
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

AirTAg: Towards Automated Attack Investigation
by Unsupervised Learning with Log Texts

Hailun Ding, Rutgers University; Juan Zhai, University of Massachusetts Amherst;
Yuhong Nan, Sun Yat-sen University; Shiqing Ma, University of Massachusetts Amherst

https://www.usenix.org/conference/usenixsecurity23/presentation/ding-hailun-airtag

AIRTAG: Towards Automated Attack Investigation by Unsupervised Learning
with Log Texts

Hailun Ding
Rutgers University

Juan Zhai
University of Massachusetts Amherst

Yuhong Nan
Sun Yat-sen University

Shiqing Ma
University of Massachusetts Amherst

Abstract
The success of deep learning (DL) techniques has led to their
adoption in many fields, including attack investigation, which
aims to recover the whole attack story from logged system
provenance by analyzing the causality of system objects and
subjects. Existing DL-based techniques, e.g., state-of-the-art
one ATLAS, follow the design of traditional forensics anal-
ysis pipelines. They train a DL model with labeled causal
graphs during offline training to learn benign and malicious
patterns. During attack investigation, they first convert the log
data to causal graphs and leverage the trained DL model to
determine if an entity is part of the whole attack chain or not.
This design does not fully release the power of DL. Exist-
ing works like BERT have demonstrated the superiority of
leveraging unsupervised pre-trained models, achieving state-
of-the-art results without costly and error-prone data labeling.
Prior DL-based attacks investigation has overlooked this op-
portunity. Moreover, generating and operating the graphs are
time-consuming and not necessary. Based on our study, these
operations take around 96% of the total analysis time, result-
ing in low efficiency. In addition, abstracting individual log
entries to graph nodes and edges makes the analysis more
coarse-grained, leading to inaccurate and unstable results. We
argue that log texts provide the same information as causal
graphs but are fine-grained and easier to analyze.

This paper presents AIRTAG, a novel attack investigation
system. It is powered by unsupervised learning with log texts.
Instead of training on labeled graphs, AIRTAG leverages un-
supervised learning to train a DL model on the log texts. Thus,
we do not require the heavyweight and error-prone process
of manually labeling logs. During the investigation, the DL
model directly takes log files as inputs and predicts entities
related to the attack. We evaluated AIRTAG on 19 scenarios,
including single-host and multi-host attacks. Our results show
the superior efficiency and effectiveness of AIRTAG com-
pared to existing solutions. By removing graph generation
and operations, AIRTAG is 2.5x faster than the state-of-the-art
method, ATLAS, with 9.0% fewer false positives and 16.5%
more true positives on average.

1 Introduction

Deep Learning (DL) has achieved state-of-the-art results in
many Artificial Intelligence (AI) tasks, e.g., image classifi-
cation and natural language understanding [9, 16, 31, 36].
Recent advances in pre-trained models further advanced the
field [10, 54]. For example, BERT [10] is a pre-training tech-
nique for natural language understanding. It trains a bidirec-
tional transformer model on a large corpus of unlabeled texts
and fine-tunes the pre-trained model for downstream tasks on
a small labeled dataset. This technique has achieved superior
results in over ten downstream tasks than prior methods. DL
techniques can learn patterns that are not obvious to humans
from massive data without traditional feature engineering,
which helps identify irregular patterns and automate processes
requiring analyzing a large amount of data. Researchers then
propose to leverage such capabilities of DL in security analy-
sis, in which administrators face bulk data, and the suspicious
ones take a small percentage of it. DL-based techniques have
achieved promising results in many security applications, e.g.,
malware detection [22], binary analysis [20, 37, 60, 70], and
network traffic analysis [43, 46, 55].

Attack investigation is a typical security analysis in foren-
sics analysis, aiming to recover an attack chain (or attack
story) from massive log data from different system compo-
nents (e.g., operating system, network devices). Starting from
given symptom events, a common practice of performing the
investigation is to scan the provenance information and ana-
lyze the causal relationships among all objects and subjects.
Notice that the whole attack chain can contain normal system
operation events which are hard to be detected by anomaly
detection techniques [19, 35]. The procedure of attack inves-
tigation is extremely labor-intensive as it requires analyzing
the wealth of data because of the large numbers of affected
components, long duration of attacks, and complex behav-
iors of modern systems. Prior works have shown that modern
computing systems generate gigabytes of data even for a sin-
gle desktop per day [23, 34, 67]. Complex attacks involving
advanced attack skills, multiple organizations, and longer at-

USENIX Association 32nd USENIX Security Symposium 373

tack periods, make the investigation more challenging. For
example, the 2020 U.S. federal government data breach lasted
months, affecting tens of U.S. federal, state, and local gov-
ernments and private sectors [14]. As a typical example of
Advanced Persistent Threats (APTs), it exploited vulnerabili-
ties in Microsoft, SolarWinds, and VMware products, services,
and software distribution infrastructures. The attack pattern
and causality in such large data are not obvious. Researchers
proposed techniques to automate the investigation and better
identify hidden patterns by leveraging AI techniques. Accord-
ing to the report from IBM [27], organizations that deploy
AI techniques can identify and control attacks 28 days faster,
saving $3.05 million in costs.

1.1 Existing Solution and Motivation

Prior research has proposed learning-based approaches to
boost the analysis process and reduce human burden. The in-
tuition is that despite the payload executed and vulnerabilities
exploited, cyberattacks share common attack strategies that
DL models can learn. ATLAS [3] is state-of-the-art Deep
Learning (DL) based attack investigation framework. The
basic idea of ATLAS is to learn from labeled benign and
malicious logs to identify benign and malicious attack pat-
terns. In the following, we will use an example to show how
ATLAS works and its limitation.
Example. In a spam campaign attack, the adversary started
the attack by spreading phishing links via social engineering.
A victim user, Alice, clicked the malicious link. Firefox_17
resolved the domain name by using DNS server 192.b.c.d
and opened the website xaa.com. Then, Alice downloaded
a file msf.rtf and opened it with MS Word (winword_7).
Unfortunately, msf.rtf was a malicious file that exploited the
CVE-2017-11882 vulnerability and ran a malware payload
on Alice’s machine. This malware scanned the whole disk
to look for PDF files and then sent them to the attacker. The
malicious activities happened in the background, mixing with
benign activities of winword, Firefox, etc. Later, the network
security tool detected the malicious website xaa.com. This
is a simplified real-world attack that accounted for nearly
three-quarters of all exploits in 2020 Q4 and affected multiple
countries including the U.S., Australia, and Japan [26].
Investigation process of ATLAS. The investigation in this
context aims to locate all attack entities and how they lead to
the payload by starting from the detected website xaa.com.
Component A in Figure 1 shows the process of ATLAS and
the investigating results of the example.

