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Abstract—Backdoor attacks embed an attacker-chosen pattern
into inputs to cause model misclassification. This security threat
to machine learning has been a long concern. There are a
number of defense techniques proposed by the community. Do
they work for a large spectrum of attacks?

As we argue that they are significant and prevalent in
contemporary research, and we conduct a systematic study on
14 attacks and 12 defenses. Our empirical results show that
existing defenses often fail on certain attacks. To understand the
reason, we study the characteristics of backdoor attacks through
theoretical analysis. Particularly, we formulate backdoor poi-
soning as a continual learning task, and introduce two key
properties: orthogonality and linearity. These two characteristics
in-depth explain how backdoors are learned by models from
a theoretical perspective. This helps to understand the reason
behind the failure of various defense techniques. Through
our study, we highlight open challenges in defending against
backdoor attacks and provide future directions.

1. Introduction

Backdoor attacks aim to mislead machine learning models
by introducing a specialized trigger pattern into inputs. The
triggers can cause model misclassification to a target label.
There are a variety of backdoor attacks, such as patch
attack [12], [13], blend attack [17], [18], filter attack [20],
etc. They design different trigger patterns to make attacks
more robust and stealthy. For example, filter attack applies an
Instagram filter on input images, which are visually similar
to the original inputs.

In order to mitigate the backdoor threat, researchers have
proposed different defense techniques. They mainly fall into
three categories: model detection [1], [2], [3], backdoor
removal [4], [5], [6], [7], and input detection [8], [9], [10],
[11]. Model detection determines whether a model is injected
with backdoors. A common approach in this category is
trigger inversion [1], [3], [25] that reverse-engineers a trigger
pattern resembling the injected one. Backdoor removal aims
to eliminate backdoors injected in poisoned models. Input
detection identifies and rejects input samples with the trigger.
Existing defense approaches are usually evaluated on a subset
of backdoor attacks. Are those defenses generalizable to all
known attacks?

We systematically study the defense performance of
existing methods on a diverse set of backdoor attacks.

∗Equal contribution.

Specifically, we use 14 well-known attacks and evaluate
the performance of 12 representative defenses against them.
The results are shown in Table 1. The solid dots denote
that the defense methods can successfully defend against
corresponding attacks, where the black color means the
results are confirmed by the literature and the gray color
means they are validated in this paper. The circles indicate
the defenses fail. Observe that existing defense techniques
fail on at least one backdoor attack evaluated in this paper.
But why do defenses fail? One may try to look for cues in
the design of trigger patterns. For example, BadNets [12]
leverages a sticker-like pattern as the trigger. All existing
defense techniques work perfectly on this attack as shown
in the first row. However, for a fence-like pattern used in
SIG [19] (shown in row 8), all evaluated model detection
approaches fail, while other types of defenses succeed. From
the perspective of the trigger pattern, it does provide sufficient
information to explain why one type of defenses work and
others do not.

What are the underlying reasons causing defenses to fail
on certain backdoor attacks?

This paper aims to answer the above question from a
theoretical perspective, with a focus on the motivation that
drives our work. Backdoor attacks inject poisoned samples
with trigger to model training data. The learning process
involves both the main task (e.g. correctly classifying dog
images) and the backdoor task (e.g. recognizing dog images
with trigger as cat). We observe that the backdoor task
is quickly learned by the victim model (using a very few
training epochs), much faster than the main task. This
indicates a two-stage learning process. We hence formu-
late backdoor attacks as a continual learning problem and
theoretically analyze the characteristics of backdoor attacks.
In particular, we identify two key properties in backdoor
attacks through our analysis: orthogonality and linearity.
Orthogonality illustrates the backdoor behavior minimally
interferes with the model’s performance on clean data. This
is characterized by the perpendicular relationship between
backdoor gradients and clean gradients during the training
process. Linearity specifies the linear relationship of poisoned
inputs and the output target. There exists a hyperplane that
separates the model decision space into two disjoint regions,
where the backdoor behavior is in one region and the clean
behavior is in the other. Our work is primarily motivated
by the observation that the effectiveness of many attacks
and their countermeasures significantly depends on two key
properties we aim to explore: orthogonality and lineality.



Table 1: A Summary of Existing Attacks and Defenses

Attack Model Detection Backdoor Mitigation Input Detection

NC [1] Pixel [2] ABS [3] Fine-Pruning [4] NAD [5] ANP [6] SEAM [7] AC [8] SS [9] SPECTRE [10] SCAn [11]

Patch

BadNets [12]
TrojanNN [13]
Dynamic [14]
CL [15]
Input-aware [16]

Blend
Reflection [17]
Blend [18]
SIG [19]

Filter Instagram [3]
DFST [20]

Invisible
WaNet [21]
Invisible [22]
Lira [23]

Composite [24]

: attacks can be defended, supported by existing works; : attacks can be defended, supported by our experiments; : attacks cannot be defended.

These properties underpin our theoretical analysis, providing
a fresh perspective to understand the interplay between
attacks and defenses. In particular, given an attack and a
defense, we could study these two properties to understand
if the defense is effective against the attack. Furthermore,
existing attacks can be easily enhanced by changing these
two properties. In Section 5.3, we launch six attack variations
by changing orthogonality and linearity and evaluate how
they affect the attack effectiveness. For example, our results
in Table 9 show that Label-specific Poisoning will reduce
the orthogonality of Patch attacks [12], [13], thus making it
more robust against NAD defenses [5]. The two properties
theoretically explain how backdoor behaviors are learned
by the model and how the poisoned model exhibit such
behaviors, regardless of backdoor attack configurations (e.g.
trigger patterns).

Based on our theoretical analysis, we conduct an com-
prehensive study to understand the limitations of existing
defenses. In specific, we introduce two metrics according to
the two properties. We then propose a set of hypotheses to
evaluate performance of 12 existing defenses in relation to
orthogonality and linearity. We further explore six factors
that impact orthogonality and linearity of backdoor attacks.

The contributions of this paper are summarized in the
following.

• We formulate backdoor attacks as a continual learn-
ing problem, which provides the theoretical basis for
understanding backdoor attacks.

• We identify two key properties, orthogonality and
linearity, that shed the light on the nature of backdoor
attacks.

• An extensive empirical study is conducted on 14 state-
of-the-art backdoor attacks and 12 defense techniques
to understand the (in)effectiveness of existing defenses.
Our empirical results show that existing defenses are
particularly vulnerable to attacks with low orthogonality
or low linearity.

• We comprehensively study six factors that impact the
performance of backdoor attacks. We find five out of

six factors fail existing defenses.
Threat model. This study focuses on training-time backdoor
attacks [12], [13], [16], [21], [23] in Deep Neural Networks
(DNNs), where the adversary has full control over the
training procedure (poison training dataset or manipulate
model internals), and provides a model to victim users after
training. While we acknowledge other backdoor techniques
like architectural backdoor attack [26] and runtime bit-
flipping [27], our scope is deliberately focusing on training-
time trigger attacks due to their prevalence and extensiveness
in current iteration.
Organization. In Section 2 and Section 3, we lay the
foundation by introducing essential terminology and offering
theoretical analysis. In Section 4, we propose ten hypotheses
that guide our empirical investigations, the results of which
are elaborated in Section 5. In Section 6, we review related
literature. In Section 7, we outline unresolved questions and
offer concluding remarks.

2. Preliminaries

In this section, we provide an overview of the core
concepts relevant to our theoretical analysis.
Continual Learning. Recently, there has been a rapid growth
in interest on characterising continual learning [28], [29],
[30], [31], [32]. Essentially, continual learning deals with
a sequence of tasks {τ1, τ2, . . . }, where each task can be
viewed as a separate supervised learning problem. The
fundamental challenge, however, lies in the model’s capability
to learn the new tasks while retaining the knowledge acquired
from previous tasks, which is commonly referred to as
catastrophic forgetting [33], [34]. Existing works claim that
the catastrophic forgetting problem can be addressed in
continual learning framework [30], [32].
Neural Tangent Kernel. Neural networks, powerful as their
wide deployments in various domains, often pose a challenge
in terms of interpretability. This is due to the intricacy of
their internal mechanisms, which often make them resemble
“black box” models. However, recent advances in Neural



Tangent Kernel (NTK) [35] offers a novel perspective that
enhance our understanding of these networks. The NTK
framework leverages an intricate approximation of the net-
work function, centered on the principle of Taylor expansion.
In this construct, the kernel function is a complex construct
formed by the gradients of neural network parameters in
relation to the input data. The initial weight configuration
of the neural network, denoted as θ0, serves as the focal
point for this approximation. Moreover, the gradient of the
network function with respect to the weights at this initial
configuration, denoted as ∇θf(x, θ0), is a central element
in the NTK framework, as shown in Definition 3.2. One
notable characteristic of the NTK approximation is its fixed
feature map, represented by ϕ(x) = ∇θf(x, θ0), once the
initial weights θ0 have been established. Despite operating
within a constant feature space, the NTK approximation
allows for a unique optimization of each feature’s weight
in subsequent training phases, as dictated by the specific
training data employed. The theory behind NTK is bridging
theoretical neural network insights with practical applications.
For a more comprehensive understanding of NTK theory,
readers are referred to [30], [32], [35].

3. Theoretical Analysis

In this section, we present a comprehensive framework to
capture the inherent orthogonality and linearity characteristics
of existing backdoor attacks. We start with the problem setup
in Section 3.1. We first study orthogonality of backdoor
learning in the context of Orthogonal Gradient Descent
(OGD) in Section 3.2. Then we broaden the scope to
Stochastic Gradient Descent (SGD) setting in Section 3.3.
Subsequent to this, we pivot our focus to examine the linearity
of backdoor attacks under rectifier networks in Section 3.4.

3.1. Problem Setup

In this work, we formalize backdoor learning as a two-
task continual learning problem. Our formalization diverges
from traditional continual learning [28], [29], [36] where
tasks are sequentially presented.
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(a) BadNets
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(c) WaNet

Figure 1: Backdoor Task (red line) vs. Clean Task (blue
dotted line) Convergence Rate

Assumption 3.1. (Backdoor Learning as Continual
Learning). Backdoor learning can be formalized as a
two-stage continual learning process: 1 an initial rapid
learning phase of the backdoor task within a few training
epochs, followed by 2 a subsequent phase of gradually
learning over the clean task.

We validate Assumption 3.1 from two perspectives: fol-
lowing the backdoor learning threat model and the traditional
continual learning paradigm. First, we follow the existing
backdoor threat model as defined in Section 1, where the
backdoor poisoning and the clean task learning are performed
at the same time. We conduct preliminary experiments using
three prominent backdoor attacks, BadNets [12], Blend [18],
and WaNet [21] on CIFAR-10 [37] with ResNet-18 architec-
ture. This result is illustrated in Figure 1, where the x-axis
represents the training epochs. The left y-axis, with a blue
dotted line, denotes the accuracy. Conversely, the right y-axis,
with a red line, denotes the Attack Success Rate (ASR). We
observe that when the model is trained with both backdoor
and clean samples, the compromised sub-network (storing
backdoor behaviors) formed rapidly in the initial phase (10
epochs) of training. The clean task is gradually learned
in the subsequent phase. Thus, backdoor learning can be
degenerated to a two-stage continual learning problem.

Other than following the existing backdoor threat model,
we further validate Assumption 3.1 by adopting a traditional
continual learning paradigm to empirically substantiate the
(approximate) equivalence of backdoor learning and continual
learning. Specifically, we train the model on the poisoned
dataset to learn the backdoor task in the first stage (10
epochs). Then the model is only trained on the benign dataset
to continually learn the clean task in the second stage (100
epochs). Our experiments are conducted on CIFAR-10 and
ResNet-18 using BadNets attacks. Results are shown in
Table 2. Observe that backdoor learning is similar to continual
learning in terms of accuracy (Acc.), attack success rate
(ASR), linearity (Linear.) and orthogonality (Orth.) scores,
measurement detailed in Section 5.1.

Table 2: Backdoor Learning as Continual Learning

Configuration First Stage (10 epochs) Second Stage (100 epochs)

Acc. ASR Linear. Orth. Acc. ASR Linear. Orth.

