collection
object o that store the same value v; when y, x , and i are correct,
the array element is likely correct. We use po[vi ] instead of px [i]
because during inference, the random variable is associated with
the collection element o[vi ] instead of the symbol x[i].

[EQ] is the rule for equivalence check, which has two uses x and
y and a definition, namely, the branch outcome. It means that if x
and y are equivalent, the branch outcome and x correct indicates y
correct (i.e., py = HIGH ), and similarly the branch outcome and y
correct indicates x correct. Intuitively, equivalence relation denotes
a one-to-one mapping. For instance, assume x == 10 yielding true
is correct and 10 is correct, a faulty x cannot yield the correct
branch outcome. In contrast, [NEQ] indicates that if x and y are
inequivalent, the branch outcome and x being correct does not
suggesty correct. Intuitively, inequivalence indicates amany-to-one

A. Variable − to − Statement Constraints

Pe (pred ) ∧ Pe (def ) ∧
∧

u∈U ses (e )
Pe (u )

HIGH
−−−−−−→ P (inste ) [1]

Pe (pred ) ∧ ¬Pe (def ) ∧
∨

u∈U ses (e )
¬Pe (u )

HIGH
−−−−−−→ P (inste ) [2]

Pe (pred ) ∧ ¬Pe (def ) ∧
∧

u∈U ses (e )
Pe (u )

HIGH
−−−−−−→ ¬P (inste ) [3]

B. Program Structure Constraints

S (inste )
HIGH
←−−−−→ P (inste ) S (inste ) = 1 (spe ) [4]

spe =
1
2
× [ϕ1 (

|sl iceInFunc (e ) |
|f ullSl ice () |

)︸                          ︷︷                          ︸
1

+ϕ2 (
|instsNot InSlice (e ) |

|all Insts (e ) |
)︸                                 ︷︷                                 ︸

2

]

C. Naming Convention Constraints

N (inste )
HIGH
←−−−−→ P (inste ) N (inste ) = 1 (npe ) [5]

npe =
1
2
× [ϕ1 (simFunc (e ))︸                 ︷︷                 ︸

1

+ϕ1 (simStmt (e ))︸                 ︷︷                 ︸
2

]

Function Definitions:
ϕ1 (x ) = 0.5 − 0.5 × (2 × HIGH − 1) × x
ϕ2 (y ) = 0.5 + 0.5 × (2 × HIGH − 1) × y
sliceInFunc (e ) returns the instances in slice that belong to the function of e .
f ullSl ice () returns all the instances in the slice.
instsNot InSlice (e ) returns instances of the statement of e that are not in the slice.
all Insts (e ) returns all the instances of the statement of e .
simFunc (e ) calculates the similarity between the function name of e ’s statement

and the faulty output variable’s name.
simStmt (e ) returns the average similarity between each involved variable name

in e with the faulty output variable’s name.

Figure 5: Statement Instance Constraints.

mapping. For instance, assume x , 10 yielding true is correct and
10 is correct, there are many values of x that can yield the correct
branch outcome and hence we cannot gain any confidence about
the correctness of x . The rules for other comparative operations
(e.g., > and <) are similarly defined.

5.2 Statement Instance Constraint Generation
We generate three kinds of constraints for statement instances: (1)
variable-to-statement constraints modeling the causality between
variable probabilities and statement instance probabilities; (2) pro-
gram structure constraints modeling hints from program structure;
(3) naming convention constraints modeling hints from names. We
reason about statement instances instead of statements because
an instance of a faulty statement may not induce any faulty state
at all, for example, ‘x > 10’ being mistaken as ‘x >= 10’ does not
induce any faulty states for any x , 10. In this case, we consider
the instance as correct. Hence in this paper, we do not allow the
likelihood of an instance being correct/faulty to directly affect the
likelihood of another instance of the same statement.
Variable-to-Statement Constraints. Constraint [1] in Fig. 5A
denotes that if all the variables involved in a statement instance e ,
including the control dependence, the definition and all the uses are
correct, the instance is likely correct. Constraint [2] represents that
if the control dependence is correct, but the definition and at least
one use are faulty, the instance is likely correct. This is because the
root cause must happen before the current instance. Constraint [3]
denotes that when all uses are correct but the definition is faulty,
the statement instance is likely faulty (i.e., the root cause). We use
the posterior variable probabilities from the previous phase as the
prior probabilities of variables in this phase.
Program Structure Constraints. From program structure, we
can extract hints to enhance inference. Given an instance e of
statement s , we consider the following two kinds of hints from
program structure. First, at the function level, we focus on how
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many instances in the slice belong to the function of s . The larger the
number, the more suspicious e is, because the faulty output is more
likely composed in the function. Second, at the statement level, we
consider how many other executed instances of statement s are not
in the slice. Specifically, if s is executed many times but only a few of
them are included in the slice of the failure, the statement instance
is less likely faulty. For example, some low-level utility functions
(e.g., make_str() in the Fig. 1) are called many times at different
points and only a few of them are related to the failure. Statement
instances in these low level functions are unlikely suspicious.