For a given log file and symptom events, ATLAS first con-
structs the causalities as a causal graph and reduces the graph
size with additional expert knowledge, e.g., deleting repeated
edges to facilitate its future analysis (Figure 1-A.1). In this
graph, nodes are entities such as system objects (e.g., files,
sockets) and system subjects (i.e., processes), and edges are
the causal relations between entities (e.g., read, write). Then,

ATLAS iteratively classifies other nodes in the graph as ei-
ther malicious or benign, leveraging given symptom events.
Specifically, the classification of other nodes is based on a
deep-learning model which learns the correlated patterns be-
tween different attack nodes in the graph. In this example,
given xaa.com as the initial attack clue, ATLAS detects the
compositions of all nodes with the attack clue xaa.com and
determines whether they are part of the attack chain (Fig-
ure 1-A.2). Once a new attack node Payload_1 is detected,
ATLAS adds this node to the attack node list and continually
detects compositions of more attack nodes with other vertices
in the graph. Lastly, the attack story is recovered as a set of
attack nodes (e.g., xaa.com, Payload_1, Payload.exe, and
149.a.b.c), as well as nodes and edges which are directly
connected with them (Figure 1-A.3).

The core idea of learning-based methods like ATLAS is
to automatically capture inherent information of provenance
graphs to differentiate the benign and attack behaviors, reduc-
ing human efforts to reconstruct the attack story. Despite its
progress in automating the whole attack investigation process,
existing work suffers from the following limitations.
Limitation I: extensive manual efforts. Existing learning-
based methods are supervised learning methods, requiring
extensive manual efforts to label the training data, which
are labor-intensive, costly, and error-prone. Unlike many AI
tasks which have publicly available training data, there is no
well-labeled dataset for attack forensics. Attack investigation
works on detailed logs containing confidential information
about organizations, their infrastructures, and operations. Due
to privacy and security concerns, obtaining publicly available
labeled logs is challenging. Existing studies have shown that
computer vision datasets contain many label errors [7, 58, 64],
introducing noises in training data and affecting the model per-
formance. ATLAS requires labels of all nodes as malicious
or benign, and trains a classifier on labeled data to classify
node compositions. Labeling datasets like this requires knowl-
edge and understanding of the logs and cybersecurity, which
is costly and error-prone.
Limitation II: high computing costs. As shown by existing
work [39], fast investigation can shorten the time of fixing
compromised systems, significantly reduce financial loss, and
help understand attack intentions to prevent potential future
damages. Existing methods learn behavioral patterns from
causal graphs, and graph construction and operations (e.g.,
search, traversal) have a high overhead. As shown in Figure 1-
A, ATLAS first converts logs to graphs at the beginning of
forensics analysis. After detecting all attack nodes, ATLAS
reconstructs the attack story by connecting involved nodes
(Figure 1-A.3). Generating such graphs is the bottleneck of
this analysis, taking over 96% of the total time (see §3). On
the other hand, processing graphs is a well-known complex
problem, and using it in attack investigation leads to high com-
puting costs [39]. Notice that logs and graphs (with detailed
annotations) are two different representations of the same

374 32nd USENIX Security Symposium USENIX Association

AIRTAG (B)

B.3 Attack Story

 2. firefox_17 connect 192.b.c.d
 1. aa.com resolve 149.a.b.c
 3. aa.com request 300.svg
 4. xaa.com resolve 192.b.c.d
 5. xaa.com request msf.rtf

 …
 7. Payload instantiate Payload_1
 8. firefox_17 connect 149.a.b.c
 9. firefox_17 connect 63.a.b.c
 10. bb.com resolve 63.a.b.c
 11. bb.com request 500.jpg

Log File

A.3 Attack Story

ATLAS (A)

A.1 Causal Graph A.2 Classification Results

xaa.com

xaa.com Payload_1xaa.com Payload_1

xaa.com Payload_1

Attack Clue

read

Payload

data.pdf

msf_10

write

instantiate

read

msf.rtf

xaa.com

192.b.c.d

msf.rtf

Firefox_17

write

connect

resolve

request

connect

Payload_1

300.svg

aa.com

149.a.b.c

connect

resolve

request

500.jpg

bb.com

63.a.b.c

request

resolve connect

......

work.doc

write

...
write

...

fork

Winword1

fork

Winword_7read

Payload

data.pdf

msf_10

write

instantiate

read

msf.rtf

xaa.com

192.b.c.d

msf.rtf

Firefox_17

write

connect

resolve

request

connect

Payload_1

300.svg

aa.com

149.a.b.c

connect

resolve

request

500.jpg

bb.com

63.a.b.c

request

resolve connect

......

work.doc

write

...
write

...

fork

Winword1

fork

Winword_7 149.a.b.c

ATLAS

Processing

AIRTAG

Processing

 firefox_17 connect 192.b.c.d
 aa.com resolve 149.a.b.c
 aa.com request 300.svg
 xaa.com resolve 192.b.c.d
 xaa.com request msf.rtf

 …
 Payload instantiate Payload_1
 firefox_17connect 149.a.b.c
 firefox_17 connect 63.a.b.c
 bb.com resolve 63.a.b.c
 bb.com request 500.jpg

B.2 Detection results

1. aa.com resolve 149.a.b.c
2. firefox_17 connect 192.b.c.d
3. aa.com request 300.svg
 4. xaa.com resolve 192.b.c.d
 5. xaa.com request msf.rtf

 …
 7. Payload instantiate Payload_1
 8. firefox_17 connect 149.a.b.c
 9. firefox_17 connect 63.a.b.c
 10. bb.com resolve 63.a.b.c
 11. bb.com request 500.jpg