Backdoor Learn. 0.71 1.00 0.99 72.37 0.94 1.00 0.99 78.79
Continual Learn. 0.73 1.00 0.92 70.72 0.91 1.00 0.94 72.55

Assume training data x for each task is drawn from a
specific distribution D. We denote the backdoor task as b
and the clean task as c. Each of these tasks constitutes a
supervised learning problem, independent from the other.
The prediction made by the model, denoted by a neural
network f , on the input (x, y) is expressed as f(x; θ), where
θ ∈ Rp represents the parameters (weights) of the neural
network and θ⋆ denotes the converged model parameters. Let
X = {x1, x2, . . . , xn} denote a dataset of instances xi ∈ Rd

associated with ground-truth labels Y = {y1, y2, . . . , yn}
where yi ∈ [1,m]. Note that, here x and y serve as general
notations without specific meanings. Their roles are further
refined through subscript annotations in ensuing sections.
Specifically, xb and xc are designated to represent backdoor
and clean samples, respectively. Finally, we describe the
training loss for a task as follows:

L(θ) =
n∑

i=1

(f(xi; θ)− yi)
2 (1)



where n is the number of data samples.
Our analysis presumes an overparameterized neural

network, so that we can rely on the linear approximation of
this network around its initialization, which is an approach
widely employed in contemporary research [38], [39]. Con-
tinual learning [30], [32] and Neural Tangent Kernel (NTK)
theory [31], [35] forms the foundation for our theoretical
analysis. We provide a summary of key notations in Table 3, a
comprehensive list of all notations in Appendix A.1, Table 10.

Table 3: Summary of Notations

Notation Description

b Backdoor task
c Clean task
x; xb; xc General notation for input; Backdoor or Clean sample
y General notation for ground-truth label
f ; f⋆ Model; Converged model
θ; θ⋆ Model parameters; Converged model parameters
∇θf(x, θ0) Gradient of f wrt. weights at initial configuration θ0
Ỹ ; ỹi Residuals of Y ; Residuals of yi
η Learning rate (a.k.a. step size)
ϕ Feature map
rb; r̃b Backdoor risk in first stage or second stage
∥ · ∥F Frobenius norm
Rk Decision hyperplane of label k
B Trojan hyperplane
l Layer index
Wl; bl Weight matrix of layer l; Bias vector of layer l
g; h Pre-activation function; Nonlinear activation function

Definition 3.2. (Neural Tangent Kernel) Following NTK
definition in [35], we have the Taylor expansion of the
network function with respect to the weights around its
initialization.

f(x, θ) = f(x, θ0) +∇θf(x, θ0)
T (θ − θ0) (2)

where θ0 denotes the weight initialization for any data
sample x, and ∇θf(x, θ0) represents the gradients of the
network function with respect to the weights at this initial
configuration θ0.

Note that following existing works of NTK [31], [32],
[35] that are defined on the Taylor expansion around the
initial model parameter (θ0) of the neural network, it can
be extended to the Taylor expansion around any state of the
neural network to approximate a series of learning tasks of
the neural network within the continual learning framework.

3.2. Backdoor Attack under Orthogonal Gradient
Descent

Following [30], they formulate orthogonal gradient de-
scent for continual learning. Inspired by their problem setup,
we formalize backdoor learning as a two-task continual
learning problem, we also introduce the orthogonality in a
continual learning framework featuring two training tasks,
viz. backdoor task and clean task, which are orthogonal
and evaluated on a backdoor dataset, which provides a

new perspective to understand backdoor attacks. Utilizing
the NTK, we ascertain that the backdoor behavior persists
following the model’s convergence on the clean task, under
the Orthogonal Gradient Descent (OGD) assumption. In
detail, backdoor attacks inherently tend to retain, or “unfor-
get”, learned backdoor behaviors, while they were trained
over the course of new clean tasks. This insight guides the
classification of existing backdoor attacks and defenses, and
sheds light towards future backdoor learning tasks.

Assumption 3.3. (Orthogonality) Let b and c denote the
backdoor and clean tasks, respectively. Our observations
(as discussed in Section 3.1) reveal that backdoor attacks
exhibit staged effects during training. Owing to this prop-
erty, backdoor learning reduces to continual learning, with
backdoor task (b) trained prior to clean task (c) in a series
of continual learning tasks. Therefore, the orthogonality of
the model for the backdoor task b following the training of
the subsequent clean task c is defined as:

∇θf(xb, θ
⋆
b ) ⊥ (θ⋆c − θ⋆b ),∀xb ∈ X (3)

Here, X refers to the training data of the task, ∇θf(xb, θ
⋆
b )

denotes the gradient of the network function with respect
to the weights at the backdoor task converged state θ⋆b , and
θ⋆c − θ⋆b denotes the gradient of clean task converged state
in the subsequent stage.

The assumption of task orthogonality is a prevalent
concept in the domain of continual learning, as evidenced
by many studies [31], [32]. In our framework, we define
θ⋆b and θ⋆c as the parameters at the convergence points for
the backdoor and clean tasks, respectively. Specially, θ⋆b is
determined at the point where the backdoor task’s accuracy
or loss converges, and θ⋆c is identified similarly for the clean
task. This definition aligns with our staged training approach,
where the backdoor task is trained prior to the clean task.

To empirically validate this assumption, we conduct a
series of experiments (detailed in Section 5.2, Table 4). Our
experimental setup involves training a model that feeds both
backdoor and clean samples in the same time. The findings
reveal a swift completion of backdoor learning in the initial
stage, followed by the clean task in the subsequent stage.
We observed that for most existing attacks, the backdoor
and clean gradients display a tendency towards orthogonality
in both stages. An angle of approximately 70◦ is generally
considered indicative of orthogonality in the context of deep
neural networks’ complexity [39]. We observe that some
attacks exhibited orthogonality even in the initial stage. While
others did not demonstrate this characteristic until after the
convergence of both the backdoor and clean tasks, where they
tended to become more orthogonal. These observations lend
support to our assumption, demonstrating an orthogonality
between the backdoor and clean task gradients across both
the initial and subsequent stages.

We visualize backdoor learning orthogonality in Figure 2.
Specifically, Figure 2(a) illustrates the loss landscape in the
input space for backdoor and clean inputs. The loss landscape
presents as orthogonal valleys that distinctly partition the
influences of backdoor and clean inputs during model training.



Figure 2(b) demonstrates that backdoor attacks exhibit staged
effects throughout the training process. The orthogonal
gradient training under continual learning helps us understand
why backdoor stays under orthogonal gradient descent.

X
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(a) Input space

② Clean stageBackdoor stage
∇!𝑓(𝑥" ,θ"∗ ) ∇!𝑓(𝑥$ ,θ$∗)

①

..

(b) Parameter space

Figure 2: Illustration of orthogonality. (a). Input space loss
landscape. x-axis denotes backdoor inputs, y-axis denotes
clean inputs, and z-axis denotes corresponding loss values.
The landscape exhibits two orthogonal valleys, and its
projection on x-y plane marked in orange. The trend of loss
change (loss landscape) represents the learning trajectory.
Note that the loss landscape of clean and backdoor training
are orthogonal, which illustrate our concept of orthogonal
backdoor learning. (b). Parameter space orthogonal illus-
tration. Initially, the model rapidly converges during the
backdoor stage, marked by 1 and showed in purple plane.
The first stage is parameterized by ∇θf(xb, θ

⋆
b ) and denoted

as red arrows. Subsequently, in the clean stage, marked by
2 and showed in brown plane, the parameter moves in an
orthogonal space to the gradient vectors from the backdoor
stage, w.r.t ∇θf(xc, θ

⋆
c ) and denoted as green arrows.

Theorem 3.4. (Backdoor Stays under Orthogonal Gradient
Descent) Let f(x, θ⋆b ) and f(x, θ⋆c ) represent the converged
neural network associated with the backdoor and clean tasks,
respectively, parameterized by converged backdoor model
parameters θ⋆b and converged clean model parameters θ⋆c .
Given a sample of backdoor training data (xb, yb) derived
from a prior backdoor task b and following the distribution
Db, we can establish that

f(xb, θ
⋆
c ) = f(xb, θ

⋆
b ) (4)

The proof of Theorem 3.4 can be found in Appendix A.2.
Under the orthogonal gradient descent assumption 3.3, the
theorem indicates that the learned backdoor behaviors during
the first phase will persist and remain unaffected during
the second stage. The goal of preserving orthogonality in
gradient updates within the realm of backdoor attacks is to
conserve the learned trigger knowledge. This is accomplished
by preventing weight alterations along pertinent dimensions
during the acquisition of new clean tasks. Theorem 3.4
suggests that, the training error for all data samples from
prior backdoor tasks remains unchanged when the gradients
corresponding to the two training tasks (backdoor and clean)
are orthogonal to each other.

Existing works such as [7], [30], [32] have provided
foundational insights into the dynamics of neural networks

when transitioning between different learning tasks, high-
lighting the complex interplay between backdoor and clean
tasks. We provide empirical evidence in Section 5.2 and
summarize in Table 4, offer empirical insights into this
orthogonal gradient descent under backdoor attack context.
We observed that at different stages of training (epochs 10
and 100), the neural networks exhibited varying degrees
orthogonality between backdoor task and clean task. The
robustness of orthogonal gradient descent in the context
of complex backdoor learning scenarios is underscored by
Theorem 3.4. It elucidates its potential for classifying existing
backdoor attacks and defenses based on their adherence to,
or deviation from, the orthogonality property. We present
more empirical results in Section 5.2.

3.3. Generalization of Backdoor Attacks to Stochas-
tic Gradient Descent

Let us dive into the generalization of backdoor learning
within the framework of continual learning, utilizing the
theoretical foundations of the NTK. While there exist attacks
that do not strictly adhere to the orthogonality property,
our analysis allows us to set an upper bound on risk by
studying the angle between the clean and backdoor tasks. In
this section, we initially formulate continual learning under
the NTK in a formal manner, allowing us to discern the
evolutionary patterns of neural networks over a sequence of
backdoor and clean learning tasks. Our exploration culmi-
nates in a determination of the backdoor risk upper bound
for the second stage of learning, lending us the capacity to
analyze backdoor behavior under a generalized Stochastic
Gradient Descent (SGD) scenario.

Lemma 3.5. (The NTK Perspective on Continual Learning)
Consider backdoor learning as a succession of continual
learning tasks, with a pre-determined learning rate (η) for
each task. If the learning rate for each task complies with
the condition η < 1

∥ϕ(Xc)ϕ(Xc)T ∥ , then for a clean task c,
the parameter θc linearly converges towards the optimal
solution θ⋆c , such that:

f(x, θ⋆c ) = f(x, θ⋆b ) + ϕ(x)T (ϕ(Xc)ϕ(Xc)
T )−1ϕ(Xc)Ỹc

(5)
where feature map ϕ(x) = ∇θf(x, θ

⋆
b ), and for any

clean sample (xc, yc), clean feature map ϕ(Xc) =[
ϕ(xc,1) · · · ϕ(xc,nc

)
]

is a matrix with columns given by
ϕ(xc)’s, residual Ỹc = [ỹc,1 · · · ỹc,nc ]

T , and residual ỹc =
yc − fb(xc, θ

⋆
b ).

The proof of Lemma 3.5 can be found in Appendix A.3.
The lemma characterizes the evolution of the neural network
function f over a sequence of backdoor and clean learning
tasks, highlighting its recursive nature due to the staged
effects during training process. For any given clean task c,
f(x, θ⋆c ) represents the neural network function parameter-
ized by θ⋆c , encompassing knowledge from prior backdoor
tasks. The model then adjusts itself to fit the residual
ỹc = yc−fb(xc, θ

⋆
b ), supplementing the knowledge acquired

from previous backdoor tasks. This residual also acts as



a measure of task similarity. If tasks are orthogonal, the
residual amounts to zero. Ultimately, task similarity is gauged
in relation to the gradient of the prior backdoor task feature
map ϕ(xb) and the clean feature map ϕ(Xc).

In addition, recall the observation that the effects of back-
door attacks are staged behaviors during training. Backdoor
learning can be constructed as continual learning where the
backdoor task (b), precedes the clean task (c), in a sequence
of continual learning tasks. Let us represent the backdoor
data distribution as Db, and the clean data distribution as
Dc.