Fig. 5B presents the program structure constraints whereS (inste )
asserts that instance e is correct from the program structure per-
spective. The prior probability spe of S (inste ) is computed by the
average of two parts. Part 1 computes the probability at the func-
tion level. If many instances in the function of e are included in the
slice, the probability tends to be LOW , denoting they are suspicious.
Otherwise, it tends to be 0.5. Part 2 computes the probability at the
statement level. If many instances of the statement of e are not in
the slice, the probability tends to be HIGH , suggesting correctness.
Otherwise, it tends to be 0.5.
Naming Convention Constraints. Given a faulty variable x and
an instance e of statement s , we collect two kinds of naming con-
vention hints. First, we measure how similar the function name of
statement s is to the name of faulty output variable x . The higher
the similarity, the more suspicious e is. Second, at the statement
level, we consider the similarity between the name of the faulty
output variable x with variable names in the statement s . When
the average similarity is high, the suspiciousness of e is high. For
example, in the example of Fig. 1, instances of line 16 are consid-
ered less suspicious than instances of line 11 because "url" is more
similar to { "purl_str", "purl"} than to {"s", "i"}.

Fig. 5C presents the naming convention constraints whereN (inste )
asserts that instance e is correct from the naming convention per-
spective. The computation of the prior probability npe of N (inste )
consists of two parts. Part 1 computes the probability from the
function level naming convention. Intuitively, if the similarity is
high, the probability approaches 1 − HIGH . Otherwise, the prob-
ability approaches 0.5. Part 2 computes the probability from the
statement level naming convention.

The computation of lexical similarities between strings is similar
to the one illustrated in Section 5.4 in our prior work [51]. We omit
the details due to the space limitation.

6 EVALUATION
We implement a prototype in Python for debugging Python pro-
grams. We choose Python as it has become one of the most popular
programming languages [7]. We aim to address the following re-
search questions in the evaluation.

RQ1: How effective and efficient is our approach in assisting
debugging real-world bugs?

RQ2: How does our tool compare to a recent interactive debug-
ging technique [24] that does not encode human intelligence?

RQ3: What is the impact of the threshold HIGH , which is the
only tunable parameter in our tool.

RQ4: What is the impact of the different kinds of statement
instance constraints?

RQ5:How can our tool improve human productivity in practice?
To answer RQ1-RQ4, we apply our technique to a set of real-

world bugs, as shown in Table 3 (columns 1-4). Our benchmarks
consist of two kinds of bugs. The first kind (I) includes 25 bugs
from 10 popular Python projects on GitHub and the second kind (II)
includes 10 algorithmic bugs posted on Stack Overflow. As shown
in column 3 of Table 3, some of the projects are among the largest
Python projects one can find on GitHub, with the largest having
over 54K LOC. The collected project bugs (I) also denote the typical
complexity level. We use the failure inducing inputs in the bug
reports. When collecting these bugs, we considered the diversity of
projects. They mainly fall into the following categories.

Fabric – remote deployment and administration application.
Requests and urllib3 - very popular HTTP libraries.
Simplejson - a widely used JSON encoding/decoding library.
Bottle, flask and web2py - widely used web application system

development frameworks.
Werkzeug - a popular WSGI utility library for Python.
Dateutil - an extension to the datetime module of Python.
Scrapy - a well known web crawler.
For algorithmic bugs (II), the programsmainly implement various

algorithms from Project Euler [5] and LeetCode [6]. Their issue
numbers on stackoverflow.com are shown in column 4.