B.1 Preprocessed Logs

Classification Tracing

InvestigationDetection

xaa.com msf_10xaa.com msf_10

149.a.b.cxaa.com Payload_1xaa.com Payload_1

execute

Payload

data.pdf

msf_10

write

instantiate

read

msf.rtf

xaa.com

192.b.c.d

resolve

request

connect

Payload_1

msf.rtfFirefox_17 Winword_7
readwritewrite

executeconnect

Payload

data.pdf

msf_10

write

instantiate

read

msf.rtf

xaa.com

192.b.c.d

resolve

request

connect

Payload_1

msf.rtfFirefox_17 Winword_7
readwrite

executeconnect

Payload

data.pdf

msf_10

write

instantiate

read

msf.rtf

xaa.com

192.b.c.d

resolve

request

connect

Payload_1

149.a.b.c

aa.com

resolve

149.a.b.c

aa.com

resolve

msf.rtfFirefox_17 Winword_7
readwritewrite

executeconnect

Payload

data.pdf

msf_10

write

instantiate

read

msf.rtf

xaa.com

192.b.c.d

resolve

request

connect

Payload_1

149.a.b.c

aa.com

resolve

msf.rtfFirefox_17 Winword_7
readwrite

executeconnect

Figure 1: Comparison of AIRTAG and ATLAS. (Red nodes/edges: correctly detected malicious entities; Orange nodes: false positives; Bold
and dashed box: missed malicious entries by ATLAS). ATLAS first preprocesses logs and converts logs into causal graphs (A.1). Then, it
iteratively classifies each node in the causal graph and marks them as benign or malicious (A.2). Finally, ATLAS reconstructs the attack story
by finding all activities related to malicious nodes (A.3). For AIRTAG, we first preprocesses logs (B.1) and then directly detects malicious
entries (B.2). Finally, AIRTAG recovers the attack story (B.3).

information, which are convertible to each other. Graphs are
more accessible for humans to inspect and digest but hard for
computers to process. Texts are in Euclidean space, which is
easier for computers to process, while graphs are not.

Limitation III: inaccurate and unstable coarse-grained
analysis. Existing investigation solutions leverage causal
graphs during the investigation, which are abstracted. Such
abstracted causal graphs help facilitate human inspection,
but there is a mismatch between these graph primitives and
log events. In these graphs, a node represents an entity, e.g.,
a process Firefox, while in the log file, a single Firefox
entry is an execution state of this process. The execution
state transitions can be triggered by inner logic (e.g., timer
events) or interactions with other processes (e.g., user inputs,
inter-process communications). The Firefox node in causal
graphs is a set of these execution states. Similarly, a user can
change the entire file without changing its inode number
and path. These abstract nodes omit the details of program
execution states that are hard to present and are more ac-
cessible to humans. Using such abstract graph primitives is
coarse-grained, leading to inaccurate (i.e., higher false pos-
itive/negative rates) and unstable results (i.e., dramatically
different results when the symptom events are different). Ex-
isting work [45] has observed this. For the motivating exam-
ple in Figure 1, when using xaa.com as the symptom event,
ATLAS misses the node Firefox and all related activities,
leading to a low true positive rate. Meanwhile, ATLAS mis-
classifies the node 149.a.b.c (represented by the orange
color), causing high false positive rate. Our further in-depth
analysis also confirms this observation (§3.4).

1.2 Our Solution

This paper proposes AIRTAG, an unsupervised learning-based
attack investigation method that works on raw log texts rather
than causal graphs. We argue that using causal graphs during
the investigation is inaccurate, coarse-grained, and expensive.
Instead, we propose to use log entries (i.e., texts) during anal-
ysis and convert them to causal graphs when needed (i.e.,
presenting to humans as the final result). Using raw log en-
tries in the analysis also enables us to leverage state-of-the-art
unsupervised learning methods, avoiding manual labeling.
We use Natural Language Processing (NLP) techniques to
process logs because log data is language-like data and NLP
techniques can capture text semantics most effectively. Many
existing works [3, 11, 12] also use NLP for log-related secu-
rity tasks, and the performance is proven to be good.

As illustrated in Figure 1-B, AIRTAG takes the log file
and symptom events as input, processes the log file (Fig-
ure 1-B.1, like NLP tokenization), classifies each log entry to
benign or malicious (Figure 1-B.2), and then reconstruct
the attack story (Figure 1-B.3). The classifier for identifying
attack-relevant log entries is trained with unsupervised learn-
ing methods that do not require manual effort for data labeling.
Since AIRTAG performs analysis at a more fine-grained level
(i.e., log entry), this greatly improves the accuracy and robust-
ness (against changes of symptom events) for attack investiga-
tion. In addition, AIRTAG is also more efficient as it removes
the time-consuming graph construction and operations. Simi-
lar to NLP tasks, AIRTAG first preprocesses the log texts (e.g.,
tokenization and embedding) and then predicts a given log
entry as benign or malicious (red in B.2 of Figure 1). These
entries can reconstruct the attack story: Firefox connects to

USENIX Association 32nd USENIX Security Symposium 375

the malicious website 192.b.c.d, DNS server resolves the
address, Firefox requests the file msf.rtf, and the malware
starts the malicious Payload process. The results completely
and honestly recover the attack story. Applying unsupervised
learning on raw log data for attack detection is non-trivial.
Challenge I: One challenge is that logs have domain-specific
syntaxes and semantics. Logs are similar to natural language
artifacts but different. As logs are designed for humans to read
and understand, they mainly contain natural language words.
Traditional NLP methods all use a large dictionary containing
known words, and the number of unknown words is small
(compared with the number of known words). They also lever-
age predefined rules (e.g., convert the word recurringly to
two tokens [recurring] and [##ly]) to reflect natural lan-
guage features, e.g., part-of-speech (POS). When training em-
beddings for these preprocessed tokens, models can leverage
the syntaxes and semantics (e.g., tense) to improve perfor-
mance. We can leverage them to process known words in logs.
On the other hand, logs unavoidably use domain-specific or
application-specific words or symbols. For example, a lot of
log entries like paths and names of directories are sequences
of words organized in a specific format (e.g., Linux uses slash
to separate directories in paths and reflect their hierarchical
structure). NLP tokenization and embedding techniques can-
not recognize and leverage such syntaxes and semantics. Also,
many programs and files are not using common English words
as names. Existing techniques will identify these log texts
(e.g., file names, paths) as unknown words. Consequently,
these words will have the same token, i.e., UNKNOWN, and the
same token embedding. If so, the number of unknown words
will be significant, resulting in impaired performance.