Adhering to the continual learning framework outlined
previously, the backdoor risk rb during the first stage for
any backdoor input data (x, y) ∼ Db, is defined as:

rb = E(x,y)∼Db
[ℓ(y, f(x; θb))] (6)

The backdoor risk r̃b during the second stage is consequently:

r̃b = E(x,y)∼Db
[ℓ(y, f(x; θc))] (7)

These findings lead to the following theorem:

Theorem 3.6. (Persistence of Backdoor in Stochastic
Gradient Descent) Let us consider a backdoor task b, with
a converged neural network denoted by f⋆

b = f(x, θ⋆b ), and
a clean task c with the corresponding converged neural
network represented by f⋆

c = f(x, θ⋆c ). For any input data
(x, y) ∼ Db, a sample from the training data of a prior
backdoor task b, the risk on backdoor data during the second
stage is bounded as:

r̃b ≤ 2rb + 2E(x,y)∼Db
[f̃⋆

c (xb)
2] (8)

where f̃⋆
c (xb) = ϕ(xb)

T (ϕ(Xc)ϕ(Xc)
T )−1ϕ(Xc)Ỹc is de-

fined for any backdoor sample xb, in accordance with the
NTK analysis articulated in Lemma 3.5.

The proof of Theorem 3.6 can be found in Appendix A.4.
This theorem signifies that a generalized risk bound can be
established under relaxed orthogonality assumptions. Given
that the prior backdoor task converges swiftly during the
first stage, we can safely assume that rb is relatively small.
Thus, our primary concern is the second term in Equation 8,
which hinges on the NTK analysis result. Thus, we develop
the following lemma.

Lemma 3.7. (Connection of Backdoor and Clean Gradi-
ent) Assuming clean feature map ϕ(Xc) and its transpose
ϕ(Xc)

T are invertible and ϕ(Xc) in non-singular so that
(ϕ(Xc)ϕ(Xc)

T )−1ϕ(Xc) = ϕ(Xc)
−T . Then, derive from

Lemma 3.5 and Theorem 3.6, it follows that:

E(x,y)∼Db
[f̃⋆

c (xb)
2] ≤ 1

nb

∥∥(ϕ(Xc)
Tϕ(Xc))

−1
∥∥2
op

∥∥∥Ỹc

∥∥∥2
2

·
∥∥ϕ(Xc)

Tϕ(Xb)
∥∥2
F

(9)
where backdoor feature map ϕ(Xb) =[
ϕ(xb,1) · · · ϕ(xb,nb

)
]

is a matrix with columns given by
ϕ(xb)’s, ∥ · ∥op denotes the operator or spectral norm (i.e.,
largest singular value of a matrix), and ∥ · ∥F denotes the
Frobenius norm.

The proof of Lemma 3.7 can be found in Appendix A.5.
The lemma characterizes the connections between the clean
and backdoor gradients. Notably, as per the orthogonal-
ity assumption 3.3, if the backdoor task gradient and
clean task gradient are approximately orthogonal, then∥∥ϕ(Xc)

Tϕ(Xb)
∥∥2
F

is diminutive. Given the converged clean
model with backdoor input, the first part of the equation
1
nb

∥∥(ϕ(Xc)
Tϕ(Xc))

−1
∥∥2
op

∥∥∥Ỹc

∥∥∥2
2

can be viewed as a con-

stant. Consequently, if E(x,y)∼Db
[f̃⋆

c (xb)
2] is small, then the

backdoor loss r̃b under the converged clean model will also
be small. Intuitively, this leads to backdoor behavior retains
its presence in the generalized stochastic gradient descent
algorithm. On the contrary, if

∥∥ϕ(Xc)
Tϕ(Xb)

∥∥2
F

is large,
thus leading to a correspondingly large r̃b, it signifies that
the backdoor loss r̃b under the converged clean model is
substantial. This leads to backdoor behavior is mitigated
during the second phase of training. The elucidation of
these concepts underpins the theoretical grounding of our
proposed algorithmic framework. This understanding could
have significant implications for our understanding of both
attack and mitigation strategies for backdoor behavior in the
context of machine learning models.

3.4. Linearity under Rectifier Networks

We investigate the linearity inherent in backdoor attacks
under rectifier networks, examining this within the context
of a continual learning framework that accommodates both
backdoor and clean tasks.

X Y

Backdoor Sample Clean Sample
Z

z0

Figure 3: 3D illustration of the decision boundary z = z0
that effectively separates two distinct groups.

We initiate our discussion by defining the trojan decision
boundary, a geometric construct such as a line or hyperplane
that separates the decision space into disjoint regions, each
corresponding to a distinct class label, in the context of
backdoor learning, as shown in Figure 3.

Definition 3.8. (Trojan Region) Let f : X →
Y represent a trojaned deep neural network tar-
geting label k, where X is the input space Rd and
Y is a set of labels {1, . . . ,m}. The trojan boundary, de-
noted as B, is a specialized hyperplane residing within
the decision region Rk corresponding to the target label.
Formally, B ⊆ Rk and is defined as {xb ∈ B : f(xb) = k},
where xb is a backdoor triggered input.

Before expanding the preceding definition, we consider
rectifier networks as a concrete example [40]. Rectifier units



exhibit one of two behaviors: they are either constant zero
or linear, depending on their input values. The boundary
between these two behaviors is given by a hyperplane.
Building upon this foundational definition, which note the
distinguished high values for trojan behaviors in internal
layers. We formalize the definition of linearity for backdoor
attacks as follows:

Proposition 3.9. (Linearity Perspective of Backdoor Learn-
ing) For a well-poisoned model f : X → Y with a near
100% attack success rate, there exists a specific hyperplane
{Wx − b = 0}, which capable of capturing the Trojan
behavior in the backdoor learning phase, and this trojan
hyperplane persists in the clean learning phase.

The proof of Proposition 3.9 can be found in Ap-
pendix A.6. Proposition 3.9 establishes a connection between
the persistence of backdoors and the linearity property of
neural networks. Our analysis is generalizable to piecewise
activation functions, for instance, we employ it for rectifier
networks.

Upon activation, we note that the trojan induced behavior
leads to large pre-activation neuron values, which typically
lie within the linear regime of the activation function. Conse-
quently, backdoor samples can be captured by a hyperplane,
this is in line with previous studies [41]. Our analysis
demonstrate that there is a trojan hyperplane quickly formed
in the backdoor learning (first stage), once it forms, it persists
in the clean learning (second stage). We find that certain
attacks exhibit strong linearity, allowing for a hyperplane to
sufficiently capture the backdoor behavior. This framework
is generalizable to networks with piecewise linear activation
functions. Understanding linearity contributes to deeper
understanding on why defenses fails on certain attacks.

4. Practical Analysis on Attacks and Defenses

Although a number of defense techniques have been pro-
posed by the community, our understanding remains limited:
when and why do defenses fail or succeed against various
attacks? Inspired by the theoretical analysis from Section 3,
we propose ten hypotheses on backdoor orthogonality and
linearity, and explore the possible factors that may impact on
orthogonality and linearity. While some of these hypotheses
may initially appear straightforward, they arise from intricate
attack property and underscore the necessity for a more
comprehensive empirical understanding in the domain of
security research.

4.1. Analyzing Orthogonality

Pruning-based and unlearning-based defenses often ex-
hibit sensitivity to gradient perturbations. Leveraging the
orthogonality property between backdoor and clean gradients
allows us to understand their behavior. In the following two
hypotheses aim to elucidate the conditions under which
pruning and unlearning defenses prove effective, while
simultaneously shedding light on scenarios where their
performance deteriorates.

H1 (Effectiveness of Pruning). Pruning-based defense mecha-
nisms are highly effective against backdoor attacks that exhibit
substantial orthogonality.

Description. Pruning-based defense mechanisms, such as
fine-pruning [4] and ANP [6], essentially are based on
the intuition that prunes sensitive neurons to purify the
injected backdoor and makes the model more robust without
significant performance degradation. The success of these
defenses pivots on the accurate identification of compromised
sub-networks.
Insights. Highly orthogonal attacks make it more feasible
to segregate compromised neurons from benign ones. For
instance, patch attacks, which display higher orthogonality
than composite attack, are more amenable to successful
neuron pruning. Our empirical findings, in Section 5.2,
Table 5, substantiate the effectiveness of pruning-based
defenses across a spectrum of attack orthogonality.

H2 (Effectiveness of Unlearning). Unlearning-based defense
mechanisms demonstrate superior effectiveness against backdoor
attacks with significant orthogonality.

Description. Unlearning-based defenses, such as NAD [5]
and SEAM [7], are designed to eliminate backdoor triggers
from pre-trained neural networks while maintaining perfor-
mance in primary tasks. NAD achieves this by transferring
clean attention patterns from a teacher model, thereby preserv-
ing useful features in the student model while eliminating
backdoor triggers. The challenge lies in deciding which
features to retain.
Insights. In cases of attacks exhibiting high orthogonality,
the compromised and clean sub-networks tend to manifest
divergent behaviors. This facilitates the unlearning-based
defenses in selectively retaining high-quality, task-relevant
features while forgetting backdoor elements. For example,
patch attacks display higher orthogonality compared to
composite attacks, making NAD and SEAM more effective in
isolating and forgetting compromised sub-networks in such
scenarios, as empirically validated in Section 5.2, Table 5.

4.2. Analyzing Linearity

Statistical-based methods are light-weight, and highly
effective on attacks with strong linearity. These methods
typically learn a hyperplane that closely approximates the
decision boundaries associated with a trojan hyperplane.
However, their performance tends to degrade on attacks with
less linearity. While trigger inversion provides comparable
performance to statistical approaches under linearity condi-
tions and outperforms under nonlinearity, but incurs a higher
computational overhead.

H3 (Effectiveness of Trigger Inversion). Trigger-inversion
defenses are effective under attacks with linearity but incur a
high computational cost.

Description. Trigger-inversion defenses, such as NC [1],
ABS [3], Pixel [2], decouple a trigger into a perturbation



vector and a mask. The perturbation vector denotes the
perturbations applied to an input and the mask specifies
which part of the perturbation vector should be applied. These
defenses employ optimization techniques to reverse-engineer
the backdoor trigger, posing the challenge of accurately
identifying both the perturbation vector and mask.
Insights. Optimization-based trigger inversion defenses
demonstrate resilience against both linear and non-linear
attacks, while generally incurring higher computational costs
compared to statistical-based methods. The linearity of the
model shows less impact on the efficacy of trigger inversion
compared to its influence on statistical methods. In essence,
a linear model simplifies the task of reverse-engineering
a backdoor via trigger inversion. Comprehensive empirical
evaluations of trigger inversion are shown in Section 5.2.

(a). Clean (b). BadNets (c). Reflection

(d). Instagram (e). Lira (f). Composite

Backdoor EmbeddingBenign Embedding

Figure 4: Latent Separation of Various Attacks

H4 (Effectiveness of Statistical defenses). Statistical defenses
are most effective when the attack exhibit with noticeable latent
space separation.

Description. Statistical defenses based on the intuition that
poisoned and clean samples will reside in distinct regions
of the model’s latent space. Methods such as Spectre [10],
Activation Clustering [8], aim to exploit these latent character-
istics to separate the two populations effectively. However, the
primary challenge lies in the fact that these techniques rely on
the assumption that the model will learn distinctly different
latent representations for clean and poisoned samples. Any
overlap of these representations can severely undermine the
efficiency of such methods.
Insights. The model’s linearity is positively correlated with
the extent of latent space separation, which in turn facilitates
the effectiveness of statistical defenses. Existing methods
succeed by effectively identifying and exploiting this sepa-
ration to distinguish between clean and poisoned samples.
The presence of this separation validates the foundational
assumption of statistical techniques, highlighting the criti-
cal role that model linearity plays in the effectiveness of
these backdoor defenses. We show Figure 4 as an intuitive
demonstration, and empirical analysis in Section 5.2, Table 5.

H5 (Effectiveness of Weight Analysis). Weight analysis based
defense mechanisms are effective against backdoor attacks that
exhibit significant linearity.

Description. Weight analysis [42], [43] based defenses focus
on the analysis of the weights of the internal layer of the
network. The primary challenge of these techniques rely on
accurately approximating the decision boundary within the
trojan hyperplane.
Insights. Non-linearity in the attack model makes weight
analysis difficult to approximate such a trojan hyperplane
exactly. In contrast, linearity facilitates the defenses by
enabling a more straightforward mapping in the internal
layers of the neural network. Simply put, a more linear
model simplifies the approximation of trojan hyperplane
parameters through weight analysis. We demonstrate weight
analysis empirical performance in Table 6 of Section 5.2.

4.3. What Factors Impact Orthogonality and Lin-
earity?

Upon analyzing the vanilla attack performance in terms
of orthogonality and linearity, we subsequently investigate
various attack enhancements. For a given attack, we introduce
auxiliary modules to tune its orthogonality and linearity
without sacrificing the attack success rate or accuracy. In
the following, we show how these modular enhancements
influence orthogonality and linearity.

