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ABSTRACT
Modern Android malwares tend to use advanced techniques to
cover their malicious behaviors. They usually feature multi-staged,
condition-guarded and environment-specific payloads. An increas-
ing number of them utilize WebView, particularly the two-way
communications between Java and JavaScript, to evade detection
and analysis of existing techniques.We proposeDual-Force, a forced
execution technique which simultaneously forces both Java and
JavaScript code of WebView applications to execute along vari-
ous paths without requiring any environment setup or providing
any inputs manually. As such, the hidden payloads of WebView
malwares are forcefully exposed. The technique features a novel
execution model that allows forced execution to suppress excep-
tions and continue execution. Experimental results show that Dual-
Force precisely exposes malicious payload in 119 out of 150 Web-
View malwares. Compared to the state-of-the-art, Dual-Force can
expose 23% more malicious behaviors.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; • The-
ory of computation → Program analysis;
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1 INTRODUCTION
Nowadays, Android malware typically uses advanced techniques
to cover itsmalicious behaviors [32]. It usually featuresmulti-staged,
condition-guarded and environment-specific payloads. For instance,
a potentially harmful Android application (or app) only exhibits its
malicious payload when it passes integrity check and is executed
in a real device, with a targeting application running, during some
period, in specific countries. Besides, some applications are con-
trolled by remote command and control (C&C) servers, through
which hackers can control what kinds of attacks can be launched,
and when and where these attacks are going to happen. To make
things worse, an app may contain malicious payloads that are not
activated in the current version but could be enabled in newer ver-
sions. In this case, an arbitrary run of a potentially harmful appli-
cation is highly likely to be benign.

Besides, an increasing number of Android malware samples uti-
lize the WebView technique [12] to evade detection. WebView al-
lowsAndroid applications to displayweb contentswithin an app [8],
which is particularly useful when the data and layouts of the con-
tents are frequently updated from servers. The power of WebView
is magnified by enabling Java and JavaScript interoperability. How-
ever, WebView makes the behaviors of potentially harmful apps
more difficult to understand and reason. For example, some An-
droid malware uses WebView to overlay phishing pages on other
popular apps like banking apps to lure users to enter credentials
like passwords and then exfiltrate them to remote servers. Such at-
tacks bring a severe threat to privacy and property security.What’s
more, a malicious app can deliberately hide malicious payloads
deep in the two-way communications between Java and JavaScript.

Current Androidmalware detection techniques have limitations
in systematically dealing with malwares implemented using Web-
View. Static analysis [4, 6, 14, 21] cannot deal with dynamic fea-
tures, but dynamic DEX loading on Android is very common and
most JavaScript that runs on WebView is only known at runtime.
Dynamic analysis [3, 17, 20, 31, 35, 39, 41, 44], usually has dismal
performance when encountering apps with carefully designed and
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hidden malicious payloads, and the existence of WebView makes
it more difficult to analyse these malwares. Symbolic and concolic
analysis [16, 24, 26, 43] need to effectively model various aspects
of Android and the apps, such as intents and cross-language fea-
tures, which is highly challenging. It also suffers from potential
efficiency problems for large real-world applications.

In this paper, we propose Dual-Force, a forced execution tech-
nique which forces Java and JavaScript code to execute along paths
of interest for Android applicationswithout any environment setup
to expose malicious behaviors. Dual-Force monitors the execution
of an application from both the Android runtime perspective and
the JavaScript engine perspective. It systematically forces a small
set of instructions that could affect the execution path to have spe-
cific values, based on particular exploration strategies. When in-
puts are required for apps to run, we feed random values. Forcing
execution paths and providing random values likely cause excep-
tions. Dual-Force features a novel runtime that can suppress vari-
ous kinds of exceptions and allow the execution to proceed to ex-
pose behaviors hidden deep in the state space.

We evaluated Dual-Force on 150 Android malware samples ran-
domly obtained from VirusTotal, Koodous, and Contagio mobile
minidump. The results demonstrate that Dual-Force is capable of
exposing potentially harmful behaviors for 119malicious apps. Dual-
Force identifies 23% more malicious payloads that can hardly be
found by the state-of-the-art techniques. The malicious payloads
detected by Dual-Force include retrieving private personal infor-
mation, targeting reputed apps for credentials and intercepting SMS
messages.

Our main contributions are summarized as follows:
• We propose Dual-Force, a forced execution technique that

simultaneously forces Java and JavaScript code to execute
along various paths of interest to better understand behav-
iors of WebView applications.
• We develop a crash-free forced execution model that can re-

cover from exceptions properly for WebView applications.
• We identify many technical challenges of dealing withWeb-

View applications and propose techniques to address them,
e.g., supplying values to the executions on-demand.
• We have applied this technique to 150 WebView malwares.

The results show that Dual-Force can expose malicious be-
haviors for 119 samples, many of which utilize WebView to
hide or complicate their malicious payloads, and 23% of the
exposed behaviors can hardly be found by other approaches.

2 BACKGROUND
2.1 Entry Points
Each application has entry points for the system or a user to enter.
The entry points can be divided into two categories. The first cat-
egory refers to app components, which are building blocks of an
Android app. To be launched by the Android system, a component
must have itself registered in the Android manifest file Android-
Manifest.xml. There are four different types of app components: ac-
tivities, services, broadcast receivers and content providers [7]. Ac-
tivities, services, and broadcast receivers are activated by an asyn-
chronous message called an intent [10]. Intents bind individual
components to each other at runtime. The second category refers

to Java methods annotated with @JavascriptInterface that can be
invoked by JavaScript running in WebView [8].