We solve this challenge by applying domain-specific rules
to tokenize and embed log texts. Observing that the domain-
specific information is in noun words representing the names
of entities. Other words, e.g., verbs, are borrowed from natural
languages. The meaning of these words (e.g., verbs) should be
customized, which can be handled by training or customizing
a language model. For nouns, the names of these entries follow
standard naming conventions and use predefined separators to
reflect the structure. For instance, Linux uses the slash symbol
as a separator for paths, while Windows uses a backslash.
After splitting these names into individual words, many of
them will be common English words. For common unknown
words, e.g., abbreviations used in an organization, standard
Linux directory names, and process names, we extend the
dictionary of the language model to recognize them.
Challenge II: Another challenge is that security data is typi-
cally unbalanced. Despite the increasing number of attacks in
the real world, the number of malicious activities is far less
than that of benign activities. Therefore, the training data is
highly unbalanced, with the majority or even all of them being
benign [3]. Such unbalanced data will lead to the poor perfor-
mance of a trained model. This is a typical yet open challenge
in the machine learning community. A popular solution is

to augment the dataset by collecting more real-world data or
synthesizing data. It is challenging to obtain logs containing
malicious behaviors in practice. Unlike images or data in other
domains, logs are more diverse and have constrained formats
and semantics. Generating diverse and high-quality security
data is still an open problem in data synthesis research. As
such, traditional data augmentation is impractical.

In AIRTAG, we adopt another approach, which is one-class
machine learning models. These models are designed for
unbalanced datasets that contain only one label, or most of
the dataset belongs to one class. To be more specific, we use
a one-class support vector machine (OC-SVM) which shows
the best practical results among all alternative methods (§3.4).
It works by learning a model only on benign data and using
a function to measure the distance of individual samples to
the learned pattern. If the distance is considerable, the model
classifies the sample as suspicious.

Results: We evaluated AIRTAG with 19 scenarios contain-
ing both single-host attacks and multi-host attacks. Our re-
sults show that AIRTAG is 2.5x faster than the state-of-the-art
method, ATLAS. Its true-positive rate is 9.0% higher, and its
false-positive rate is 16.5% lower than ATLAS, demonstrat-
ing that AIRTAG is more effective compared with ATLAS.
Our code can be found at https://github.com/dhl123/
Airtag-2023.

2 Design of AIRTAG

2.1 Overview

We show the overview of AIRTAG in Figure 2. AIRTAG con-
sists of three components, i.e., data preprocessing (Step A),
training (Step B), and attack investigation (Step C). First,
AIRTAG preprocesses logs from different sources, e.g., Fire-
fox, DNS, and security events, by sorting the log entries and
merging them into a single log file (Step A). Then, AIRTAG
tokenizes log files, performs unsupervised learning based on
BERT to generate a pre-trained model, and then fine-tunes
a downstream classifier (Step B). Particularly, we design a
novel tokenizer that leverages log files’ domain-specific syn-
taxes and semantics. We use a one-class support vector ma-
chine (OC-SVM) as our downstream classifier to overcome
the unbalanced data problem. During attack investigation,
AIRTAG first tokenizes and embeds the query and then ex-
tracts attack-related events and marks them as malicious.
We also leverage existing heuristics to filter out false positives
caused by using one-class classification. Lastly, AIRTAG can
reconstruct the attack story by generating the causal graph or
reporting all suspicious events.
Scope and assumptions. Consistent with existing attack in-
vestigation approaches [3, 15, 21, 24, 39, 42], we assume the
integrity of the log. Log collection and strange systems are
well-protected by design and operational protocols in the real

376 32nd USENIX Security Symposium USENIX Association

https://github.com/dhl123/Airtag-2023
https://github.com/dhl123/Airtag-2023

B. Trainng

C. Attack Investigation

System Logs

Firefox Logs

DNS Logs

A
.

P
re

p
ro

c
e

s
s

in
g

B.3 Downstream Task Training

[0.85, 0.75, 0.66, 0.89, 0.91, ...]
[0.89, 0.74, 0.68, 0.87, 0.96, ...]
[0.88, 0.65, 0.66, 0.48, 0.78, ...]

Embeddings

OC-SVM Model

Timestamp: activity
159: 92.a.b.c request 52.a.b.c DNS
160: 52.a.b.c response 92.a.b.c
161: https://a.gov, 52.a.b.c

Training Logs

Tokenizer

B.1 Tokenization B.2 Embedding Training

[159], [92], [a], [b], [c], [request],...
[160], [52], [a], [b], [c], [response],..
[161], [https], [a], [gov], [52], [a],...

Custermized BERT

Tokenized Logs

...

...

...

...

Reported

Results

Testing Logs and

Symptoms

OC-SVM

Model

Post

Processing
Customized

BERT

170: 192.a.b.c request 53.a.b.c
171: 192.a.b.c request 51.a.b.d
172,: b.com, 51.a.b.d

...

...

...

...

Reported

Results

Testing Logs and

Symptoms

OC-SVM

Model

Post

Processing
Customized

BERT

170: 192.a.b.c request 53.a.b.c
171: 192.a.b.c request 51.a.b.d
172,: b.com, 51.a.b.d

...

...

Figure 2: Overview of AIRTAG. AIRTAG consists of three components. AIRTAG preprocesses logs by sorting entries with their timestamps.
Then, AIRTAG fine-tunes an unsupervised model to provide embeddings and trains an OC-SVM model for downstream tasks. Finally, AIRTAG

discloses all log entries related to the attack and post processes these entries to report final results. Results can be entries or a graph.

world. Attacks that corrupt or tamper logs and their defenses
are beyond the scope of this paper.

2.2 Preprocessing
The preprocessing in AIRTAG is a standard procedure that
merges logs from different sources to enable correlations
of logs. We merge logs with timestamps and their relations
(similar to ATLAS). Logs representing the same behav-
ior from different sources (e.g., DNS, firefox, and syslog)
are clustered and merged to help capture causalities inside
same behaviors. Figure 1-B.1 shows an example of merged
logs. At time 159, Firefox requested resolving the domain
name https://a.gov and sent an HTTP request to address
52.a.b.c at time 161. In between, the DNS server resolved
the domain name https://a.gov and got the corresponding
IP address 52.a.b.c. Notice that the source logs in Figure 1-
B.1 can be in any format (e.g., both system log and DNS log
formats) and do not need to be an entity-to-entity structure.

2.3 Training
Our training aims to learn a model that captures the inner
relationships (i.e., causalities) among events. Our training
consists of three steps: tokenization, embedding training, and
downstream task training.