H6 (Impact of Low Confidence Poisoning). Training a neural
network with high confidence levels induce higher orthogonality,
and vice versa.

Description. The orthogonality and linearity of an attack
are influenced by the confidence levels set during training.
A higher confidence level encourages the model to learn
more shortcuts and induces higher orthogonality and linear-
ity. Conversely, lower confidence levels result in reduced
orthogonality and linearity.
Insights. Low confidence poisoning impacts on both or-
thogonality and linearity. Varying confidence levels allows
subnetworks to focus on features of varying importance or
reliability. Higher confidence training encourages the neural
network to prioritize easily learned but less generalizable
on shortcut features [44]. As shown in Figure 1, the model
swiftly converges on backdoor tasks and demonstrates staged
effects. Consequently, this leads to increased orthogonality
and linearity, but reduced robustness. Conversely, lower confi-
dence encourages the model to learn more complex features,
enhancing robustness while decreasing orthogonality and
linearity. Adversarial machine learning research echos these
findings, networks are vulnerable to adversarial examples,
partly because they rely on such shortcut features [45]. To
give the reader an intuition, we demonstrate the impact of
varying confidence levels in Section 5.3, Table 8.

H7 (Impact of Label-specific Poisoning). Label-specific
poisoning diminishes both orthogonality and linearity within
backdoor attacks.



Description. A label-specific poisoning aims to manipulate
the model so that any sample from a specific victim class
are misclassified as the target label. Unlike conventional
backdoor attacks, label-specific attacks integrate benign
features as part of the trigger. This introduces a significant
challenge for defences because the compromised subnetwork
responsible for the attack behavior may overlap with the
clean parts used for main task classifications. Therefore,
detecting and isolating the malicious behavior becomes more
challenging due to this overlap.
Insights. Label-specific attacks induce a form of ”conditional
linearity” in the model, making it highly linear for inputs
from the victim class but not for others. This conditional
linearity confines the scope of the attack, enhancing its stealth
while simultaneously impacting the network’s internal feature
representations. Specifically, it reduces the orthogonality
between subnetworks due to the shared features between
compromised and clean subnetworks. This reduction in
orthogonality not only enhances the attack stealthiness but
also exacerbates the challenge of its detection and mitigation.
For empirical validation, we present in Section 5.3, Table 9,
a comprehensive analysis of the effects of different pairs of
label-specific poisoning on both orthogonality and linearity.

H8 (Impact of Adversarial Training). Adversarial training
enhances model robustness while decreasing orthogonality and
linearity.

Description. Adversarial training aims to improve machine
learning model robustness and generalizability. This approach
encourages the model to focus on complex, robust features
rather than exploiting shortcut features for decision-making,
changing how they specialize in different regions of the
feature space. Adversarial training can reduce the model’s
orthogonality and linearity, hence, detecting and isolating
the malicious behavior becomes more challenging under this
condition.
Insights. The impact of adversarial training extends to
both orthogonality and linearity. Specifically, it reduces
the model’s reliance on linear decision boundaries, pushing
towards more complex, and non-linear representations. This
shift results in diminished orthogonality among subnetworks,
as they adapt to more complex representations. Consequently,
adversarial training encourage attacks to exploit resilient
and intricate features, further reducing the orthogonality
between the clean and compromised subnetworks. This
results in increased generalizability and also come with more
difficulty to separate them. Empirical results are presented
in Section 5.3, Table 11.

H9 (Impact of Activation & Raw Weights Suppression). Acti-
vation suppression and raw weights diminish model orthogonality
and linearity.

Description. The suppression techniques for activation and
raw weights serve to align the compromised subnetwork with
a benign reference model, thereby reducing the compromised
subnetwork’s detectability. These suppression methods affect
the orthogonality and linearity of compromised subnetwork,

posing challenges to the effectiveness of detection mecha-
nisms.
Insights. Activation suppression and raw weights suppression
impact both orthogonality and linearity. When attackers
utilize these suppression techniques, they train the compro-
mised model according to a benign reference, intentionally
preventing the formation of a fully compromised sub-network.
This leads to defense methods less effective in distinguishing
between compromised and benign sub-networks. Notably,
patch attacks tend to preserve higher levels of orthogonal-
ity and linearity even under these suppression conditions,
comparing to Blend and WaNet attacks. Empirical results is
provided in Section 5.3, Table 12 and Table 13.

H10 (Composite Attack Effectiveness). Composite backdoor
attack, characterized by low orthogonality and linearity, evades
most existing defenses.

Description. Composite backdoor attacks using co-present
benign features as triggers to compromise machine learning
models. This attack poses a unique challenge to existing
defenses due to their low orthogonality and linearity. Existing
defense strategies, designed for more orthogonal and linear
triggers, struggle to effectively mitigate such composite
backdoor attacks.
Insights. Composite backdoor attacks exhibit low orthog-
onality and linearity, which complicates the detection and
removal of backdoor triggers. Orthogonality facilitates the
isolation of trigger features from benign ones, while linearity
simplifies the reverse-engineering of triggers. Composite
attacks exploit benign features as triggers, thereby reducing
their orthogonality and linearity. As a result, existing defenses
like NC [1], Fine-Pruning [4], and Activation Clustering [8],
which depend on these attributes, are ineffective against the
effect posed by composite backdoor attacks. Empirical results
can be found in Section 5.2, Table 5.

5. Empirical Results

In this section, we provide a comprehensive empirical
evaluation of our theoretical analysis and hypotheses on 14
attacks and 12 defenses. We outline the experimental setup
employed in Section 5.1. Section 5.2 examines the conditions
under which the defense mechanism fails, along with an
analysis of the underlying causes. Section 5.3 investigates
the impact of six key variables on the orthogonality and
linearity characteristics of backdoor attacks.

5.1. Experimental Setup

Evaluation Metrics.
In this section, we formalize the properties of backdoor

learning into two key measurements: orthogonality and
linearity, which are derived from our theoretical analysis in
Section 3.
Orthogonality. We frame backdoor learning within the con-
text of a dual-task continual learning paradigm, focusing our
exploration on the notion of orthogonality. In alignment with



Table 4: Existing Attacks Orthogonality and Linearity

Attack First Stage (Epoch 10) Second Stage (Epoch 100)

Acc. ASR Linear. Orth. Acc. ASR Linear. Orth.

Clean 0.78 - 0.46 31.07 0.94 - 0.47 42.27

Pa
tc

h

BadNets 0.71 1.00 0.99 72.37 0.94 1.00 0.99 78.79
TrojanNN 0.68 1.00 1.00 67.49 0.94 1.00 1.00 75.24
Dynamic 0.77 1.00 1.00 67.60 0.94 1.00 0.99 73.83
Input-aware 0.77 0.95 0.99 60.56 0.90 0.99 0.99 70.72

B
le

nd

Reflection 0.75 0.96 0.76 54.52 0.93 0.99 0.88 61.03
Blend 0.78 1.00 0.99 60.84 0.94 1.00 1.00 72.63
SIG 0.75 0.98 0.73 59.18 0.93 1.00 0.77 72.16

Fi
lte

r Instagram 0.76 0.93 0.60 63.53 0.93 1.00 0.82 62.41
DFST 0.72 0.97 0.77 58.86 0.93 1.00 0.79 64.47

In
vi

si
bl

e WaNet 0.82 0.95 0.83 62.30 0.92 0.99 0.82 65.44
Invisible 0.78 0.97 1.00 62.42 0.93 1.00 1.00 69.96
Lira 0.76 0.99 1.00 62.37 0.94 1.00 1.00 72.78

Composite 0.82 0.93 0.72 39.98 0.92 0.94 0.68 42.95

the definition in Section 3, we introduce the orthogonality
metric, denoted as Orth, to quantify the radian between the
backdoor and clean task gradients. The metric is defined as
follows:

Orth. = arccos(
L(θ⋆b ) · L(θ⋆c )

∥L(θ⋆b )∥ ∥L(θ⋆c )∥
) (10)

where L(θ⋆b ) represents the gradient vector corresponding
to the backdoor task, and L(θ⋆c ) signifies the gradient for
the clean task. Euclidean norms of the respective gradients
are computed for normalization. We follow the existing
work [39] to compute the angle between benign and backdoor
gradients as a measure of orthogonality. The process is as
follows: (1) Randomly select a batch (1024) of benign and
backdoor samples; (2) Feed both batches into the model
and calculate the average gradient across the entire model;
(3) Determine the cosine similarity between the benign and
backdoor gradients; (4) Compute the arccosine of the value
obtained in Step (3) to derive the orthogonality angle, where
a larger angle signifies greater orthogonality. A smaller
orthogonality between the gradients of the two tasks is
indicative of a model that is more robust against existing
defenses. More implementation details in Appendix B.2.
Linearity. To facilitate our linearity discussion, we first
introduce the identification compromised sub-network. We
use Shapley values [46] to carefully evaluate the activation
of neurons when exposed to poisoned samples layer by layer.
By focusing on neurons that show high activation values,
which signal their role in the backdoor behavior, we are
able to build a compromised sub-network. To investigate
this linearity further, we introduce a linearity score metric,
denoted as Linear.. The metric is defined as follows:

Linear. = LR(∆γ,∆ρ) (11)

This metric quantifies the linear relationship between changes
in input and output across each layer in the identified compro-
mised sub-network. We provide details of how to determine
the identified compromised sub-network in Appendix B.2. In
the equation, LR denotes the linear regression function [47].

We introduce perturbations to the input of the sub-network
and evaluate the variations in both inputs and outputs at each
layer accordingly. ∆γ and ∆ρ represent the fluctuations in
inputs and outputs, respectively. Specifically, the fluctuation
is introduced by adding gaussian noise to the inputs of the
sub-network. We use a linear regression function to measure
the fluctuations in inputs and outputs of the compromised
sub-network. We use R2 as the measurement of the goodness
of linear relationship. More implementation details can be
found in Appendix B.2.
Baselines.
Backdoor Attacks. Patch attacks, akin to BadNets [12],
TrojanNN [13], Dynamic [14], CL [15], and Input-aware [16]
employ small, solid-colored polygons as triggers. Blend
attacks, including Reflection [17], Blend [18] and SIG [19],
inject the trigger by blending a benign input instance with
the key pattern. Filter attacks, such as Instagram [3] and
DFST [20] use pervasive image filters like Lomo, Kelvin,
Gotham, and Toaster as triggers. Invisible attacks, such as
WaNet [21], Invisible [22] and Lira [23], generate triggers
through a pre-trained encoder network, resulting in additive
noise that is imperceptible but contains target label informa-
tion. Composite attack [24] leverages in-distribution benign
features combination as triggers.
Backdoor Defenses. Model detection (e.g., NC [1], ABS [3]
and Pixel [2]) aims to decide a model is backdoored or not by
reverse-engineering triggers. Backdoor Mitigation techniques
including FP [4], NAD [5], ANP [6] and SEAM [7] remove
backdoor behaviors by modifying model parameters. Input
detection methods such as AC [8], SS [9], Spectre [10]
and SCAn [11] purify contaminated train set by identifying
poisoned samples.