2.2 WebView
WebView is a fully functional web browser that can be integrated
into Android applications. Android applications utilize WebView
to display web contents within the app. This technique offers ex-
cellent flexibility for developers as well as simplifies user interface
(UI) design. Developers can put rich contents in web pages without
using widgets provided by the Android system.

To make this technique more powerful, Android also allowsWe-
bView to run JavaScript. Java code and JavaScript code can in-
voke each other at runtime: 1) Java calls JavaScript through the
invocation to the Android API, such asWebView.loadUrl. The argu-
ments of loadUrl can be a web page containing JavaScript scripts
or a dynamically generated JavaScript string literal starting with
“javascript:”; 2) JavaScript code invokes Java methods annotated
with @JavascriptInterface. Note that Java methods can be dynam-
ically attached with this annotation by invoking the API method
WebView.addJavascriptInterface. With WebView, Android apps can
achieve cross-language interoperability between Java and JavaScript.

2.3 Execution
An Android app starts its execution by initiating one of its com-
ponents. Typically, clicking the app icon in the top-level appli-
cation launcher triggers its main activity. Besides, a component
can be invoked programmatically by other components from the
same app and other apps through inter-component communica-
tions (ICC) [11, 22, 27].

WebView starts as a demon service when the Android system
boots up. It starts working when an app calls the WebView API at
some point. JavaScript code is eventually passed to the back-end
JavaScript engine, in which it is interpreted and executed asyn-
chronously. JavaScript may call Java methods in turn in a synchro-
nous way.

3 MOTIVATING EXAMPLE
In this section, we use aWebViewmalware sample to illustrate the
challenges of exposing its payload effectively and how we address
the challenges using our forced execution approach.

In this example, the malicious app pretends to be the banking
app of Sberbank, a reputable Russian bank. From Figure 1(a) we
can see that the fake app (the second one) looks the same as the of-
ficial one. Among all its malicious behaviors, the most dangerous
feature of the malware is the capability of targeting other apps via
overlayWebView pages, which lures users to enter their private in-
formation and sends it to the remote servers. Naturally, the official
app is one of the targets, as specified in a configurable preference
file named interceptor.xml in Figure 2.

The malicious app attacks the official banking app whose pack-
age name is “ru.sberbankmobile” by starting the phishing pages
that are stored locally. When the official app is launched, the phish-
ing pages are displayed right over the official banking app, as shown
in Figure 1(b). When the user clicks the buttons on the phishing
pages, another two phishing pages are displayed asking the user to
enter his/her username, password and bank account information.
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(a) Both apps installed (b) Fake app overlaying (c) Register phishing page

Figure 1: Sreenshots showing how the attack is launched us-
ing overlay phishing pages.

1 <?xml version=”1.0” encoding=”UTF-8” standalone=”yes” ?>
2 <map>
3 <string name=”ru.sberbankmobile”>
4 javascript:

MeSetting.startPage(”http://android_asset/2/index.html”);
5 </string>
6 </map>

Figure 2: An instance of interceptor.xml that would trigger
the overlay attacks of the malicious app.

The register phishing page asking for bank account information
is shown in Figure 1(c). When the user enters his/her credentials
and tries to login/register, the private information is uploaded to a
remote C&C server. This leak is a direct threat to privacy security
and property safety.

To show the logic of this attack, we reverse-engineered the code
from themalicious app and simplify it by removing irrelevant state-
ments and exception handlers, as well as renaming variable names
for readability. The simplified code is shown in Figure 3.

The attack is initially launched by the method doInBackground
of the class MasterInterceptor, which repeatedly reads the shared
preference file interceptor.xml (line 5). It parses the file and stores
the entries in a map, where each entry is a mapping between a
package name and a string. If the map is empty, which means
there are no targeted apps, the loop breaks and starts over (lines
6-7). Otherwise, it tries to get the currently running app in the
foreground (line 9). After that, the map is iterated to check if it
contains a key that equals to the name of the running app (lines
10-13). If so, it creates an intent of the class GlobeCode and puts ex-
tra staff including the string it reads from the preference file into
the intent (lines 14-16). Then the intent is started as a service at
line 18. When the intent is started, the method onStartCommand
of the class GlobeCode begins to run. It first retrieves the string
from the “content” field (line 26) andmakes all the methods in class
MeSetting callable from JavaScript (lines 27-28). It then checks if
the string starts with “javascript:”. If so, the JavaScript code is then
called in lines 31-32.

The JavaScript code shown in Figure 3 is embedded in the login
phishing web pages. It first checks if the username and password

fields are correctly filled in (lines 47-48). If either field has a length
less than five, then the HTML form cannot be submitted (line 51).
It then registers a callback function for the submit button for sub-
mitting the form (lines 54-60). Finally, it changes the default action
of the form to a uniform resource identifier (URI) at lines 61-62.
The URI is constructed by string concatenation, where the domain
name is retrieved by calling a Java method MeSetting.getDomain,
which returns the domain name that is stored in the Android man-
ifest file (lines 37-43). Note that all methods in the class MeSetting
are designed to be callable from JavaScript, as shown in lines 27-28,
where the method addJavasriptInterface is called for an instance of
class MeSetting.

This example poses challenges for traditional and the state-of-
the-art analyses. Static analysis cannot expose the complete logic
behind the malicious behavior since it is unaware of the existence
of the JavaScript code (lines 46-62). Dynamic analysis is unable
to find the overlay payload unless the target app specified by the
preference file is indeed running in the foreground (line 13). For
instance, the state-of-the-art work [31], which proposes a targeted
dynamic fuzzing framework that combines an extensive number
of hybrid techniques, is unlikely to generate an environment that
triggers the payload because it has to make the targeted app run in
the foreground. It also needs to fill in the login information with
two strings whose lengths are bigger than five and then click the
submit button. Symbolic or concolic analysis needs to model files
(line 5), intents (line 16) and cross-language communications (lines
31, 32 and 61), which is very challenging.