2.3.1 Tokenization

Tokenization is a process of separating text data into smaller
units called tokens. Tokens can be words, characters, or
subwords (e.g., n-gram characters). For example, the BERT
model inserts a [CLS] token at the beginning of a given text

and a [SEP] token between two sentences to separate them. It
contains around 30,000 tokens including many special ones,
##ed, ##ly, and ##ing, which can reflect its tense, POS etc.
A complex word will be tokenized to its word stem and one or
many special tokens. For example, the word embeddings cor-
responds to four tokens, i.e., [em], [##bed], [##ding], and
[##s]. There is also a special token [UNKNOWN] to represent
all unknown words.

Using the tokenizer can reduce the vocabulary table size
and also partially reflect the semantics of the words/sentences.
English has more than 170,000 words, and training in such a
large dictionary requires a significantly large model, which is
still very challenging. Moreover, the language keeps evolving,
and domain-specific words are not in the training datasets.
Tokenization used in BERT is far smaller and easier to train.
Also, tokens like ##ed can be easily associated with tense
during training, which makes it easier to train.

Logs are similar to natural languages because they are de-
signed for humans to read and understand, but they are also
not common natural languages. If using the traditional tok-
enizer, we will end up with a lot of UNKNOWN words and miss
important semantics in the log. For example, paths are com-
mon in logs, but most of them will be recognized as UNKNOWN
using the traditional tokenizer. In fact, paths are sequences of
folder/directory names separated by pre-defined separators.
When downloading files, Firefox creates a temporary file, usu-
ally named Firefox.xxx where xxx is a hash value. This
is a typical design for other programs like Chrome as well.
Viewing them as a whole token gives us another UNKNOWN
word, but splitting them with domain knowledge can help us
to associate the temporary files with corresponding processes
during model training.

In AIRTAG, we design domain-specific tokenizers to serve

USENIX Association 32nd USENIX Security Symposium 377

URLs:

[UNKOWN]
[UNKOWN]

https://google.com
https://a.gov

[https][google][com]
[https][a][gov]

Paths:

C:\home\alice\
C:\home\bob\

[UNKOWN]
[UNKOWN]

[C:][home][alice]
[C:][home][bob]

File Names:

Firefox.xxx;
Payload.xxx;

[UNKOWN]
[UNKOWN]

[Firefox][UNK]
[Payload][UNK]

IP Addresses:

192.168.4.5
152.23.3.2

[192.168.4.5]
[152.23.3.2]

[192][168][4][5]
[152][23][3][2]

Existing Tokenizer Our TokenizerText Data

Figure 3: Comparison of Existing Tokenizer and Our Solution. Ex-
isting tokenizers mark most file paths and other log-specific items as
UNKOWN. AIRTAG, which utilizes unique features of logs, splits these
items into several fine-grained words and preserves the semantics.

a similar role to the tokenizer in traditional NLP tasks. Our
tokenizers split the text by pre-defined characters such as
“.” and “//”. Unlike traditional tokenizers that split all text
at once, we are more fine-grained. We first scan values of
each field in each log entry, such as finding the URLs in the
log entry, and then split the URLs accordingly. When there
are multiple fields in a log entry, we perform split multiple
times. Notice that we can still reuse existing tokenizers for
most words in logs, and all domain-specific tokenizers are
designed for names of logged entities that can be split into
smaller units, such as paths, URLs, IP addresses, and tem-
porary file names. The basic idea is to leverage pre-defined
separators in these names to split them into individual words
and then tokenize each word. Figure 3 shows a few examples.
The path C:\home\alice is split into [C:], [home], and
[alice] tokens by identifying the special slash symbol. Simi-
larly, C:\home\bob will be [C:], [home], and [bob], which
hints the directory hierarchy. Notice that for words home,
alice, and bob, we directly reuse the BERT tokenizer. URLs
can be viewed as a combination of network protocols, domain
names, ports, and a path. For instance, the https://a.gov
uses https, a, and gov as its domain name. For IP addresses,
we use the dot symbol to separate them directly, and IPs in
the same subnets can be learned by the model. For tempo-
rary files like Firefox.xxx, AIRTAG also splits them into
Firefox and xxx, which makes it easier to associate the file
to corresponding processes. To handle different types of log
formats, we leverage the log parsing framework, LogStash [1].

2.3.2 Embedding Training

Instead of training from scratch, AIRTAG leverages the BERT
model to perform unsupervised learning. BERT is a bidirec-
tional Transformer designed model for NLP understanding
tasks. To customize it for our scenarios, we use it as the ini-
tialized model and retrain it using our unlabeled log data.

Input

Token

Embedding

Segment

Embedding

Position

Embedding

Figure 4: Embeddings in BERT. The output embedding is a compo-
sition of the token, segment and position embedding.

192.a.b.c [MASK] 152.a.b.c

BERT

192.a.b.c Requests 152.a.b.c

Mask Language Modeling

B: 152.a.b.c
Response 192.a.b.c

BERT

A: 192.a.b.c
Requests 152.a.b.c

True: B is the next sentence of A

Next Sentence Prediction

Figure 5: Different Training Tasks in BERT. The goal of masked
language modeling task is to predict a masked word based on the
contextual information of the word. Next sentence prediction aims
to pair two sentences and determine whether the former sentence is
the antecedent of the latter sentence.

Embedding. We basically followed the design of BERT and
designed three embeddings. As shown in Figure 4, the fi-
nal embedding of the input combines token embedding, seg-
ment embedding, and position embedding. AIRTAG reuses
the BERT token and positional embedding. BERT views each
sentence as a single segment, and tokens in the same sentence
have the same segment embedding (also known as sentence
embedding). In our scenario, there is no sentence concept.
AIRTAG treats each event as a unit, and all tokens belonging
to the same event have the same segment embedding.