5.2. When and Why Does Defense Not Work?

In this section, we delve into an examination of the two
proposed security metrics: orthogonality and linearity scores,
as they apply to prevalent backdoor attacks. We subsequently
conduct a comprehensive evaluation of established defense
methods against these attacks, aiming to establish a meaning-
ful relationship between defense efficacy and attack metrics.
This analysis serves to validate the hypothesis introduced in
Section 4, which offers insights into the conditions under
which defense strategies prove effective and the underlying
reasons for their success.
Orthogonality and Linearity Scores of Existing Attacks.
Building upon our theoretical analysis, the empirical eval-
uation of orthogonality and linearity serves as a concrete
manifestation of the theoretical constructs, demonstrating
how the inherent characteristics of backdoor attacks. We
conduct an extensive assessment of orthogonality and lin-
earity scores for 14 well-established backdoor attacks, uti-
lizing the CIFAR-10 dataset and the ResNet-18 model. Our
findings are presented in Table 4. We follow the original
implementation of each attack, evaluating their performance
at two distinct stages: the first stage (at epoch 10) and the
second converged stage (at epoch 100). At each stage, we



Table 5: Evaluation of Various Defense Methods Against Existing Attacks

Converge (100 epochs) Model Detection Backdoor Mitigation (Acc. & ASR) Input Detection (TPR & FPR)

Dataset Attack Acc ASR
NC Pixel ABS Fine-pruning NAD ANP SEAM AC SS Spectre SCAn

Decision Index Acc ASR Acc ASR Acc ASR Acc ASR TPR FPR TPR FPR TPR FPR TPR FPR

Clean 93.76% - 1.53 1.41 0.38 91.78% - 91.89% - 89.23% - 92.61% - - 2.45% - 6.50% - 6.50% - 2.23%

BadNets 93.50% 100.00% 7.77 5.72 1.00 91.17% 1.51% 93.04% 0.87% 87.59% 3.80% 90.15% 1.45% 100.00% 2.33% 100.00% 6.50% 100.00% 6.50% 100.00% 3.50%
TrojanNN 93.59% 100.00% 3.63 4.32 1.00 90.24% 1.86% 92.93% 8.60% 90.50% 11.87% 94.13% 0.48% 100.00% 2.44% 0.00% 7.00% 100.00% 6.50% 100.00% 4.60%
Dynamic 93.52% 99.99% 3.74 5.89 1.00 92.41% 0.40% 92.71% 1.66% 82.42% 4.45% 91.24% 1.58% 0.00% 13.11% 100.00% 6.50% 100.00% 6.50% 0.00% 6.10%
CL 94.58% 98.46% 2.63 3.47 1.00 87.71% 3.69% 88.47% 4.42% 89.92% 18.18% 92.02% 23.04% 0.00% 12.91% 54.00% 29.73% 100.00% 14.00% 100.00% 5.72%Pa

tc
h

Input-aware 90.45% 99.02% 1.56 0.82 0.44 88.96% 1.50% 90.76% 1.18% 87.61% 2.38% 87.35% 3.34% 100.00% 0.00% 80.00% 6.60% 100.00% 6.50% 100.00% 3.59%

Reflection 93.29% 99.46% 1.80 1.13 0.50 92.06% 99.87% 93.00% 99.01% 86.14% 94.27% 90.70% 27.02% 0.00% 2.56% 0.00% 7.00% 0.00% 7.00% 0.00% 0.00%
Blend 93.51% 100.00% 5.67 6.46 1.00 91.12% 5.93% 92.84% 2.22% 87.31% 14.10% 90.24% 2.03% 100.00% 1.22% 60.00% 6.70% 100.00% 6.50% 0.00% 4.70%

B
le

nd

SIG 93.27% 99.74% 0.97 1.45 0.34 91.04% 79.08% 93.11% 96.47% 86.47% 0.88% 89.80% 0.07% 100.00% 1.44% 80.00% 6.60% 100.00% 6.50% 100.00% 0.00%

Instagram 93.10% 99.95% 1.33 1.39 0.94 91.07% 0.58% 92.74% 2.13% 89.00% 3.46% 90.35% 2.34% 100.00% 0.00% 100.00% 6.50% 100.00% 6.50% 0.00% 0.00%

Fi
lte

r

DFST 93.25% 99.77% 1.79 2.02 0.73 91.61% 0.14% 92.95% 4.46% 87.63% 16.47% 90.38% 3.98% 100.00% 0.00% 100.00% 6.50% 100.00% 6.50% 0.00% 17.29%

WaNet 92.05% 99.23% 0.81 1.64 0.50 90.24% 1.86% 92.25% 1.31% 89.48% 1.74% 87.19% 1.97% 100.00% 2.89% 80.00% 6.60% 100.00% 6.50% 0.00% 0.00%
Invisible 93.16% 99.99% 5.88 8.63 0.29 91.79% 0.02% 92.84% 1.70% 87.84% 2.23% 90.39% 1.82% 100.00% 0.00% 100.00% 6.50% 100.00% 6.50% 0.00% 0.00%

In
vi

si
bl

e

Lira 93.62% 100.00% 2.85 4.68 0.34 91.57% 60.37% 93.11% 100.00% 87.73% 21.69% 90.47% 2.01% 97.78% 1.67% 0.00% 7.00% 80.00% 6.60% 0.00% 0.00%

C
IF

A
R

10

Composite 92.47% 94.43% 1.61 0.91 0.34 91.76% 91.27% 90.85% 93.89% 89.83% 94.90% 89.78% 52.35% 0.00% 18.78% 0.00% 7.00% 80.00% 6.60% 0.00% 5.70%

Clean 96.75% - 1.88 1.54 0.07 94.38% - 94.81% - 95.97% - 94.95% - - 3.21% - 29.53% - 29.53% - 3.12%

BadNets 96.17% 100.00% 4.83 3.87 1.00 94.01% 0.01% 96.32% 0.09% 93.52% 0.00% 94.43% 0.03% 100.00% 6.12% 100.00% 29.53% 100.00% 29.53% 100.00% 31.00%
TrojanNN 96.08% 100.00% 2.48 3.29 1.00 92.11% 1.51% 94.35% 0.56% 93.68% 9.97% 94.97% 0.36% 100.00% 5.04% 100.00% 29.53% 100.00% 29.53% 100.00% 1.93%
Dynamic 96.22% 99.66% 4.17 3.55 1.00 94.54% 0.07% 93.96% 0.25% 89.11% 0.78% 93.44% 0.02% 0.00% 5.12% 100.00% 29.53% 100.00% 29.53% 0.00% 1.86%Pa

tc
h

Input-aware 93.69% 92.19% 4.04 4.23 1.00 93.37% 0.01% 92.92% 20.02% 88.05% 9.92% 94.54% 0.10% 0.00% 3.80% 100.00% 29.53% 100.00% 29.53% 0.00% 93.02%

Reflection 95.60% 93.90% 2.56 1.96 0.16 90.67% 74.29% 94.65% 92.99% 87.16% 92.63% 94.05% 44.75% 0.00% 5.97% 83.33% 29.61% 83.33% 29.61% 93.33% 0.00%
Blend 96.85% 100.00% 1.13 1.11 1.00 91.92% 4.38% 95.79% 0.03% 93.76% 18.01% 89.07% 0.21% 100.00% 3.80% 100.00% 29.53% 100.00% 29.53% 100.00% 1.24%

B
le

nd

SIG 95.65% 88.79% 1.31 1.21 0.04 88.48% 59.49% 93.70% 84.27% 93.36% 86.20% 91.46% 0.34% 0.00% 4.65% 66.67% 29.69% 83.33% 29.61% 0.00% 2.17%

Instagram 95.72% 99.98% 2.16 2.16 1.00 93.63% 77.79% 94.66% 70.80% 92.26% 0.04% 94.62% 0.02% 100.00% 4.50% 100.00% 29.53% 100.00% 29.53% 100.00% 1.40%

Fi
lte

r

DFST 96.08% 98.32% 1.92 1.82 0.58 95.66% 64.92% 95.80% 77.82% 96.35% 69.44% 95.23% 0.31% 100.00% 2.79% 100.00% 29.53% 100.00% 29.53% 0.00% 1.94%

WaNet 94.64% 98.55% 1.72 1.59 0.13 92.26% 8.57% 94.40% 0.06% 95.70% 0.08% 94.09% 0.00% 100.00% 3.18% 100.00% 29.5% 100.00% 29.53% 0.00% 1.94%
Invisible 96.33% 99.97% 3.86 3.17 0.06 94.02% 0.04% 95.85% 1.07% 90.25% 9.87% 95.06% 0.00% 100.00% 4.11% 100.00% 29.53% 100.00% 29.53% 100.00% 2.64%

In
vi

si
bl

e

Lira 96.36% 100.00% 3.25 1.27 0.20 94.48% 0.25% 95.99% 0.02% 93.63% 1.00% 94.58% 0.54% 100.00% 5.27% 100.00% 29.53% 83.33% 29.61% 100.00% 2.02%

G
T

SR
B

Composite 92.95% 97.35% 2.61 2.74 0.15 93.73% 67.14% 85.66% 59.85% 93.26% 73.39% 89.12% 58.97% 0.00% 0.16% 83.33% 29.61% 83.33% 29.61% 0.00% 1.32%

provide results on benign accuracy (Acc.), attack success
rate (ASR), linearity, and orthogonality scores for various
attacked models. The definition of each metrics can be
found in Section 5.1. Notably, it is evident that backdoor
learning is completed during the first stage, ahead of benign
classification, as indicated by the high ASRs during this
phase. This observation is corroborated by the close proximity
of orthogonality and linearity scores at both stages, as
seen in many cases. Specifically, we observe that for most
existing attacks, the backdoor and clean gradients display
a tendency towards orthogonality in both stages in Table 4.
Note that an angle of approximately 70 degrees [39] is
generally considered indicative of orthogonality in the context
of deep neural networks’ complexity. These results align
with our theoretical analysis in Section 3. Furthermore, we
examine the differences among the attacks when they reach
convergence at the second stage. Observe that several attacks
demonstrate high linearity scores, exceeding 0.9, with the
exceptions of Reflection, SIG, Instagram, DFST, WaNet,
and Composite. Intriguingly, these exceptional attacks also
display slightly low orthogonality scores, falling below 65
degrees, in comparison to the other attacks. Moreover, at
the category level, we notice that patch and blend triggers
generally exhibit greater orthogonality and linearity compared
to filter, invisible, and composite triggers.

Evaluation on Existing Defense Methods. We conduct an
in-depth analysis to assess the effectiveness of 12 defense
methods against various attacks on the CIFAR-10 and
GTSRB datasets, using both ResNet-18 and WRN models.
Our findings are summarized in Table 5. In the table, the first

column identifies the dataset, the second column specifies
the attack type, and the third column provides the benign
accuracy (Acc.), while the fourth column reports the Attack
Success Rate (ASR). The following three columns showcase
the performance of three model detection methods: NC, Pixel,
and ABS. Each method is represented by its decision index,
with detection thresholds set at 2.0 for NC and Pixel, and
0.88 for ABS. Models exceeding these thresholds are flagged
as potentially compromised. In the subsequent eight columns,
we present the results of four backdoor mitigation approaches:
Fine-pruning, NAD, ANP, and SEAM. We gauge their
effectiveness by examining the resulting changes in Accuracy
(Acc.) and ASR after mitigation. Successful mitigation is
indicated by a reduced ASR with minimal impact on accuracy.
The last eight columns detail the performance of four input
detection methods: AC, SS, Spectre, and SCAn. We assess
their efficacy using metrics including True Positive Rate
(TPR) and False Positive Rate (FPR). Effective detection is
characterized by a high TPR and a low FPR.

Interestingly, we have observed a noteworthy correlation
between defense performance and attack characteristics,
specifically in terms of orthogonality and linearity scores.
This observation aligns with our previously discussed hy-
pothesis in Section 4. For example, the Reflection attack,
characterized as non-orthogonal and non-linear, consistently
demonstrates robust performance against all defense method-
ologies. It’s worth noting that none of the model detection
methods are effective in detecting it, and mitigation strategies
struggle to significantly reduce its impact, leaving at least
a 27.02% ASR intact. Furthermore, all input detection



Table 6: Evaluation on Weight Analysis

Attack ROC AUC Precision Recall Linearity

WaNet 0.6167 0.5976 0.5667 0.82

Blend 0.8444 0.8117 0.8000 1.00

Patch 1.0000 1.0000 1.0000 0.99

Table 7: Evaluation on Different Poisoning Rates

Ak PR BA ASR Orth. Linear. NC ABS
FP NAD

Acc ASR Acc ASR

Pa
tc

h 1% 93.87 100.00 77.88 0.97 3.65 1.00 88.73 1.28 88.97 2.53
10% 93.65 100.00 78.99 0.99 5.09 1.00 91.37 0.98 90.71 0.78
50% 93.22 100.00 80.16 0.96 3.95 1.00 90.04 1.04 89.27 0.67

B
le

nd

1% 93.92 99.78 74.32 0.98 3.22 1.00 89.50 5.86 87.80 2.73
10% 93.83 100.00 72.82 0.99 4.76 1.00 91.92 3.94 91.67 0.01
50% 93.07 100.00 71.47 0.94 6.46 1.00 90.50 1.34 89.68 0.06

W
aN

et 1% 93.59 94.84 61.35 0.95 2.35 0.99 90.86 1.18 89.33 2.05
10% 93.38 99.70 59.79 0.93 6.08 0.97 90.59 2.78 91.21 4.61
50% 92.84 99.94 63.54 0.93 2.84 0.96 90.31 2.10 89.34 0.93

methods effectively identify samples affected by the Re-
flection attack, with a generally 0% TPR. A similar pattern
emerges with the Composite attack, which shares these non-
orthogonal and non-linear properties and proves to be resilient
against all defense methods. Conversely, attacks exhibiting
either slightly low orthogonality or linearity scores tend to
withstand certain defense strategies, further validating the
connection between attack scores and defense performance.
These findings provide empirical support for our hypothesis,
H1 – H5, and H10 in Section 4.
Weight Analysis. To validate our hypothesis H5, we conduct
an evaluation of the weight analysis technique against three
distinct attacks with varying levels of linearity. For each type
of attack, we train 30 poisoned and 30 clean models using
CIFAR-10 and ResNet18, to create a comprehensive model
dataset. We leverage the winning solution presented in [43],
which involves extracting raw weights as features from the
target model to train a binary classifier for detecting backdoor
models. The results, including ROC AUC, Precision, and
Recall under 5-fold cross-validation, are summarized in
Table 6. Observe that the weight analysis technique exhibits
a robust detection capability for identifying backdoors with
high linearity scores, such as Patch and Blend. However,
its performance is more modest on Wanet, which exhibits
relatively lower linearity, achieving an ROC AUC of 0.6167.
These experimental findings provide support for our hypoth-
esis H5.