Dual-Force deals with this example by force-executing the app
on bothAndroid andWebView.The basic idea is to forcefully switch
the outcomes of a small number of branch predicates. Choosing
which branch outcomes to be switched depends on specific explo-
ration strategies. For example, if a branch condition is evaluated
to be the same value for consecutive five times, then we switch
its outcome. Because of space limitation, here we omit the branch
switchings that do not produce useful information. Suppose that
we are analyzing the behavior of the malicious app.Then it is prob-
ably always running in the foreground. Consequently, the branch
outcome at line 13 is always false for the first five executions, be-
cause the package name of the running app does not match the
string“ru.sberbankmobile”. Then Dual-Force switches the branch
outcome to true, which makes the app run into the method Globe-
Code.onStartCommand through inter-component communications.
In thismethod, the phishing pages are displayed byWebView (lines
31-32), where the JavaScript code is going to be executed.The user-
name and the password fields on the phishing pages are initially
empty, and we do not fill them in manually. As a result, the branch
condition at lines 47-48 always resolves to be false for the first
five executions, making the form unable to be submitted (line 51).
Dual-Force then switches the outcome to true to make the form en-
abled (line 49). Note that the function SBank is triggered by timeout
events (not shown here in the code though) and the anonymous
function (lines 54-60) is triggered by clicking events on a button.
We force them to run after the web page is loaded. Consequently,
an overlay phishing payload is successfully exposed using Dual-
Force, by switching one branch outcome for Java on Android (box
1) and another for JavaScript on WebView (box 3).
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 // Java code
 1 class MasterInterceptor {
 2  protected Object doInBackground(Object... paramVarArgs) {
 3    for (;;) {
 4      Thread.sleep(500L);
 5      Map localMap = getSharedPreferences("interceptor", 0).getAll();
 6      if (localMap.size() <= 0)
 7        break;
 8      String runningApp;
 9      runningApp = getActivePackagesCompat();
10      Iterator iter = localMap.keySet().iterator();
11      while (iter.hasNext()) {
12        String str = iter.next();
13        if (str.equals(runningApp)) {    
14          Intent localIntent = new Intent(getApplicationContext(), 
15                                          GlobalCode.class);
16          localIntent.putExtra("content", localMap.get(str));
17          ...
18          MasterInterceptor.this.startService(localIntent);
19        }}}}
20 }
21 class GlobeCode {
22  public int onStartCommand(Intent paramIntent, /*...*/) {
23    if (paramIntent != null) {
24      Object localObject = paramIntent.getExtras();
25      if (localObject != null) {
26        String content = getexstras((Bundle)localObject, "content");
27        localWebView.addJavascriptInterface(
28            new MeSetting(getApplicationContext()), "MeSetting");
29        if (content.substring(0, 11).contains("javascript:")) {
30          
31            localWebView.loadData("<script>" + paramIntent.substring(11) 
32              + "</script>", "text/html; charset=UTF-8", null);
33        }}}}
34 }

1

// JavaScript interfaces: Java methods callable from JavaScript
35 public class MeSetting {
36  ...
37  public String getDomain(){
38    String str = "";
39    ...
40    str = localApplicationInfo.metaData.getString("domain");
41    ...
42    return str;
43  }
44  ...
45 }

// JavaScript code
   <script>
46 function SBank() {
47   if ($('#sbol-login').val().length >= 5 && 
48       $('#sbol-password').val().length >= 5) {
49     $('#send-sbol').prop("disabled", false);
50   } else {
51     $('#send-sbol').prop("disabled", true);
52   }
53 };
54 $('#send-sbol').click(function() {
55   $('#myformsbol1').fadeOut(1000, function() {
56     $('#error2').fadeIn(500).delay(100, function() {
57       document.myformsbol1.submit();
58     });
59   });
60 });
61 document.myformsbol1.action = "http://"+MeSetting.getDomain()+
62                               "/api/indata.php?type=SBankFull";
   </script>

2 4

3

Figure 3: The simplified code that shows the logic behind the overlaying attack.

Finally, Dual-Force produces an execution path annotated with
the following information: 1) the switched branches (boxes 1 and
3), 2) the suppressed exceptions (none in this case), and 3) the val-
ues fed to the execution (none in this case). Also, the two-way com-
munications between Java and JavaScript are also recorded, e.g.,
the invocations to loadData (box 2) and the JavaScript interfaces
(box 4), as well as their arguments. Similar to existing techniques
that expose hidden payloads in malware analysis [5, 15], human
domain knowledge is needed to determine if a specific execution
is malicious. Essentially, the value of Dual-Force lies in producing
a (hidden) behavior report for a (potentially malicious) WebView
app, which can hardly be generated by other approaches.

4 OVERVIEW
Figure 4 illustrates the workflow of Dual-Force. Dual-Force takes
an Android application package as the input, which is a zip file con-
taining anAndroidmanifest file, one ormoreDEX executables, and
other resources. To be analyzed, these contents are extracted first.
Then Dual-Force performs a static analysis on the Android mani-
fest file as well as DEX files and instruments the DEX executables
with forced execution semantics. Note that we add forced execu-
tion semantics to JavaScript by hacking Chromium, the back-end
of WebView, instead of instrumentation. One important reason is
that JavaScript code is highly dynamic and it may only be known at
runtime. After that, the static analysis results, instrumented DEX
and JavaScript code are fed into the forced execution engine, which
forces both Java and JavaScript code of WebView applications to
execute along different paths to expose malwares.