Table 3 shows the summary of our experimental results. Columns
5-6 present the numbers of events and sliced events. Observe that
many slices are so large that manual inspection would be difficult.
The events for project bugs are smaller than we expected because
the failure inducing inputs in bug reports tend to be small as they
have gone through input reduction (e.g., using delta-debugging [8]).
This is very typical for Python bugs reported on GitHub. Columns
7-9 report the number of solved constraints by our tool. Columns 7
(Variable) and 8 (StmtInst) represent the numbers of solved vari-
able constraints and statement instance constraints, respectively.
Column 9 reports their total number.
Effectiveness and Efficiency (RQ1). To evaluate the effective-
ness of our tool, we set the threshold HIGH = 0.95 and debug the
benchmark programs following the recommendations suggested
by our tool. We count the interactions with the tool (i.e., the recom-
mended instances that we have to inspect and provide feedback)
till the root causes are located. Column 13 (PD) reports the number
of interactions, including the final root cause step. The results show
that our approach is highly effective. We only need to inspect a
small number of steps (on average 3 steps for project bugs and
5 for algorithmic bugs). For a few cases (e.g., fabric#166 and re-
quests#1462), our tool can directly report the root cause. Note that
this does not suggest the algorithmic bugs are more complex. In fact,
they are mostly loop intensive and hence their failure propagation
paths often involve many iterative steps. As a result, our tool may
require the user to provide feedback for multiple instances of the
same statement in different iterations.

Columns 10-12 present the tracing time, solving time and total
time, respectively. The solving time is the sum of all the inspection
rounds. The results show that our approach is highly efficient.
Especially, our tool can complete inferences in a second for most
cases. Note that tracing time is a one time cost for each failure.
Comparison withMicrobat [24] (RQ2). Since [24] does not sup-
port Python, we re-implemented it in Python for the comparison.
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Table 3: Summary of the Experiment Results
Benchmarks Trace Solved Constraints Time (sec) Inspected Steps

Projects/Algs. SLOC Issue# Events Sliced Events Variable StmtInst All Tracing Solving Total PD FD

I

Fabric 3061

882 6219 88 599 189 788 3.36 0.1 3.46 2 4
166 120 42 153 56 209 0.98 0.03 1.01 1 6
610 345 39 254 126 380 1.12 0.09 1.21 2 5
898 6199 80 271 126 397 3.34 0.06 3.4 1 10

Requests 10595

1462 4549 128 266 70 336 2.67 0.04 2.71 1 6
1711 4922 12 167 42 209 2.83 0.1 2.93 2 1
2613 8084 886 1009 406 1415 10.85 0.25 11.1 2 17
2638 7509 876 363 147 510 11.03 0.21 11.24 5 14
395 1912 49 509 182 691 1.26 0.23 1.49 2 6
1767 2047 652 7975 2303 10278 0.76 0.22 0.98 5 21
2638 7509 876 356 126 482 28.91 0.14 29.05 5 15
3017 895 32 220 56 276 0.76 0.12 0.88 3 2

simplejson 4104 81 434 164 633 189 822 0.16 0.17 0.33 3 5
85 683 174 1472 511 1983 0.25 0.34 0.59 5 10

Flask 2658 857 1684 23 36 21 57 0.81 0.03 0.84 1 2

bottle 2569 595 1138 481 3048 2457 5505 0.65 0.83 1.48 3 20
633 708 321 1020 742 1762 0.64 0.21 0.85 2 21

werkzeug 11009 99 2605 50 269 147 416 1.43 0.12 1.55 4 12

dateutil 3647 234 2093 152 240 70 310 0.95 0.12 1.07 4 8
229 1306 144 293 105 398 0.44 0.13 0.57 4 10

scrapy 11145 861 4211 861 7452 2128 9580 8.61 1.58 10.19 8 12
24 3970 1008 8190 3136 11326 9.61 2.14 11.75 5 14

web2py 54479 742 4030 34 102 56 158 17.77 0.08 17.85 3 7
1570 5531 94 145 77 222 21.89 0.04 21.93 2 8

urllib3 11659 143 997 126 1403 168 1571 4.63 0.06 4.69 4 9
Average 11493 - 3188 296 1440 533 1973 5.43 0.37 5.80 3 10