5.3. Factors Impacting Attacks

In this section, we investigate six attack variations in
four key performance and security metrics, including Attack
Success Rate (ASR), Accuracy (Acc.), Orthogonality (Orth.),
and Linearity (Linear.), under disparate attack configurations.
To illustrate these effects, we consider three exemplary trigger
patterns: Patch [12], Blend [18], and WaNet [21]. Note that
we solely leverage these trigger pattern without including any

Table 8: Evaluation on Different Attack Confidences

Ak Cf BA ASR TC Orth. Linear. NC ABS
FP NAD

Acc ASR Acc ASR

Pa
tc

h 1.0 93.88 100.00 0.99 78.62 0.99 3.84 1.00 88.38 3.68 91.23 1.81
0.6 93.80 100.00 0.93 77.85 0.99 3.80 1.00 89.06 8.34 90.09 8.74
0.2 93.91 100.00 0.68 66.42 0.99 3.81 1.00 89.89 13.82 90.37 17.81

B
le

nd

1.0 93.81 99.98 0.99 78.64 0.97 2.34 0.99 87.65 0.33 90.43 0.29
0.6 93.79 100.00 0.93 77.75 0.93 2.61 0.98 87.06 0.76 90.86 0.66
0.2 93.78 100.00 0.69 62.61 0.93 2.69 0.91 89.16 7.44 90.19 1.53

W
aN

et 1.0 93.66 98.90 0.99 73.76 0.94 3.12 0.99 88.36 0.86 91.34 0.91
0.6 93.68 99.45 0.93 69.81 0.91 2.52 0.94 87.87 1.38 89.64 0.99
0.2 93.51 99.65 0.68 67.40 0.91 2.51 0.93 88.94 3.50 90.45 1.47

Table 9: Evaluation on Label-specific Poisoning

Ak VT BA ASR N-ASR Orth. Linear. NC ABS
FP NAD

Acc ASR Acc ASR

Pa
tc

h 0-1 93.77 96.33 1.32 50.33 0.95 2.43 1.00 88.07 7.23 91.53 11.89
3-6 93.70 91.57 2.67 49.36 0.99 2.27 0.94 89.02 50.12 88.98 43.09
7-9 93.90 96.34 0.89 46.87 0.98 2.83 1.00 89.60 9.10 91.74 11.51

B
le

nd

0-1 93.45 95.46 1.71 52.17 0.93 2.34 0.95 88.57 12.32 91.29 22.17
3-6 93.38 89.18 3.57 49.98 0.86 2.67 0.97 87.53 22.20 87.57 33.41
7-9 93.45 93.13 0.88 51.33 0.87 2.58 0.99 89.88 11.14 90.06 5.51

W
aN

et 0-1 93.47 96.45 1.67 53.32 0.88 2.70 0.97 88.64 6.11 91.31 10.55
3-6 93.26 89.32 3.10 49.99 0.82 1.94 0.91 88.57 8.72 89.95 13.27
7-9 93.49 96.10 1.07 50.47 0.89 2.68 1.00 88.67 6.00 90.40 8.65

special training, e.g., sample-specific adversarial training in
WaNet. Furthermore, we assess each attack configuration on
four typical defense methods, i.e., NC [1], ABS [3], FP [4]
and NAD [5], and connect the result with orthogonality and
linearity.
Universal Data Poisoning. We evaluate the impact of
varying poisoning rates, 1%, 10%, and 50% as summarized
in Table 7. The first column in the table represents the attack
trigger pattern (Ak), while the second column presents the
corresponding poisoning rate (PR). The subsequent four
columns illustrate key metrics: BA, ASR, Orthogonality, and
Linearity scores. The seventh and eighth columns depict the
decision scores for NC and ABS. The last four columns
provide the accuracy and ASR after applying mitigation
methods, i.e., FP and NAD. Across all configurations of
the attack, we consistently observed a high ASR of 100%,
indicating the effectiveness of the attack mechanism. More-
over, the accuracy (BA) remained consistently above 92%,
demonstrating that the models retained their performance in
their primary tasks. The linearity scores consistently reach
high values, typically ranging between 0.93 and 0.99, sug-
gesting that the decision boundaries of the backdoor remain
predominantly linear. In terms of orthogonality scores, we
notice relatively consistent values across different poisoning
rates for each trigger type. Notably, patch and blend triggers
achieve high scores exceeding 71, while WaNet exhibits a
slightly lower score of around 60. The decision scores of
both NC and ABS are in line with the linearity scores and
all the attacks are successfully detected. The results obtained
from FP and NAD aligned with the orthogonality scores,
with ASRs reduced to a low level, typically below 6%, for
all trigger types. It suggests that the poisoning rate has a



minimal impact on the attack’s performance and security
properties.
Low Confidence Poisoning. We conduct an assessment to
investigate the impact of low-confidence poisoning strategy.
More specifically, the low-confidence poisoning approach
employs label smoothing, as outlined in [48], to diminish
the confidence associated with the target label of the attack.
We configured the target confidence levels at 1.0, 0.6, and
0.2 for three distinct triggers, while maintaining all other
parameters constant, such as a 10% poisoning rate. The
outcomes are presented in Table 8, which shares most of its
columns with Table 7. Particularly, the second column of
the table showcases the poisoning confidence (Cf), and the
fifth column presents the resulting target confidence (TC)
after the model converges. It’s important to observe that in
all cases, BA and ASR remain consistently high. As the
poisoning confidence decreases, the target confidence is also
reduced, indicating the successful implementation of the
low-confidence strategy. Furthermore, we note a decrease in
orthogonality scores as the target confidence level declines,
generally observed across all three triggers. Linearity scores
exhibit a slight decrease but still remain high above 0.91.
The performance of the baselines remain in alignment with
both scores. The detection capabilities NC and ABS remain
effective in identifying the presence of a backdoor. However,
the effectiveness of mitigation methods, FP and NAD is
influenced by the low-confidence attack. In some cases, we
observe the resulting ASRs exceed 10% for patch triggers
when the target confidence is as low as 0.2. These findings
align with the hypothesis presented in Section 4, further
reinforcing our hypothesis in H6.
Label-specific Poisoning. We assess the impact of label-
specific poisoning, which involves using adversarial training
to ensure that the trigger does not cause misclassification on
non-victim class samples. Our experiments focus on three
different label pairs: 0-1, 3-6, and 7-9, as presented in Table 9.
Notably in this table, the second column indicates the victim-
target pair (VT), where, for example, “0-1” signifies the
victim class as 0 and the target class as 1. The fifth column
presents the ASR on non-victim samples where the low
values indicate the success of label-specific poisoning. BA
remain consistently high. There is a slight decrease in ASR
by 7% to 10%, yet remaining above 89% which is sufficiently
effective. This decline can be attributed to the adversarial
training. Additionally, both orthogonality and linearity scores
show decreases, particularly orthogonality, with a nearly 20%
reduction. As a result, we observe a decrease in the defense
performance. For instance, NC struggles to detect WaNet in
the second last row (acheveing 1.91 anomaly score lower
than its threshold 2), even when provided with validation
samples from the victim class. Likewise, mitigation methods
have limited success in reducing the impact of the attack.
For example, in the second row, both FP and NAD could
only reduce the ASR for the patch trigger to 50% and 43%.
These results are consistent with the hypothesis discussed in
our hypothesis H7, as detailed in Section 4.
Adversarial Training. We explore the impact of adversarial
training. Adversarial training involves introducing random

noisy triggers to samples without altering their labels. This
strategy aims to compel the model to focus on intricate
trigger patterns rather than simply learning basic features.
More details in Appendix B.3, the results are consistent with
hypothesis H8 in Section 4.
Activation & Raw Weights Suppression. We investigate
the impact of activation and raw weights suppression. Specif-
ically, we employ a benign reference model to guide the
restriction of activation values and weights generated by
the poisoned model, ensuring they align closely with their
counterparts in the benign model during training. More details
in Appendix B.4, the results are consistent with hypothesis
H9 in Section 4.

We provide an evaluation of input detection methods
under the six attack variations in Appendix B.5 and visualize
the six attack variations in Supplementary [49] A. We
also evaluate two additional non-linear activation functions
other than ReLU in Supplementary [49] B, investigate the
convergence epoch of the backdoor task and the clean task
in Supplementary [49] C, and study different sizes of neural
networks in Supplementary [49] D.

6. Related Work

Backdoor Attack. The landscape of backdoor attacks in
machine learning is both diverse and rapidly evolving. Early
studies utilized static patches to corrupt training data [12],
[13]. In contrast, clean-label attacks manipulate samples
while preserving their original labels [15], [50], [51]. Ad-
vances in this domain have introduced sophisticated trans-
formations in both input and feature space as triggers [13],
[14], [16], [17], [18], [20], [21], [22], [24], [52].
Backdoor Defense. Defensive mechanisms against backdoor
attacks span various phases of the model lifecycle. During
training, statistical methods are employed to segregate mali-
cious samples from clean data [9], [10], [41], [53]. In the
post-training phase, model purification approaches [4], [5],
[6] aim to remove backdoor elements while retaining the
model’s original capabilities. Additionally, trigger inversion
techniques focus on reverse-engineering backdoor triggers
to ascertain the integrity of a model [1], [3], [25], [54], [55],
[56], [57], [58]. Running time defenses seek to identify and
discard samples that carry malicious triggers [59], [60].

7. Conclusion

We systematically explore why existing defenses fail on
certain backdoor attacks, and provide a theoretical analysis
on two critical properties, orthogonality and linearity. Our
study, covering 14 attacks and 12 defenses, demonstrates
that existing defenses are particularly vulnerable to attacks
with low orthogonality or linearity. Additionally, we study
six critical factors that affect backdoor attacks. This paper
not only sheds light on why defenses fail but also paves the
way for developing more robust defense mechanisms in the
future.
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Appendix A.
Theoretical Proofs

A.1. Summary of Symbols

We summarize a comprehensive list of all notations in
Table 10.

Table 10: Glossary of Notations.

Notation Description

Rd Input space
Rp Parameter space
b Backdoor task
c Clean task
x Generalized input
y Generalized ground-truth
xb Backdoor sample
xc Clean sample
f Model
f⋆ Converged model
∇θf(x, θ0) Gradient of f wrt. weights at initial configuration θ0
L Model loss function
θ Model parameters
θ⋆ Converged model parameters
⊥ Orthogonal
Ỹ Residuals of Y
ỹi Residuals of yi
η Learning rate (a.k.a. step size)
ϕ Feature map
rb Backdoor risk in first stage
r̃b Backdoor risk in second stage
∥ · ∥F Frobenius norm
Rk Decision hyperplane of label k
B Trojan hyperplane
l Layer index
Wl Weight matrix of layer l
bl Bias vector of layer l
g Pre-activation function
h Nonlinear activation function

A.2. Proof of Theorem 3.4

Proof. In the proof of Theorem 3.4, we showed that, for a
fixed clean training task c in stage 2, we have that:

f(xb, θ
⋆
c ) = f(xb, θ

⋆
b ) + ⟨∇θf(xb, θ

⋆
b ), θ

⋆
c − θ⋆b ⟩ (12)

With the orthogonality assumption in 3.3, we can show that:

⟨∇θf(xb, θ
⋆
b ), θ

⋆
c − θ⋆b ⟩ = 0 (13)

https://github.com/KaiyuanZh/OrthogLinearBackdoor


Therefore,
f(xb, θ

⋆
c ) = f(xb, θ

⋆
b ) (14)

Recall that we already defined rb be the backdoor risk in
stage 1 and r̃b be the backdoor risk in stage 2 in 3.6:

rb = E(x,y)∼Db
[ℓ(y, f(x; θb))] (15)

r̃b = E(x,y)∼Db
[ℓ(y, f(x; θc))] (16)

Therefore,
rb = r̃b (17)

As a result, the theorem indicates that the learned backdoor
behaviors in the first phase will not be changed and stay in
the second stage. We conclude our proof.