Training objectives. Similar to BERT, we also leverage the
masked language model (MLM) and next sentence predic-
tion (NSP) (in AIRTAG, it is the next segment/event predic-
tion) to train our model. The basic idea of MLM is to re-
place a token or a segment in the log with a special place-
holder token [MASK], and during training, we use the con-
text information (e.g., surrounding tokens and segments) to
predict the concrete values of the [MASK]. By doing so,
the model learns the encoding of each word and segment
by learning from its contexts, reflecting the semantics. For
the log examples shown in Figure 5, we mark requests in
192.a.b.c requests 152.a.b.c as [MASK]. Then, we try
to use 192.a.b.c [MASK] 152.a.b.c to predict the con-
crete content of [MASK]. Such mask language prediction cap-
tures the relations between 192.a.b.c and 152.a.b.c. On
the other hand, NSP focuses on predicting whether the sec-
ond sentence in a given sentence pair is a follow-up of the
first sentence. As shown in Figure 5, BERT takes paired
sentences A: 192.a.b.c requests 152.a.b.c and B:
152.a.b.c responses 192.a.b.c as the input and predict
True, meaning that B is the next sentence of A. In practice,

378 32nd USENIX Security Symposium USENIX Association

4 2 0 2 4 6

4

2

0

2

4

6

(a) S1.

4 2 0 2 4

2

1

0

1

2

3

4

5

6

(b) S2.

4 2 0 2 4 6 8

2

0

2

4

6

(c) S3.

4 2 0 2 4 6

4

2

0

2

4

6

(d) S4.

Figure 6: The red and blue color indicate the embedding vector
of malicious and benign entries, respectively. We only show 500
malicious and 500 benign samples to make the figure readable.

 firefox.exe connect 192.b.c.d
 aa.com resolve 149.a.b.c
 aa.com request 300.svg

 …
 firefox.exe connect 149.a.b.c
 firefox connect 63.a.b.c
 bb.com resolve 63.a.b.c
 bb.com request 500.jpg

Training Logs

 aa.com request image.svg
 xaa.com resolve 192.b.c.d
 xaa.com request msf.rtf

 …
 Payload instantiate Payload
 aa.com request word.pdf
 Payload read sample.pdf
 Payload read data.pdf

Testing Logs

OC-SVM

Trained OC-SVM

Training

Testing

Decision Boundary

Fitting

Detection Results

Detecting

OC-SVM Training

OC-SVM Testing

Figure 7: Downstream Task Training and Testing in AIRTAG.

the next sentence can be a combination of several log en-
tries/sentences within a window (rather than a single tempo-
rally consecutive log entry). Thus, BERT can capture complex
relationships between multiple contextual entries.

2.3.3 Downstream Task Training

After unsupervised learning on a large set of data, the trained
model learns the inner relationships among tokens, which can
be used for different downstream tasks. We use PCA to re-
duce the dimension of embedding vectors and visualize them
in Figure 6. The blue dots show the embedding vectors of
benign entities and the red ones indicate malicious entries. As
the results show, embedding vectors of benign and malicious
entries are different, making it possible to classify them. We
fine-tune it for specific downstream tasks to capture such pat-
terns. A typical workflow is to plug a model (e.g., a linear
classifier) with pre-trained models and leverage a small set of
labeled data to perform supervised learning to train the model.
For example, BERT can learn the relationships of good and
bad, and fine-tuning with a classifier will train a model that
searches for such words for sentiment analysis. By fine-tuning
the model on task-specific datasets, the model can achieve
better results on downstream tasks.

During attack investigation, AIRTAG needs to determine if
a given logged event is malicious (should include in the final
report) or benign (can exclude from the final report), which is

our downstream task. As mentioned in §1.1, unlike AI tasks,
there are not enough high-quality training datasets for log
analysis, and synthesizing such datasets is challenging. The
dataset we can use to train downstream tasks is unbalanced,
containing only (or mostly) benign patterns. Thus, it will
be hard for us to train a classifier to differentiate different
behavior patterns. To alleviate this problem, we use one-class
classification techniques. Specifically, we use a one-class
support vector machine (OC-SVM), which achieves the best
results among all one-class classification techniques. The
OC-SVM classifier tries to learn benign patterns and classify
samples far from the learned benign pattern as suspicious. As
illustrated in Figure 7, OC-SVM learns benign behaviors from
unlabeled training logs (i.e., the benign ones) and tries to find
a decision boundary that fits training data. When detecting
outliers, OC-SVM classifies inputs that are not within the
decision boundary as malicious (indicated by the red dots).
Besides training on benign data, OC-SVM can also be trained
on datasets that are not completely clean, as long as most
of the data is benign. Because OCCs learn patterns of the
majority of activities, few attack activities are naturally filtered
out when models converge.

2.4 Attack Investigation

The goal of the attack investigation is to recover the whole
attack story based on the given audit logs. Just like using
BERT for predictions, we first tokenize the log and symptom
event and then use the pre-trained model and OC-SVM to
find all suspicious events, which can reconstruct the whole at-
tack story. Our post-processing leverages commonly used
heuristics to filter out the results (e.g., the frequency of
events [39]). Then, AIRTAG constructs the causal graph us-
ing the small-sized reported suspicious events. The list of all
post-processing rules are included in §A.1.

As shown in Figure 8, AIRTAG generates causal graphs
from the detected events just like ATLAS. Specifically,
AIRTAG generates an initial attack graph on log entries that
are classified as malicious by OC-SVMs. Since AIRTAG only
reports individual events based on log texts, it is possible
that the aforementioned graph construction process generates
disjoint graph components (Figure 8-A). As such, AIRTAG
correlates those disconnected graph components and returns
the complete causal graph as follows.

For each individual graph, AIRTAG expands it by finding
nodes that are adjacent to other graphs from the original
events in log texts (i.e., the orange nodes in Figure 8-B). If
two components share a common node (red nodes), AIRTAG
merges the two disconnected graph components by adding
the node and its corresponding edges (Figure 8-C). AIRTAG
repeats this process until all the disjoint graph components
are connected. In this process, AIRTAG only tries to find the
first matched event for any two disjoint graph components.
This process only requires creating the initial graph once and

USENIX Association 32nd USENIX Security Symposium 379

Figure 8: The process of graph reconstruction in AIRTAG. Red
nodes are shared nodes and orange ones are expanded nodes.

connecting each two disjoint components once without re-
building the graph repeatedly. In practice, to reduce the time
complexity of the search, we can limit the search depth to a
small number (e.g., 1) and can still recover the attack story
(§3.5). The reconstruction algorithm is a greedy method that
does not guarantee the correctness of selected paths, it only
chooses the most probable ones.

In addition, similar to SPADE [17], we explicitly check
network operation pairs (i.e., request and response) if only
one of them is included in the original causal graph. In this
way, AIRTAG recovers the attack story with more contexts
which are helpful for attack investigation.