4.1 Static Analysis
The static analysis engine aims to acquire the following informa-
tion of aWebView app for the forced execution engine, namely, en-
try points, control flow graphs (CFGs) and call graphs (CGs), and
locations where Java and JavaScript interact.

Entry points. We obtain all the registered entry points from
AndroidManifest.xml where they are declared and then relate them
to the corresponding classes.

CFGs and CGs. We first generate CFGs and CGs based on the
extracted files from the package and then update them incremen-
tally and iteratively with the dynamic results of the forced execu-
tion engine.

Locationswhere Java and JavaScript interoperate. Formost
cases, the values that are supplied to the engine are merely to allow
the execution to proceed instead of driving the execution along dif-
ferent paths, except for strings. String values are special because
they can be JavaScript code. If we feed arbitrary strings to Web-
View, we possibly cause fatal exceptions, not to mention exposing
WebView-related malicious payloads. And thus we use static anal-
ysis to find all the locations where an app is potentially asking for
JavaScript code. Such locations include the following.
• Methods that are annotated with @JavascriptInterface.
• Statements that invoke methods of the class WebView, such

as addJavaScriptInterface, setJavascriptEnabled, loadUrl, load-
Data, and so on.
• Statements that invoke string comparison methods whose

arguments contain “http://”, “file:///” or “javascript:”.
These locations are identified for further use at runtime. When

the forced execution engine finds that string types are required by
an app to continue execution, it checks whether or not the app
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Figure 4: Overview of Dual-Force’s workflow.

is asking for JavaScript code according to the analysis results on
such locations. If so, we synthesize JavaScript code and feed it to
the app. Otherwise, a normal string is sufficient.

4.2 Instrumentation
We instrument the DEX executables to achieve the following pur-
poses at runtime.

Adding forced execution semantics. We add statements to
log whether a branch is taken and the frequency of a branch being
taken. Such information is used by the forced execution engine to
decide what branches ought to be explored.

Injecting a top-level exception handler. Such a handler is
used to record the exceptions raised at runtime, which helps the
forced execution engine to suppress them so that the execution
can continue.

Monitoring dynamic class loading. Dynamic DEX executa-
bles are loaded by a set of class loaders.We instrument such loaders
to obtain the dynamic DEX files and then additionally instrument
new dynamic DEX files to understand their behaviors.

4.3 Forced Execution Engine
The forced execution engine shown in Figure 4 is the key part of
Dual-Force. It consists of two components:
• An execution model that forcesWebView applications to ex-

ecute along various paths of interest in a crash-free manner,
which will be introduced in Section 5.
• A path exploration algorithm that steers forced execution

to paths of interest, according to specific exploration strate-
gies, which will be introduced in Section 6.

The forced execution engine runs iteratively until an app is con-
sidered to be sufficiently explored by the path exploration algo-
rithm, according to specific criteria. It forces both Java on Android
and JavaScript on WebView to run. It also deals with the interac-
tion between two running environments.

5 CRASH-FREE EXECUTION MODEL
The essence of forced execution is an execution model that drives
an app to execute along different paths, together with the ability

to recover from exceptions and continue execution. The idea of
forced execution is to make an app to execute along various paths
forcefully by switching the branch outcomes. However, forced exe-
cution tends to raise exceptions as it may get into infeasible states.
While prior works on forced execution have shown that such fea-
sibility violations are in limited scale and do not incur problems
in practice for malware analysis [5, 15, 18, 29], an execution model
that can suppress WebView app related exceptions is critical. Dual-
Force provides such a crash-free executionmodel from two aspects:
the Android runtime and the WebView environment.

5.1 Android Runtime
Thecrash-free executionmodel onAndroid virtualmachinesmainly
deals with Java unchecked exceptions which are not typically han-
dled by the app. Checked exceptions are supposed to be dealt with
by the exception handlers of the app, and we let them remain what
they are. When an unchecked exception is thrown, the app is typi-
cally terminated by Android. We use a top-level exception handler
to deal with the exceptions that are not caught by the app. Before
the app is killed by the system, this handler attempts to collect in-
formation like the origins of the exceptions and the stack traces.
When an exception is caught, Dual-Force analyzes the causes of
the exception and tries to recover the execution. Note that, once
the global exception handler catches an exception, the app has lost
the control of the current execution. We recover the execution by
restarting a new execution that is the same as the current one.

Algorithm 1 describes how we recover executions from excep-
tions. For a stack trace ST and the last switched branch lsb, we first
get the locations where they are initially thrown at line 2, and try
to suppress the exceptions based on the rules described in Table 1
(line 3). Then we restart the execution at line 4. But these actions
do not guarantee that the exceptions are properly suppressed. Sub-
sequent exceptions may follow in the following executions. We set
a threshold maxEx to limit the max number of exceptions we deal
with for one switched branch. Then we repeat the above steps un-
til no exceptions are thrown, or the threshold is reached. If more
than maxEx exceptions are raised, we first locate the method in-
vocation in ST that follows lsb in the same method (lines 7-11),
which is the root method that causes too many exceptions. Then
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we replace it with a simple method which has the same return type
as the original one (line 12). Table 2 shows the rules to construct
such a method. Finally, the recovery is completed by restarting the
execution at line 13.