A.3. Proof of Lemma 3.5

Proof. With the Neural Tangent Kernel (NTK) formulation
in Definition 3.2, following [35], we have that:

f(x, θc) = f(x, θ⋆b ) +∇θf(x, θ
⋆
b )

T (θc − θ⋆b ) (18)

for any data sample x.
If we take function f as a minimization problem, it is

equivalent to minimize the following objective:

θ⋆c = argmin
θc∈Rd

nc∑
i=1

(f(xc,i; θc)− yc,i)
2

= argmin
θc∈Rd

nc∑
i=1

(f(xc,i, θ
⋆
b ) +∇θf(xc,i, θ

⋆
b )

T (θc − θ⋆b )− yc,i)
2

= argmin
θc∈Rd

nc∑
i=1

(ϕ(xc,i)
T (θc − θ⋆b )− ỹc,i)

2

= argmin
θc∈Rd

∥∥∥ϕ(Xc)
T (θc − θ⋆b )− Ỹc

∥∥∥2
2

(19)
where ϕ(xc) = ∇θfb(xc, θ

⋆
b ) and ỹc = yc − fb(xc, θ

⋆
b ) for

any clean sample (xc, yc), ϕ(Xc) =
[
ϕ(xc,1) · · · ϕ(xc,nc)

]
is a matrix with columns given by ϕ(xc)’s, and Ỹc =
[ỹc,1 · · · ỹc,nc

]T .
Since we assume that ϕ(Xc) has full row-rank, the

standard least-squares solution (which is unique and follows
from computing the stationary point) is:

θ⋆c = θ⋆b + (ϕ(Xc)ϕ(Xc)
T )−1ϕ(Xc)Ỹc . (20)

Then, by replacing θ⋆c back into the NTK approximation,
we get:

f(x, θ⋆c ) = f(x, θ⋆b ) + ϕ(x)T (ϕ(Xc)ϕ(Xc)
T )−1ϕ(Xc)Ỹc

(21)
We conclude our proof.

A.4. Proof of Theorem 3.6

Proof. Following the backdoor risk definition in Theo-
rem 3.6, we have the backdoor risk as:

r̃b = E(x,y)∼Db
[ℓ(y, fc(x; θ))]

= E(x,y)∼Db
[(f⋆

c (xb)− yb)
2]

(22)

Re-writting this expression between a source (backdoor)
task b and target (clean) task c (i.e the target task occurs
after the source task: b < c), from Lemma 3.5, we can get:

f⋆
c (xb) = f⋆

b (xb) + f̃⋆
c (xb)

= f⋆
b (xb) + ϕ(xb)

T (ϕ(Xc)ϕ(Xc)
T )−1ϕ(Xc)Ỹc

(23)
where f̃⋆

c (xb) = ϕ(xb)
T (ϕ(Xc)ϕ(Xc)

T )−1ϕ(Xc)Ỹc for any
backdoor sample xb.

Then we can re-write the backdoor risk as:

r̃b = E(x,y)∼Db
[(f⋆

c (xb)− yb)
2]

= E(x,y)∼Db
[(f⋆

b (xb) + f̃⋆
c (xb)− yb)

2]

≤ 2E(x,y)∼Db
[ (f⋆

b (xb)− yb)
2︸ ︷︷ ︸

Stage 1 Backdoor Loss

]

+ 2E(x,y)∼Db
[ f̃⋆

c (xb)
2︸ ︷︷ ︸

Backdoor Loss on Clean Model

]

≤ 2rb + 2E(x,y)∼Db
[f̃⋆

c (xb)
2]

(24)

Here rb is relatively small. Consequently, we can bound
backdoor risk in stage 2 by E(x,y)∼Db

[f̃⋆
c (xb)

2]. We conclude
our proof.

A.5. Proof of Lemma 3.7

Proof. Following Lemma 3.5 and Theorem 3.6, we have
E(x,y)∼Db

[f̃⋆
c (xb)

2] as:

E(x,y)∼Db
[f̃⋆

c (xb)
2]

= E(x,y)∼Db
[(ϕ(xb)

Tϕ(Xc)
−T Ỹc)

2]

=
1

nb

nb∑
i=1

Ỹ T
c ϕ(Xc)

−1ϕ(xb)ϕ(xb)
Tϕ(Xc)

−T Ỹc

=
1

nb
Ỹ T
c ϕ(Xc)

−1ϕ(Xb)ϕ(Xb)
Tϕ(Xc)

−T Ỹc

=
1

nb

∥∥∥(ϕ(Xc)
−1ϕ(Xb))

T Ỹc

∥∥∥2
2

≤ 1

nb

∥∥ϕ(Xc)
−1ϕ(Xb)

∥∥2
op

∥∥∥Ỹc

∥∥∥2
2

=
1

nb

∥∥(ϕ(Xc)
Tϕ(Xc))

−1ϕ(Xc)
Tϕ(Xb)

∥∥2
op

∥∥∥Ỹc

∥∥∥2
2

≤ 1

nb

∥∥(ϕ(Xc)
Tϕ(Xc))

−1
∥∥2
op

∥∥ϕ(Xc)
Tϕ(Xb)

∥∥2
op

∥∥∥Ỹc

∥∥∥2
2

≤ 1

nb

∥∥(ϕ(Xc)
Tϕ(Xc))

−1
∥∥2
op

∥∥∥Ỹc

∥∥∥2
2︸ ︷︷ ︸

other constants

·
∥∥ϕ(Xc)

Tϕ(Xb)
∥∥2
F︸ ︷︷ ︸

measure of coherence

(25)



where ϕ(Xb) =
[
ϕ(xb,1) · · · ϕ(xb,nb

)
]

is a matrix with
columns given by ϕ(xb)’s, ∥ · ∥op denotes the operator or
spectral norm (i.e., largest singular value of a matrix), and
∥ · ∥F denotes the Frobenius norm. We conclude our proof.

A.6. Proof of Proposition 3.9

Proof. The Proposition 3.9 establishes a connection between
the persistence of backdoors and the linearity networks. We
prove by simple analysis based on a deep feedforward neural
network f composed of multiple computational layers as
follows:

f(x, θ) = gout ◦hL ◦ gL ◦ · · · ◦hl ◦ gl ◦ · · · ◦h1 ◦ g1(x) (26)

where g is a pre-activation function, h is a nonlinear
activation function, and l indexes the layers, l ∈ [L]. The
parameter θ consists of weight matrices Wl and bias vectors
bl for each layer. For our nonlinear activation function h(x),
we adopt ReLU defined as h(x) = max{0, x}, which is
piecewise linear. h(x) can be either constant 0 or linear,
depending on the inputs. Recall that we prove benign
training is orthogonal to the backdoor training in Section 3.2
and Section 3.3. Specifically, we observe there exists a set
of neurons responsible for backdoor behaviors and forms
a compromised sub-network, which is highly linear (in
Section 3.4 and Table 4). Besides, the compromised sub-
network training doesn’t overlap or conflict with the rest
sub-network training. Therefore, the linearity will survive in
the benign training.

Appendix B.
Experiments

B.1. Datasets and Network Architectures

We use two different datasets in our experiments, chosen
for their heterogeneity in terms of dimensionality, sample
size, and underlying phenomena. We provide details and
basic statistics below. These datasets are commonly evaluated
in prior backdoor attack and defense studies. To explore
the impact of network architecture on orthogonality and
linearity, we experiment with three distinct neural network
architectures: VGG11 [61], Resnet18 [62], and WRN [63].
CIFAR-10. The CIFAR-10 dataset [37] serves as a bench-
mark for object recognition tasks and is commonly used
in the field of backdoor attack and defense. It has 3,072
features, 60,000 samples for training and 10,000 for testing.
GTSRB. The GTSRB dataset [64], or German Traffic Sign
Recognition Dataset, contains 43 different traffic signs, which
is designed for training models in self-driving scenarios. The
dataset is partitioned into 35,289 training samples, 3,920
validation samples, and 12,630 test samples.

B.2. Evaluation Metrics Implementation Details

We outline the engineering methods that translate the
theoretical concepts of orthogonality and linearity into a

practical implementation. The procedure consists of three
steps: identifying the compromised sub-network, computing
clean and backdoor gradients, and extracting representative
activations.
Identifying Compromised Sub-network. The interpretabil-
ity of deep neural networks has garnered considerable
research attention, resulting in various methods aimed at
understanding complex network predictions [46], [65], [66].
Despite these advancements, obtaining precise neuron ac-
tivation values in deep architectures remains non-trivial.
We leverage Shapley values to exclusively assess neuron
activations in each layer using poisoned samples [46].

Crucially, our quantitative evaluation of each neuron’s
input contribution, whether benign or compromised, is
solely based on these poisoned samples. This strategy stems
from the observation that compromised neurons typically
manifest higher activation levels compared to benign ones.
Following this, we sort the neurons based on their activation
contributions in descending order and identify the top 3% as
compromised, ensuring we focus on neurons with significant
impact. Figure 5 illustrates a typical distribution of activation
values, where the blue bars denote clean and red bars denotes
compromised activations. Observe that compromised part
exhibits extremely large values.
Computing Clean and Backdoor Gradients. In this phase,
our focus shifts to measuring the underlying differences
between clean and poisoned samples, specifically by exam-
ining the gradients in the neural network. Across multiple
layers, gradients are derived by computing the difference in
loss, effectively capturing how sensitive the network is to
each type of input. By averaging gradients, we achieve a
more robust representation. The ultimate goal is to calculate
the cosine similarity between these averaged gradients,
providing a quantifiable metric for their orthogonality. This
aids in distinguishing compromised neurons and serves as a
precursor for further orthogonality analysis.
Extracting Representative Activations. Upon identifying
compromised neurons, the next focus is the calculation
of their corresponding activations. These activations are
encapsulated in a four-dimensional matrix represented as
(batch, n, height, width), where batch is the batch size, n
indicates the number of feature maps or channels in a CNN,
and height and width represent the height and width of
the input data or feature map within the CNN, respectively.
Initially, we flatten the dimensions height and width into a
single dimension height·width via multiplication, leading to
a reshaped matrix (batch, n, height · width). Subsequently,
the dimensionality is further reduced by retaining only the
maximum values along the height · width axis, yielding a
simplified matrix (batch, n). This methodology is aligned
with established practices in existing work [67].

B.3. Adversarial Training

Our findings are detailed in Table 11, where the second
row represents the adversarial rates (proportion of adversarial
samples within the entire training set), and the fifth column
displays the ASR of random noisy triggers. Notably, both BA
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Table 11: Evaluation on Adversarial Poisoning

Ak NR BA ASR R-ASR Orth. Linear. NC ABS
FP NAD

Acc ASR Acc ASR

Pa
tc

h 10% 93.85 100.00 0.82 72.10 0.99 2.18 1.00 86.99 3.62 91.05 3.59
20% 93.88 100.00 0.73 71.71 0.97 2.45 1.00 87.18 1.43 90.79 3.52
50% 94.06 100.00 0.61 71.94 0.94 2.98 1.00 87.14 2.14 90.71 6.97

B
le

nd

10% 93.87 99.95 0.97 67.99 0.99 3.46 1.00 89.99 10.01 90.46 1.94
20% 93.37 99.99 1.13 65.66 0.98 3.08 1.00 88.63 12.36 90.72 2.88
50% 92.77 100.00 0.93 62.11 0.91 1.26 0.61 89.37 15.25 88.69 6.77

W
aN

et 10% 93.61 99.58 0.60 62.85 0.89 1.11 0.45 88.96 11.99 90.45 0.84
20% 93.32 99.59 0.80 61.34 0.84 1.30 0.45 90.10 13.88 90.53 0.93
50% 93.17 99.70 0.72 59.51 0.82 1.16 0.27 88.40 14.01 89.88 1.92

and ASR are high, indicating the success of diverse attacks.
Furthermore, adversarial training proves effective, as the
random noisy ASRs (R-ASRs) are significantly low. However,
there is a slight decline in both orthogonality and linearity
scores, resulting in a decrease in defense performance. For
instance, NC and ABS struggle to detect the backdoor in
the case of WaNet with adversarial training. Additionally,
we observe several instances where FP have limited impact
on reducing the effectiveness of blend and WaNet, resulting
in ASRs exceeding 10%. These results are consistent with
our hypothesis H8 in Section 4.