3 Evaluation

We built a prototype of AIRTAG and evaluated it on 19 attack
scenarios. This section first describes our experiment setup,
including the development framework, running machine hard-
ware and software configurations, and datasets (§3.1). We
then evaluate the effectiveness of AIRTAG on attack investi-
gation by comparing the true positive rate (TPR) and the false
positive rate (FPR) of AIRTAG with those of ATLAS (§3.2).
To evaluate the efficiency of AIRTAG, we measure the time
costs of AIRTAG and compare AIRTAG with existing work
(§3.3). In addition, we conduct an ablation study to evaluate
more attack scenarios, methods, the impacts of configurable
parameters, and other factors that may affect the performance
of AIRTAG (§3.4). Finally, we show four causal graph cases
generated by AIRTAG (§3.5).

3.1 Experiment Setup
The prototype of AIRTAG is implemented in Python 3.6.3
with ThunderSVM [66]. All experiments are conducted on a
Ubuntu 18.04 machine equipped with a GeForce RTX 6000
GPU, 64 2.30GHz CPUs, and 376 GB of main memory.

Datasets. We use public datasets provided by ATLAS (S1
to S4 and M1 to M6), datasets collected by ourselves (U1
to U3 and U-Step1 to U-Step3), and datasets used in DE-
PIMPACT [15] (dataleak, vpnfilter, and shellshock), which
cover 19 real attack scenarios and contain 25 log file sets (logs
of each ATLAS dataset and our generated dataset includes
system, DNS and firefox logs, and logs in other datasets are
sysdig logs) collected from different victim hosts. We show

the overview of the datasets in Table 1, including the dataset
names, attack types, attack targets, the number of known at-
tack clues (e.g., attacker’s IP., etc.), raw log sizes, the ratio of
nodes involved in both benign and malicious activities over
all nodes in malicious activities, and the ratio of malicious
activities over all activities in each column, respectively.

More specifically, datasets S1 to S4 include attacks per-
formed on a single victim host. M1 to M6 collect attacks
performed on multiple victim hosts. In the first host, the at-
tacker replaced a benign web page in the victim system with
a malicious one. In the second host which connected to the
first host, the victim accessed the malicious web page and
got compromised. Each attack performed on multiple hosts
consists of two log files which are collected from the two
victim hosts, respectively. We use the dataset name plus the
host id to refer to each log file. For example, M6h1 refers
to logs collected on the first victim, and M6h2 refers to logs
collected on the second host.

Unlike datasets provided by ATLAS that only cover suc-
cessed attacks, our own datasets are collected from failed
attacks (U1 to U3 and U-Step1 to U-Step3). We collect the
datasets similarly to ATLAS datasets (i.e., same environment,
attack type, and similar benign behavior workload). Attack
in each dataset follows the same attack steps as ATLAS at-
tack with the same attack type name in the Table 1. The
only difference is that we forced certain attack steps to fail.
Specifically, U1 to U3 datasets are generated during an entire
process of different failed attacks. The attacks exploited the
vulnerability of victim systems, injected payload, and used the
payload to read files. However, the attacker cannot upload the
leaked data to their hosts due to network issues. We use U1 to
U3 datasets to evaluate the overall effectiveness of AIRTAG
on failed attacks. U-Step1 to U-Step3 are logs collected after
each attack step (exploit the vulnerability, upload payload, and
payload reads sensitive files). We use them for fine-grained
analysis of AIRTAG on failed attacks. For the benign work-
load, we include browser behaviors, system behaviors, and
application behaviors. To simulate normal browser behaviors,
we control the machine to visit different websites such as
different Wikipedia pages, search with prompts by different
search engines (e.g., Google and Baidu), download different
files from various websites, etc. Our system behaviors include
normal behavior of system processes, and our application be-
haviors contain activities of widely used applications such as
Microsoft applications and notebooks, etc.

Dataleak, vpnfilter, and shellshock datasets have more com-
plicated benign behavior workloads as demonstrated by the
low ratio of malicious behaviors in Table 1. We include these
datasets to analyze the sensitivity of AIRTAG towards more
complicated benign workloads. Specifically, we choose the
datasets used in the original paper [15], which cover data leak,
VPN filter, and shellshock attacks. Details of these attacks
can be found in Section 5.1.2 of the original paper.
Ground truth labeling. Although AIRTAG does not require

380 32nd USENIX Security Symposium USENIX Association

Table 1: Overview of the 19 Attack Scenarios used by AIRTAG. BS,
MS and Win are shorts for browser, MicroSoft office and Windows.

Dataset Attack Type Target #Clue Size(MB) %Overlap %Malicious

S1 Web compromise BS 3 382 78.68% 6.46%
S2 Malvertising BS 3 1015 84.00% 4.30%
S3 Spam campaign MS 6 522 76.96% 12.12%
S4 Pony campaign MS 5 449 84.65% 16.17%
M1 Web compromise BS 6 711, 102 83.85% 4.06%
M2 Phishing BS 5 671, 112 85.33% 13.68%
M3 Malvertising BS 4 336, 138 86.12% 11.60%
M4 Monero miner Win 6 533, 91 83.69% 3.80%
M5 Pony campaign MS 5 726, 113 87.36% 5.33%
M6 Spam campaign MS 6 551, 142 79.13% 4.18%

Dataleak Data leakage Shell 7 38 85.71% 0.07%
Vpnfilter Malware IoT 4 222 100.00% 0.001%

Shellshock Bashdoor Shell 9 84 87.50% 0.003%
U1 Pony campaign MS 4 236 54.35% 1.20%
U2 Malvertising BS 2 139 46.15% 2.37%
U3 Phishing BS 3 251 48.28% 1.21%

U-Step1 Phishing BS 1 164 11.76% 0.42%
U-Step2 Phishing BS 2 224 23.81% 0.35%
U-Step3 Phishing BS 3 303 46.43% 0.91%

labeling data by design, we obtain ground truth labels for
evaluation purposes. Following ATLAS, we mark the given
malicious entities, their neighborhood, and related activities
in the graph as malicious. Since ATLAS labels data at the
entity level, we further attribute the attack entities and their
activities to corresponding log entries. All associated log en-
tries are labeled malicious, and the rest are benign. Finally,
we manually cross-checked the labeled log entries to ensure
they included the entire attack story. For dataleak, vpnfil-
ter, and shellshock datasets, we follow their original labels,
which mark multiple annotated critical edges (we attribute
the corresponding entries) as malicious.