Algorithm 1 Exception Recovery Algorithm
Inputs: ST - stack trace of the exception; exec - current execution; lsb - the last
switched branch;maxEx - max number of exceptions we deal with for one branch
switch

1: while ST , ∅ ∧maxEx > 0 do
2: loc← code location of ST.pop()
3: Patch the code at loc according to the rules in Table 1
4: ST← restart(exec)
5: maxEx← maxEx−1
6: end while
7: while ST , ∅ do
8: m← null
9: trace← ST.pop()

10: if trace follows lsb in the same method then
11: m← trace.method()
12: Patch m according to the rules in Table 2
13: restart(exec)
14: break
15: end if
16: end while

Table 1: Unchecked Exception Handling Rules for Java

Exception Type Action
ArithmeticException Replace the arithmetic computation with a random number
ArrayStoreException Replace the instance to be stored with a constructed one
ClassCastException Replace the instance to be casted with a constructed one
IllegalArgumentException Replace the argument with a value of specific values
IndexOutOfBoundsException Replace the index value with a small positive integral value
NegativeArraySizeException Replace the negative with with its absolute value
NullPointerException Replace the reference with a constructed instance
NumberFormatException Replace the conversion with a random number

Table 2: Method Generation Rules for Java

Return Type Generation
Numeric types Randomized
Normal strings Randomized
JavaScript strings Synthesized
Non-recognizable types Constructed via available constructors

Table 1 shows how we deal with the common unchecked ex-
ceptions for Java at the locations where they are initially thrown.
For example, we suppress number related exceptions by supply-
ing numeric values, and for reference or type related exceptions,
we suppress them by constructing objects of specific types. Ta-
ble 2 shows the rules for generating simple methods to replace the
original ones. For primitive types and normal string values, the
method chooses among all the candidates and return one of them.
For JavaScript types, we generate JavaScript code that calls Java
methods annotated as JavaScript interfaces.

The synthesis of JavaScript code is based on the results pro-
duced by static analysis. It works as follows. First, we identify all
the Java methods that serve as JavaScript interfaces. Then, for a

code location, we generate a piece of JavaScript code that invokes
all the Java methods that are potentially callable from JavaScript.
These include the methods that are statically annotated, as well
as the ones that are dynamically annotated by calling the method
WebView.addJavaScriptInterface. The argument values that are pro-
vided to the calls from JavaScript to Java are randomly generated.
Note that we only synthesize JavaScript code that is used to trigger
Java methods with the @JavascriptInterface annotation.

For types that are not recognized, we create an instance of it
through one of its constructors. We preferentially choose default
constructors and those whose parameters are primitive types or
other recognized types. The arguments that are used to create the
instance are randomly fed.

5.2 WebView
WebView is indeed a fully functional browser without the UI frame,
which hasmany features including networking, rendering and run-
ning JavaScript. We address two challenges for forced execution
on WebView regarding JavaScript. One is to deal with web page
related operations, whereas the other is to handle JavaScript ex-
ceptions.

InWebView, JavaScript code can manipulate web pages, such as
accessing DOM (Document Object Model) objects and registering
callbacks for events. The most common scenarios are to access the
(DOM) elements and check if values of certain HTML input con-
trols have the correct formats. For example, phishing pages that
lure users to enter their credentials are likely to check if the text in-
puts for bank account numbers are correctly filled. JavaScript code
may try to access a DOM element that does not exist. To deal with
cases that JavaScript tries to accessmissingDOMelements, we first
find all the available DOM elements in the current web page and
put them into different categories, such as input controls, select
controls, and labels. When the access to a missing DOM element
happens, we identify its category by checking what operations are
done on it or what fields are to be fetched. Then we randomly se-
lect one object from all the objects in the category and replace the
missing DOM element with this object. If there is no object in the
category, we generate a DOM element of its category and add it to
the DOM tree of the web page.

JavaScript code contained in a web page often acts as callback
functions that are only executedwhen specific events are triggered.
For example, a click on a button triggers the callback function reg-
istered on the clicking event of the button. When WebView loads
a web page containing several pieces of JavaScript code, most of
themwill not run until specific events are triggered.We force these
JavaScript functions to run by calling them after the page is loaded.
To be specific, they are called in the callback function correspond-
ing to the event window.onload of the web page.

Another aspect of the forced execution on WebView is the abil-
ity to recover from JavaScript exceptions. The exceptions raised
in WebView come from two places: first, the forced execution on
JavaScript; second, the synthesis of JavaScript code. As mentioned
before, sometimes we feed synthesized JavaScript code to Web-
View to make executions continue. Since the combination only
takes syntaxes rather than semantics into consideration, JavaScript
code can potentially contain exceptions. A JavaScript engine will
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throw an exception if an error occurs. For example, exceptions oc-
cur when a script or a function attempts to read a property that
does not exist. Note that, JavaScript does not distinguish between
exceptions and errors explicitly. They only differ in naming con-
vention: errors are thrown by JavaScript engines while exceptions
are thrown by developers. We do not distinguish between these
two terms in this paper.

All the JavaScript code fed to WebView is embedded in web
pages, which may contain only JavaScript code. We register a top-
level exception handler to the window.onerror, which reports the
exception message, the script source, line and column numbers, as
well as the error object. We then recover from the exception and
continue the execution accordingly.

We handle JavaScript exceptions according to the rules shown
in Table 3.The name of SyntaxError is self-explanatory. We replace
the JavaScript code containing syntax errors with a synthesized
one that calls the available JavaScript interfaces. ReferenceError oc-
curs when an unknown variable is referenced, or a right-hand-side
value is assigned. To deal with this, we collect all the references in
the JavaScript function and then replace the invalid reference with
a random one from all the available references. If none exists, we
create one for it. RangeError is handled by replacing the index with
a smaller positive integral value. TypeError is coped with by replac-
ing the object with another one in the same scope whose prototype
has certain fields. If no such object exists, we create one for it. URI-
Error indicates that there is something wrong with the URI value.
We prepare a set of URI values to replace the problematic ones.