B.4. Activation & Raw Weights Suppression

The results are presented in Table 12 and Table 13. In
both tables, the second columns indicate the penalty weight
associated with the suppression loss relative to the cross-
entropy loss, and the fifth columns display the similarity
scores, measured as Mean Squared Error. In both cases,
we observe a slight reduction in orthogonality and linearity
scores. This reduction extends to the effectiveness of defense
methods. For instance, NC and ABS cannot detect backdoors
introduced by blend and WaNet triggers. Similarly, mitigation
methods exhibit a slight reduction in performance; for
example, in Table 12, NAD only reduces the ASR of the patch
trigger to 6.65% in the third row. These observations align
with our previously discussed hypothesis H9 in Section 4.

B.5. Evaluation Regarding Input Detection Methods
Under Attack Variations

We assess the impact of six variation factors on two
prominent backdoor defense techniques, as referenced in [8],

Table 12: Evaluation on Activation Suppression

Ak PW BA ASR Sim. Orth. Linear. NC ABS
FP NAD

Acc ASR Acc ASR

Pa
tc

h 0.1 95.10 100.00 0.029 72.27 0.89 2.87 1.00 88.84 2.67 91.04 2.31
1 95.30 100.00 0.008 73.81 0.85 2.51 1.00 88.36 1.74 91.49 1.87
10 94.72 100.00 0.003 65.59 0.84 2.33 1.00 89.22 2.21 91.46 6.65

B
le

nd

0.1 94.96 100.00 0.018 73.12 0.89 1.83 0.82 87.81 0.14 92.11 0.71
1 95.08 100.00 0.005 68.23 0.88 1.47 0.75 88.92 1.51 91.66 0.90
10 95.12 100.00 0.002 58.63 0.83 1.09 0.53 89.31 2.35 91.41 3.17

W
aN

et 0.1 95.13 99.82 0.033 67.46 0.85 2.01 0.82 86.95 1.21 91.69 0.81
1 94.91 99.81 0.011 63.97 0.85 1.55 0.65 88.73 2.62 91.95 0.99
10 94.68 99.96 0.004 55.79 0.84 1.65 0.55 89.69 3.81 91.35 3.89

Table 13: Evaluation on Weights Suppression

Ak PW BA ASR Sim. Orth. Linear. NC ABS
FP NAD

Acc ASR Acc ASR

Pa
tc

h 0.01 95.10 100.00 9.510 77.44 0.97 3.59 0.97 90.18 2.10 91.65 1.09
0.05 94.09 99.98 0.931 75.65 0.91 2.70 1.00 89.15 2.89 91.55 0.96
0.1 94.08 100.00 0.714 74.01 0.85 2.54 1.00 88.90 4.83 91.46 1.81

B
le

nd

0.01 95.28 100.00 9.448 74.33 0.80 1.87 0.51 89.43 0.10 91.68 0.19
0.05 94.32 100.00 0.879 74.73 0.78 1.31 0.36 89.15 1.89 91.55 0.96
0.1 93.97 99.93 0.656 61.43 0.66 0.73 0.36 90.16 2.00 91.98 2.37

W
aN

et 0.01 95.11 99.72 11.240 67.07 0.93 1.90 0.70 89.09 1.40 91.87 0.72
0.05 94.30 97.17 2.248 65.89 0.91 1.44 0.60 89.31 1.72 91.27 1.06
0.1 93.79 94.54 1.655 54.19 0.85 0.79 0.45 88.67 2.01 91.30 2.91

[9], using WaNet triggers [21]. All models are trained on
CIFAR-10 employing the ResNet18 architecture. To measure
their effectiveness, we employ the TPR and FPR. The
results are presented in Table 14 in Supplementary [49].
Notably, poisoned models consistently maintain high BA
and ASR across all variation factors. For example, after
adapting WaNet with an Activation Suppression constraint,
the poisoned model still achieves a 94.91% benign accuracy
and a 99.81% ASR. As indicated in the second, third,
and fourth rows, factors such as Universal Data-Poisoning,
Low Confidence, and Adversarial Training have minimal
impact on the detectability of the two defense techniques.
Specifically, AC can still maintain a 100% TPR with a
5.33% FPR, even when subjected to poisoning enhanced
by Adversarial Training. Conversely, the effectiveness of
both defense techniques is substantially affected by Label
Specific, Activation Suppression, and Weight Calibration.
For instance, upon introducing weight calibration, Spectral
Signature can only achieve a 20.00% TPR and a 14.22%
FPR when detecting poison samples. This suggests that these
variation factors significantly reduce the internal separability
between poisoned and clean samples, thus supporting our
hypothesis H8 and H9. To analyze the results, we have
included latent embedding distributions in Figure 7 in
Supplementary [49], with each sub-figure representing a
variation of the attack. It’s worth noting that the Label
Specific, Activation Suppression, and Weight Calibration
variations result in significant overlaps between the benign
and poisoned embeddings, which pose challenges for the
detection methods to perform effectively.



Appendix C.
Meta Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper studies backdoor poisoning attacks on machine
learning models, and the effectiveness of defenses that
target them. Formulating the attack as a continual learning
task, the paper introduces two key properties: orthogonality,
or minimal interference of attack data with clean model
performance, and linearity, which relates to how separable
the decision space for poisoned and clean data is. The paper
gives new insight into the effectiveness of poisoning attacks
and defenses, and validates its claims further with emprical
data.

C.2. Scientific Contribution

• Independent Confirmation of Important Results with
Limited Prior Research.

• Provides a Valuable Step Forward in an Established
Field

C.3. Reasons to Accept

• The authors shed new light on why some defenses
fail against the backdoor attacks in the literature. This
analysis will help in designing a better backdoor defense
mechanism.

• The authors have conducted extensive empirical eval-
uations to showcase and support their analysis of the
reasons behind the effectiveness of particular backdoor
defenses against specific types of backdoor attacks.

• Explanation of attack and defense scenarios concerning
Orthogonality and Linearity is a novel approach.
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A. Visualization of Six Various Factors Impact-
ing Attacks

In this section, we visualize the impact of six distinct
factors on the performance of existing attacks: universal
data poisoning at varying rates, low confidence poisoning,
label-specific poisoning, adversarial training, activation
suppression, and raw weights suppression. These factors are
assessed against four security metrics: Attack Success Rate
(ASR), Accuracy (ACC), Orthogonality (Orth.), and Linearity
(Linear.). We evaluate these metrics across three representa-
tive attacks: BadNets [12], Blend [18], and WaNet [21].

The radar charts shown in Figure 6 illustrate the influence
of six distinct factors on four key metrics. This chart
effectively conveys how modifications in attack strategies can
manipulate the effectiveness and detectability of backdoor
attacks. For instance, it reveals that an increase in training
confidence levels encourages the model to learn more
shortcuts and induces higher orthogonality and linearity.
In contrast, adversarial training steers the model towards
engaging with more intricate and resilient features, diverting
attention from superficial shortcut features. This shift in
focus inherently alters the model’s specialization within the
feature space, leading to a decrease in both orthogonality and
linearity. While adversarial training steers the model towards
engaging with more complex and robust features, rather than
focusing on shortcut features. This shift in focus inherently
alters the model’s specialization within the feature space,
leading to a decrease in both orthogonality and linearity.

Linearity

Utility

Orthogonality

Effectiveness
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Figure 6: Six Factors Impact Attack Performance

B. Evaluation on Other Non-Linear Networks

We evaluate two additional non-linear activation functions
using ResNet-18, i.e., Tanhshrink [68] and Softplus [68],

(a). Data poisoning (b). Low confidence poisoning (c). Label-specific poisoning

(d). Adversarial Training (e). Activation suppression (f). Raw weights suppression

Backdoor EmbeddingBenign Embedding

Figure 7: Latent Separation of Impacting Factors

Table 14: Evaluation of input detection under different attack
variations

Variation Factor BA ASR AC SS

TPR FPR TPR FPR

Universal Data Poisoning 92.84% 99.94% 100.00% 1.33% 100.00% 13.33%

Low Confidence 93.51% 99.65% 100.00% 11.11% 100.00% 13.33%

Label-specific 93.49% 96.10% 0.00% 4.88% 30.00% 14.11%

Adversarial Training 93.32% 99.59% 100.00% 5.33% 100.00% 13.33%

Activation Suppression 94.91% 99.81% 0.00% 10.55% 40.00% 14.00%

Weight Suppression 94.30% 97.17% 0.00% 17.66% 20.00% 14.22%

beyond ReLU. The model is trained on CIFAR-10 and we
leverage BadNets [12] to launch the backdoor attack. Results
shown in Table 15 indicates the linearity property still holds
for these non-linear function. This observed linearity can be
attributed to the activation functions’ behavior at large input
values, where the relationship between inputs and outputs
tends towards linearity. Moreover, we note that backdoor
behaviors often establish a hyperplane within regions of large
activation value magnitudes. Our findings indicate that the
property of linearity remains applicable even in the context
of these non-linear functions.

Table 15: Evaluation on Other Non-Linear Activation Func-
tions

Configuration First Stage (10 epochs) Second Stage (100 epochs)

Acc. ASR Linear. Orth. Acc. ASR Linear. Orth.

ReLU 0.71 1.00 0.99 72.37 0.94 1.00 0.99 78.79
Tanhshrink 0.45 1.00 0.97 74.38 0.89 1.00 0.98 76.73
Softplus 0.22 0.99 0.99 38.27 0.87 1.00 0.99 47.07

C. Investigation of the Convergence Epoch on
the Backdoor and Clean Task

In Section 5, we choose epoch 10 and epoch 100 empir-
ically represent the convergence point of the backdoor task
and the clean task, respectively. In this section, we conduct



experiments using VGG-13 [61] on CIFAR-10 and ResNet-
18 on GTSRB to study the convergence epoch on different
datasets and models architectures. Results in Table 16 show
that the convergence epoch varies according to the dataset and
model architecture. Observe that for the same dataset (CIFAR-
10), smaller networks (VGG-13) require more epochs to
converge, and the network tends to converge faster on easy
datasets (GTSRB). We find that the convergence depends on
different models and datasets. Despite these differences, the
backdoor attacks still exhibit staged effects during training
(Assumption 3.1) and retain the linearity and orthogonality
properties.

Table 16: Convergence Epoch on Different Models and
Dataset

Configuration First Stage Second Stage

Epoch Acc. ASR Linear. Orth. Epoch Acc. ASR Linear. Orth.

CIFAR-10 & ResNet-18 10 0.71 1.00 0.99 72.37 100 0.94 1.00 0.99 78.79
CIFAR-10 & VGG-13 15 0.74 1.00 0.99 61.34 110 0.92 1.00 0.99 75.38
GTSRB & ResNet-18 5 0.87 1.00 0.99 65.99 50 0.96 1.00 0.99 80.79

D. Evaluation on the Size of Networks

To investigate the effect of the size of neural networks,
we conduct experiments using CIFAR-10 and BadNets [12]
attack. We evaluate 3 different small networks, 4-layer CNN,
6-layer CNN, and 8-layer CNN following the VGG [61]
architecture. Results are presented in Table 17. Observe that
they all have the linearity property. This effect is observed
because backdoor attacks mainly occur in regions where the
network’s internal activation values are very high, creating a
distinct hyperplane that separates backdoor behaviors from
benign ones. Essentially, even smaller networks can reach
these high activation values, allowing them to establish this
hyperplane just as effectively as larger networks. Conversely,
the orthogonality is slightly affected by the network size.
Note that the orthogonality score is positively related to the
network size, which is consistent with the existing work [39]
that discovered the gradients of different tasks generally
become more orthogonal for the wider networks.

Table 17: Convergence Epoch on Different Models and
Dataset

Configuration First Stage Second Stage

Epoch Acc. ASR Linear. Orth. Epoch Acc. ASR Linear. Orth.

4 CNN + 1 Linear 10 0.70 0.99 0.99 58.62 85 0.89 0.99 0.99 59.71
6 CNN + 1 Linear 10 0.63 0.99 0.99 59.49 90 0.90 1.00 0.99 68.53
8 CNN + 1 Linear 10 0.74 1.00 0.99 61.87 100 0.91 1.00 0.99 76.19
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