II

lcsubstr 19 41623560 400 236 255 77 332 0.08 0.07 0.15 2 5
happynum 17 30247583 112 68 198 105 303 0.04 0.16 0.2 5 7
quadratic 26 17681021 249968 2237 592 574 1166 43.14 0.19 43.33 4 20
primesum 17 17681021 8007 6883 1290 623 1913 1.75 0.4 2.15 3 40
triangular 21 9182462 7949 4540 2172 1687 3859 1.4 0.6 2 7 X
fibonaci 18 18794190 284 151 2521 2926 5447 0.07 0.88 0.95 11 X

lcollatzseq 15 20597369 56625 54192 2711 3080 5791 9.34 0.95 10.29 3 2
amicable 27 19318000 49780 4265 1241 245 1486 11.22 0.24 11.46 6 6
mergesort 30 18808105 1046 286 557 91 648 0.24 0.3 0.54 5 5
euclid 10 16567505 26 9 107 84 191 0.01 0.12 0.13 3 X
Average 20 - 37420 7287 1164 949 2114 6.73 0.39 7.12 5 -

We call the Python version ofMicrobat the PyMicrobat. We compare
the performance of the two by counting the number of inspected
steps before locating the root cause. To suppress noise (i.e., differ-
ences in human feedback), four of the authors debugged each case
using both tools independently. We then take the average of the
interaction numbers. To achieve fair comparison, our tool requests
the same kind of feedback from the developer asMicrobat, which is
to determine whether operands in a statement instance are correct.
Column 14 (FD) in Table 3 presents the results of PyMicrobat. The
results show that for most cases, the number of interactions needed
by our tool is much smaller than that by PyMicrobat. Observe that
PyMicrobat failed to locate three algorithmic bugs. The reason is
that PyMicrobat is strictly based on dynamic slicing, which may
miss root causes due to execution omission [31]. In contrast, our
tool can fuse additional debugging hints from multiple sources.
In requests#1711 and lcollatzseq, our tool requires one more step.
Further inspection shows that the two bugs have simple causality
so that uncertainty reasoning is not needed.
Impact of Threshold HIGH (RQ3). We study the impact of the
threshold HIGH using three settings, namely, 0.85, 0.90 and 0.95.
Fig. 6 presents the variation of the needed steps. Observe that the
impact of HIGH is small in most cases.
Impact of Constraints (RQ4).We only choose bugs of kind (I) as
our subjects as kind (II) bugs mostly do not have function struc-
tures and their variable names are almost meaningless. We evalu-
ate the impact of each kind of statement instance constraints by
three additional settings, namely, only variable-to-statement in-
stance constraints, variable-to-statement instance constraints with

program structure constraints, and variable-to-statement instance
constraints with naming convention constraints. Note that variable-
to-statement instance constraints are the basis in our model. Fig. 7
shows the variation of the needed steps. Observe that each kind
has positive contribution for most cases. The impacts of program
structure constraints and naming convention constraints on some
cases (e.g., fabric#610 and scrapy#861) are prominent.
User Study (RQ5). We conducted a user study. We selected four
well-known algorithmic problems from our benchmark and asked
the participants to debug the buggy programs. Table 4 presents the
descriptions of the selected bugs. We invited 16 graduate students
from the authors’ institute to participate the study. To avoid bias
caused by programming experience variation, for each program,
we randomly partition the students to two groups, one using our
tool and the other using the standard Python debugger pdb [3].

Table 5 presents the (human) debugging time comparison. The
shaded columns present the time of using our tool. Observe that
our tool achieves 34.03% speed up on average. To validate the per-
formance difference of the two groups, we introduce the null and
alternative hypotheses as follows.

H0: There is no significant performance difference between the
two groups.

H1: The performance difference between the two is significant.
We use the Wilcoxon signed rank test to evaluate the null hy-

potheses and if the p-value is less than 0.05, we will reject it. The last
row in Table 5 reports the p-value of each task. Observe that all of
them are less than 0.05, whichmeans the performance improvement
is significant.
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Figure 6: Impact of the Threshold HIGH .

Figure 7: Impact of Each Kind of Constraints.