Table 3: Exception Handling Rules for JavaScript

Exception Type Action
SyntaxError Synthesize a new piece of JavaScript code
ReferenceError Replace the reference with a reference candidate
RangeError Replace index with a small positive integral value
TypeError Replace type with a type candidate
URIError Replace the URI values with one of prepared ones

6 PATH EXPLORATION
Dual-Force needs a path exploration algorithm that directs an app
to execute towards specific parts of interest and to expose hidden
behaviors. In this section, we introduce the path exploration algo-
rithm and policies of Dual-Force.

6.1 Algorithm
Algorithm 2 describes a general worklist algorithm that produces
new execution paths that are to be explored according to previous
executions. The worklist stores a list of switches indicating which
branch outcomes should be switched for path exploration. Note
that Dual-Force only forcefully changes the branch outcome of a
small set of predicate instances. It lets the other predicate instances
remain untouched.

The input of this algorithm is the set of all the entry points of
a WebView application. For each entry point entry of the app, the
worklist is a singleton set with a null sequence representing an exe-
cution without forcefully switching any predicate (line 2). It means
that when an entry point of an app is executed for the first time,
the algorithm allows the execution to proceed naturally. Line 8 is

Algorithm 2 Path Exploration Algorithm
Inputs: EP - the set of entry points of a WebView app
Definitions: switches - a sequence of switched predicates by a forced execu-

tion, e.g., 1·3·5 means that the 1st, 3rd, and 5th predicates are
switched
Ex - a set of pairs, where the first element of the pair is an entry
point and the second element is a set of switches that has been
executed
WL - a worklist of switches to be executed
exec - a concrete execution, denoted by a sequence of
pairs that maps predicates to branch outcomes, e.g.,
(1,true)·(2,false)·(3,true) means that the execution has
three predicates, the 1st takes true branch, the 2nd takes false
branch, and 3rd takes true branch

1: for each entry ∈ EP do
2: WL← {nil}
3: Ex.first← entry
4: Ex.second← null
5: while WL , ∅ do
6: switches← WL.pop()
7: Ex.second← Ex.second ∪ switches
8: exec←forceExecute(entry,switches)
9: t← the last integer in switches

10: exec← remove the first t elements in exec
11: for each (p,b) ∈ exec do
12: if strategy(p,b) then
13: WL← WL ∪ switches · t
14: end if
15: t← t+ 1
16: end for
17: end while
18: end for

where forced execution is done by the function forceExecute. The
app is forced to run from the current entry with switched branch
outcomes. Then in lines 9-16, we try to determine if it would be
of interest to further switch more predicate instances. Lines 9-10
compute the sequence of predicate instances eligible for switching.
Note that it cannot be a predicate before the last switched predicate
specified in switches as switching such a predicate may change
the control flow such that the specification in switches becomes
invalid. In lines 11-16, for each eligible predicate and its current
branch outcome, we query the function strategy which will be in-
troduced in Section 6.2, to determine if we should further switch
it to generate a new forced execution. If so, we add it to the work-
list. Note that in each new forced execution, we essentially switch
one more predicate. The algorithm is terminated there is no more
paths execute, which indicates that there is no space of interest to
explore.

6.2 Exploration Strategies
There exist many exploration strategies. However, each of them
has specific advantages over others for different scenarios. A suit-
able exploration strategy is crucial for inspecting WebView apps.
Herewe introduce three strategieswe adopted for Dual-Force, which
correspond to three different implementations for the function strat-
egy introduced in Algorithm 2.
• Branch-coverage-based exploration.This exploration strategy

is based on one observation on the theory of information
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entropy [38] that the less a branch is executed before, the
more likely uncovered payloads can be discovered by run-
ning into it. This strategy proves to be effective in test case
generations through symbolic execution [23]. In this strat-
egy, forced execution is preferentially steered to less trav-
eled branches.
• Cross-language-interoperation-directed exploration.This strat-

egy regards the cross-language interoperability nature of
WebView malware as the main factor that would lead to
deeply concealed payloads. In this strategy, forced execu-
tion on Java is preferentially steered to code locations that
contain WebView-related operations, as described in Sec-
tion 4.1.
• Hybrid exploration. This strategy takes both branch cover-

age and cross-language interoperation into consideration.

7 IMPLEMENTATION AND EVALUATION
The forced execution model for Android runtime is implemented
using Soot [36], FlowDroid [4] and Xposed [34]. Soot is used to in-
strument the DEX executables of the application to switch branch
outcomes, record execution paths, add top-level exception handlers,
and monitor dynamic DEX loading. FlowDroid is used to perform
static analysis and compute the CGs and CFGs of the apps. Xposed
is used to dynamically intercept method calls in Java. For example,
we can use it to invoke a simpler method instead of a complicated
one to suppress exceptions.

Besides, forced execution on WebView is achieved by hacking
Chromium, the back-end of WebView on Android L (5.0) and later
versions, where WebView has moved to an APK so it can be up-
dated separately to the Android platform [9, 13]. We modify the
JavaScript engine to make it forcefully switch branch outcomes as
needed. We also deal with all the problems that may be raised by
forced execution in WebView, e.g., exception handling.

We evaluate the effectiveness of Dual-Force by applying it to
150 Android malware samples. Our evaluation tries to answer the
following research questions.
• How effective is Dual-Force at exposing malicious payloads

inWebView applications, compared with other approaches?
• How efficient is Dual-Force?

7.1 Experimental Setup
We randomly collected 150 WebView malware samples from on-
line malware databases including VirusTotal [37], Koodous [19]
and Contagio mobile minidump [28]. We conduct the experiments
on a PC with an Intel Core i7-4790 (3.6G Hz) CPU and 16 GB RAM.
The PC runs an emulator on which these Android malware sam-
ples are evaluated.

7.2 Effectiveness
Table 4 shows the basic results of Dual-Forcewith the hybrid explo-
ration strategy and maxEx = 5. We can see that only 21.3% of the
WebView malwares show their payloads when they are launched
by starting their main activities. Moremalwares (46.7% of them) ex-
pose their malicious payloads by starting the main activities and
triggering random events. With Dual-Force, we can expose at least
one harmful behavior in 119 out of 150 (79.3%)WebViewmalwares.

This table also shows the minimum, average, and maximum results
for one app. On average, 4.8 malicious behaviors are exposed tak-
ing 35.8 executions for one app. Dual-Force uncovers at most 16
malicious behaviors and takes up to 98 executions to run an app.
Note that human domain knowledge is needed here to determine
if a specific run is malicious. It is possible to use other approaches
(e.g., rule-based filters) to help domain experts to simplify this pro-
cess, which is not the focus of this work though.

Table 4: Basic Results

Approach

Launch Launch & Dual-Force (hybrid,
Trigger with maxEx = 5)

Exposures of malicious apps 21.3% 46.7% 79.3%
Statistics per app (min/avg/max)
- # Malicious payloads 0/0.6/1 0/1.2/5 0/4.8/16
- # Executions 1/3.1/7 3/13.1/22 9/35.8/98

As Figure 5 illustrates, among all the 150 WebView malwares,
121 of them contain at least one invocation from Java to JavaScript
and 78 of them contain at least on invocation from JavaScript to
Java. 66 samples use the two-way communications between Java
and JavaScript at least once. 133 samples of them involve the cross-
language interoperation at least once. Only 17 of them make use
of WebView without exploiting its cross-language features.
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Figure 5: Cross-language interoperation of the samples.

Table 5 demonstrates that the JavaScript interfaces callable from
JavaScript code are typically sensitive APIs. Many of the Android
system functionalities, such as sending SMS messages and getting
device information, are exposed to JavaScript code, making sensi-
tive information easy to be leaked. It also makes it more difficult
to understand howmalicious payloads inWebViewmalware work.
Of all the JavaScript interfaces, only 31.3% are called by other Java
methods, and the rest 68.7% are exclusively called by JavaScript
code. It can be inferred that if we merely look at the call graphs of
Java code, there are no ingoing edges to the methods that are only
called by JavaScript. As such, a static analysis is likely to overlook
many WebView-related malicious attacks.

721



Dual-Force: Understanding WebView Malware via Cross-Language Forced Execution ASE ’18, September 3–7, 2018, Montpellier, France

Table 5: Top 10 Java functionalities called by JavaScript

Functionality Occurrence
Sending SMS messages 70.7%
Getting IMEI 68.7%
Getting device name 59.3%
Getting phone number 56.0%
Intercepting SMS messages 51.3%
Reading private files 50.0%
Getting SDK versions 46.7%
Obtaining installed packages 45.3%
Running JavaScript 44.0%
Judging if running on an emulator 41.3%

We also compare the analysis results of Dual-Force with two
malware databases: VirusTotal and Koodous, both of which are
equipped with multiple detection engines and behavior analysis
functionalities: Droidy for VirusTotal and Droidbox for Koodous.

The overall comparison is shown in Figure 6. On average, Virus-
Total, Koodous, and Dual-Force expose 3.9, 3.3, and 4.8 malicious
payloads for one app respectively, using the hybrid exploration
introduced in Section 6.2. Dual-Force exposes roughly 23% more
malicious payloads than VirusTotal and 41% more than Koodous.
Note that, this result is calculated on 150WebView samples instead
of 119 ones that contain at least one malicious behavior exposed
by Dual-Force. The results show that Dual-Force has prominent
advantages in uncovering malicious payloads of WebView apps.
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Figure 6: Overall comparison with Droidy and Droidbox.

Among all the undiscoveredmaliciousness byDroidy andDroid-
box, most of them are WebView-related payloads. They are com-
plicated by the interaction between Android and WebView, two
different running environments. Droidy and Droidbox can hardly
trigger carefully designed and deeply concealed actions. Even such
a behavior is triggered, these approaches cannot obtain a complete
execution trace for the action because they lack the capability of
dealing with the cross-language features. Consequently, they usu-
ally fail to find the attacks and expose the logic behind the attacks,
making such payloads evade analysis and detection successfully.
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Figure 7: Comparison among three exploration strategies.

Figure 7 shows the effectiveness of three different exploration
strategies introduced in Section 6.2.We can see that branch-coverage-
based strategy is overall better the cross-language-interoperation-
directed one. However, the latter is better at discoveringWebView-
related payloads, which is intuitive because it is designed to be so.
Hybrid exploration strategy that takes both factors into consider-
ation is an optimal choice here in terms of exposing payloads in
Android WebView malwares, as illustrated in Figure 7.

In Table 6, we list the top ten WebView malware samples with
the most malicious behaviors exposed by Dual-Force, and we sort
them in descending order. The columns named Detections repre-
sent the number of engines that detect at least one malicious be-
havior in the app. The column Droidy shows the number of mali-
cious behaviors of an app exposed by VirusTotal via Droidy. The
column Droidbox represents the number of malicious behaviors of
an app exposed by Koodous via Droidbox. Dual-Force exposes at
most 16 malicious behaviors in an app, while Droidy and Droid-
box expose at most seven and eight payloads respectively. Note
that we have three false positives for these ten samples together.
For all the 150 WebView samples, the average false positive rate is
5.1%, which is marginal. VirusTotal and Koodous, however, fail to
expose the logic behind some attacks although a malware sample
is reported as malicious in their databases.