7 RELATEDWORK
Automated debugging and fault localization techniques have been
extensively studied. Delta debugging [8–14] leverages a passing
execution closely resembling the failing execution as the reference,
and uses a sophisticated search algorithm to identify the minimal
state differences that trigger the failure. Despite its success, it may
be difficult to find a reference execution of high quality in practice.
Spectrum based fault localization [15–21] compares program spec-
tra (e.g., code coverage) between the failing and passing executions
to identify the most likely root cause. It is highly effective when
many runs are available. Statistical fault localization [22, 23] iso-
lates bugs by contrasting the instrumented predicates at particular
points. There are also various proposals on improving fault local-
ization and applying fault localization in different areas [33–44, 49].
Our approach is different. First, we assume that only a failing run
is available for debugging. Second, these techniques are mostly
deterministic and do not handle uncertainty like we do. We shift a
lot of decision makings from humans to machines.

Debugging techniques using a single run [24–29, 32] have been
proposed as well. For example, Lin et at. [24] developed a feedback-
based technique that prunes the search space. But the technique
does not reason about uncertainty and hence cannot make use of
uncertain hints, which are very useful according to our experiment.
Zhang et al. [29] prune dynamic slice with confidence. However,
their method of computing confidence is ad-hoc and they do not
support probabilistic inference. Many other techniques leverage
execution trace for debugging [26–28]. However, most of them do
not support human-like reasoning.

There are also techniques leveraging machine learning to locate
bugs [45–47]. Dietz et al. [45] trains a graphical model called the
Bernoulli graph model using passing traces to determine the most
likely faulty code position. Baah et al. [46] proposed probabilis-
tic dependence graph which estimates variable states and learns

Table 4: Debugging Tasks for User Study.
Algorithm Description Bug Causality
lcsubstr Identify the longest increasing sub-

string of a given string.
Indexes incorrectly computed.

quadratic Find the maximum number of
primes satisfying a quadratic for-
mula (Euler problem 27).

Some intermediate results are
not updated in iterations.

fibonaci Find the sum of the even terms of
the fibonaci series up to a certain
number.

Loop condition is incorrect.

mergesort Implement the merge sort for a
given number sequence.

The comparison operator is
wrong.

Table 5: Results of the User Study (Min).
Person\Task lcsubstr quadratic fibonaci mergesort

N1/Y1 11.56 6.37 33.1 16.32 15.03 14.55 10.54 12.5
N2/Y2 30.06 8.2 10.14 11.22 27 16.11 18.13 12.23
N3/Y3 10.3 5.29 21.5 10.58 13.31 11.81 15.04 14.32
N4/Y4 5.8 5.5 19.31 17.76 17.24 18.33 18.33 13.9
N5/Y5 2.85 6.96 10.45 14.4 12.45 14.78 20.78 15.61
N6/Y6 21.11 4.89 12.8 10.33 25.69 15.6 20.5 13.8
N7/Y7 23.11 7.36 27.45 14 34.46 13.28 30.5 11.44
N8/Y8 12.71 8.11 20.45 15.4 18.51 18.44 14.33 14.49

Avgerage 14.69 6.59 19.40 13.75 20.46 15.36 18.52 13.54
55.17% 29.12% 24.92% 26.91%

Overall 34.03%
P-Value 0.006 0.037 0.049 0.014

conditional dependencies from both passing and failing runs to
facilitate fault localization. Deng et al. [47] encodes the frequency
of execution in a hybrid graphical model named weighted system
dependency graph to prioritize heavily trafficked flows to facilitate
fault localization. Our technique is different. First, they require a
number of failing/passing runs to build the model while our tech-
nique only needs a single failing run. Second, these techniques learn
probabilities from multiple executions whereas our technique infer
posterior probabilities from prior distributions. Third, their model
is static, denoting a program, whereas our model is dynamic, de-
noting an execution. Fourth, our technique can leverage uncertain
hints such as those from structure and names.

8 CONCLUSION
We propose a probabilistic inference based debugging technique.
We model the debugging problem as two phases of probabilistic
inference: (1) inferring variable correctness/faultiness probabilities
and (2) inferring statement instance correctness/faultiness proba-
bilities. Our technique allows us to debug by leveraging various
hints from execution trace, program structure, variable names and
human feedback. The results show that our technique can identify
root causes of a set of real-world bugs in a few steps, much faster
than a recent proposal that does not encode human intelligence. It
also substantially improves human productivity.
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