7.3 Efficiency
We show efficiency-related data of Dual-Force in Table 7. Note that
the statistics are obtained with maxEx = 5. The bigger maxEx
is, the more time it takes to run an app. However, bigger maxEx
does not necessarily lead to more exposures of malicious payloads.
In the experiments, a good balance between effectiveness and ef-
ficiency can be achieved with maxEx = 5. It takes an average
of 198.3 seconds for Dual-Force to force-execute a WebView app,
while the minimum and maximum numbers are 30.2 seconds and
544.9 seconds, respectively. On average, Dual-Force switches 4.2
and 1.2 branch outcomes on for Java and JavaScript respectively
during one execution. It changes more predicates for Java because
Java code is usually more complicated than JavaScript code, and
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Table 6: Comparison with VirusTotal and Koodous

MD5 Package Name VirusTotal Koodous Dual-Force
# Detections Droidy # Detections Droidbox # Exposures # F/P

cbd506003ce1a4f8cc656f6614baf775 com.vivchar.TheBookofLoveLWP 15 7 1 4 16 0
3a1c2626158acc4a55d06246a669d1e5 candy.crush.saga.unlimitedf32f 33 7 2 6 16 0
4dc7e82047a92403a23c2e6c3c3eb4bd com.aio.downloader 21 7 5 8 15 2
abda3e50bc31f5eb16e39a72bfcc9886 com.androidsky.app.tusiji 25 0 1 6 14 0
b0c41093dc33dc81674aeb92140ad923 com.ptcc.app 19 5 6 5 14 0
85506f0b70ea01eb3b7a9a42a183375c com.udhay.indianrecipes 15 7 1 0 13 0
f52b9985233b9c1825ef13ad60d89298 lunar.horror.view 15 7 1 2 13 1
22b097f7dfedf75e0a1f5f0e148adbed com.mobile.shuangjielong2 25 0 2 6 12 0
02e231f85558f37da6802142440736f6 krep.itmtd.ywtjexf 40 6 0 4 12 0
a2cf71cf18e860584429a5d84365e2a9 air.TheModifuckrs.ersite.ru 22 6 0 0 11 0

Java usually has a larger code base. The exceptions suppressed (2.6
and 0.7 on average, respectively) and the values fed to the apps (4.1
and 1.1 on average, respectively) are almost linear to numbers of
predicates that are switched, as we can see in Table 7.

Table 7: Statistics on Dual-Force’s efficiency

Statistics (with maxEx = 5) min avg max
# Predicates switched 1 5.4 15
- Java 1 4.2 11
- JavaScript 0 1.2 5
# Exceptions suppressed 1 3.3 6
- Java 1 2.6 5
- JavaScript 0 0.7 2
# Values fed 1 5.2 10
- Java 1 4.1 9
- JavaScript 0 1.1 2
Time (s) 30.2 198.3 544.9

8 DISCUSSION AND RELATEDWORK
The forced execution technique was first proposed in X-Force [29],
which was designed for dynamic binary analysis. iRiS [5] adopted
the technique to iteratively compute the call graphs and control
flow graphs of iOS apps to discover private API abuse which is
forbidden by Apple. J-Force [18] and JSForce [15] are two forced
execution engines that work on JavaScript.

There exist many analysis techniques developed to expose mali-
cious payloads of Android apps. Grodddroid [3] uses an algorithm
that automatically identifies potentially malicious code and stim-
ulates the GUI of an application and forces the execution of some
branching conditions if needed. It is similar to our work regard-
ing forced execution, but our work does not need to identify po-
tentially malicious code first, nor do we need to stimulate GUI.
Malton [41] conducts multi-layer monitoring and information flow
tracking to provide a comprehensive view of malicious behaviors
of Andriod apps. CooperDroid [35] and DroidTrace [44] monitor
malware behaviors mainly through the trace of system calls. Fuz-
zDroid [31] proposes a targeted fuzzing framework that uses multi-
ple analyses to generate environments that trigger specific behav-
iors. Harvester [30] collects runtime values that can enhance other
dynamic analysis. IntelliDroid [39] is conceptually similar to Fuz-
zDroid except the fact that it does not use multiple analyses. Droid-
box [20] is an android application sandbox for dynamic analysis.
AppsPalyground [33] is a framework for automated dynamic secu-
rity analysis of Android applications. The work of DroidScope [42]

is a virtualization-based malware analysis. EvoDroid [25] uses evo-
lutionary testing for Android apps. GoldenEye [40] switches the
analysis environment at runtime through a specially designed spec-
ulative execution engine. HybriDroid [21] is a static analysis that
deals with Android hybrid applications.

Dual-Force is different from existing analyses in twoways. First,
from the technical perspective, Dual-Force develops a novel crash-
free forced execution model in terms of uncovering maliciousness
in Android apps. Second, it targets a unique and yet increasingly
prominent category of malwares, i.e. AndroidWebView apps. Such
malwares can hardly be handled effectively by existing approaches
considering their distinct natures, such as the two-way communi-
cations between Java and JavaScript.

9 CONCLUSION
We propose in this paper a forced execution technique called Dual-
Force to exposemalicious payloads for AndroidWebViewmalware.
We develop a crash-free forced execution model that can recover
from exceptions properly for WebView apps. The experimental re-
sults demonstrate that Dual-Force can expose potentially harmful
behaviors for 119 out of 150 malicious apps. Compared to the state-
of-the-art, Dual-Force can expose 23% more malicious behaviors
per app on average.
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