3.2 Effectiveness of Attack Investigation
To demonstrate the effectiveness of AIRTAG on attack inves-
tigation, we measure the true positive rate (TPR) and the false
positive rate (FPR) of AIRTAG, and compare the results with
those of ATLAS in detecting suspicious log entries. The TPR
is defined as the number of detected attack entries over the
total number of all attack entries. The FPR is the number of
benign entries that are misclassified as malicious over the
number of all benign log entries. Each set of reported TPR
and FPR are from the same model. If not specified, we reuse
the original parameter settings for methods with their original
implementation, which we believe is already optimal. For ex-
ample, we use its own datasets’ original settings in ATLAS.
For others without the original implementation, we report the
best empirical results obtained by tuning hyperparameters on
a small dataset, following common practice in machine learn-
ing hyperparameter tuning. We show the results in Figure 9.
When investigating an attack conducted on a single victim, we
train AIRTAG and ATLAS on other datasets of its kind. For
example, the results of S1 are obtained by training AIRTAG
on benign entries in datasets S2, S3 and S4. For logs collected
on multiple hosts, we test two attacks each time (M1 and M2,

M3 and M4, M5 and M6), using the logs collected from other
multi-host attacks as the training data. For example, the test-
ing results on M1 and M2 are generated by AIRTAG trained
on M3 to M6. Here, we would also like to clarify that our
tested data is different from the training data, where the test
data includes new attacks and activities. Our goal is to test
whether the models trained on the training data can generalize
to the unseen test dataset without retraining. Also, different
from AIRTAG that are completely automatic, ATLAS relies
on manually specifying a clue entity as the start point for at-
tack investigation. In this setting, using different clues as the
starting point derives different results. Therefore, we report
the average results of using different clues and include an
analysis for different start points in §3.4.

From the results, we observe that AIRTAG achieves bet-
ter TPR and FPR compared to ATLAS. The average TPR
and FPR of AIRTAG are 99.8% and 6.2%, which are 9.0%
higher and 16.5% lower than those of ATLAS, respectively.
By leveraging large-scale embedding models, OC-SVM, and
filters, AIRTAG can achieve better performance than advanced
learning-based methods over the causal graph, indicating that
log-level attack investigation is feasible and promising.

Although the FPR of AIRTAG is slightly higher than that
of ATLAS in M6h2, the difference is rather small (3.6%),
and the TPR of AIRTAG is significantly higher than that of
ATLAS (32.3% higher). The main reason behind such cases
is that ATLAS cannot precisely differentiate attack behaviors
from benign ones. ATLAS conservatively classifies most
entries as benign, leading to low positive rates (FPR as well
as TPR). For a unique case M4h1, AIRTAG and ATLAS
achieve similar results (the difference between TPR is 0.2%
and FPR is 3.4%). The potential reason is that attack patterns
inside M4h1 are more easily to be identified. Therefore, both
AIRTAG and ATLAS can achieve good results.
Effectiveness on failed attacks. To further understand the
effectiveness of AIRTAG and ATLAS against failed attacks,
we run AIRTAG to investigate three failed attacks and each
step of a failed attack. Specifically, we train AIRTAG on two
unsuccessful attack datasets (two datasets from U1 to U3) and
use the other one as testing data. To evaluate the performance
against each attack step, we use the model trained on U1 and
U2 datasets to investigate attacks inside U-Step1, U-Step2
and U-Step3 datasets. The results are shown in Figure 10. Fig-
ure 10(a) and Figure 10(b) show the overall performance of
AIRTAG on U1 to U3 datasets. Figure 10(c) and Figure 10(d)
demonstrate the results on each attack step.

The results show that while both AIRTAG and ATLAS can
be used to investigate failed attacks, AIRTAG performs better.
The average TPR and FPR results of AIRTAG are 99.23%
and 14.75%, which are 7.55% higher and 14.08% lower than
those of ATLAS. On the one hand, AIRTAG and ATLAS
exploit both global and local information, so they can still
infer malicious entities based on local information, despite the
incomplete attack chain. On the other hand, AIRTAG achieves

USENIX Association 32nd USENIX Security Symposium 381

S1 S2 S3 S4 M1h1
M1h2

M2h1
M2h2

M3h1
M3h2

M4h1
M4h2

M5h1
M5h2

M6h1
M6h2

0.4

0.6

0.8

1.0

TP
R

ATLAS AIRTAG

(a) TPR Results for ATLAS and AIRTAG.

S1 S2 S3 S4 M1h1
M1h2

M2h1
M2h2

M3h1
M3h2

M4h1
M4h2

M5h1
M5h2

M6h1
M6h2

0.0

0.1

0.2

0.3

0.4

0.5

FP
R

ATLAS AIRTAG

(b) FPR Results for ATLAS and AIRTAG.

S1 S2 S3 S4 M1h1
M1h2

M2h1
M2h2

M3h1
M3h2

M4h1
M4h2

M5h1
M5h2

M6h1
M6h2

0

100

200

300

400

500

600

Ti
m

e
Co

st
s (

se
co

nd
s) ATL_graph

ATL_detect
AIRTAG_embed
AIRTAG_detect

(c) Time Costs of AIRTAG and ATLAS.

Figure 9: Evaluation Results for Attack Investigation. ATL is short for ATLAS.

U1 U2 U30.0

0.5

1.0

TP
R

ATLAS AIRTAG

(a) TPR Results.

U1 U2 U30.0

0.1

0.2

0.3

0.4

FP
R

ATLAS AIRTAG

(b) FPR Results.

U-Step1 U_Step2 U-Step30.0

0.5

1.0

TP
R

ATLAS AIRTAG

(c) TPR Results for Steps.

U-Step1 U_Step2 U-Step30.0

0.1

0.2

0.3

0.4

FP
R

ATLAS AIRTAG

(d) FPR Results for Steps.

Figure 10: Results on Failed Attacks.

better performance than ATLAS by design, which is also
confirmed by results in §3.2.

3.3 Time Costs for Attack Investigation
To measure the efficiency of AIRTAG, we evaluate the time
costs of attack investigation for both AIRTAG and ATLAS.
During the attack investigation, ATLAS converts the logs
into a causal graph and then does classification. Therefore, we
show both the total time costs of ATLAS and the time costs
of its causal graph-related operations. AIRTAG converts logs
to embedding vectors and then detect attacks. Thus, we show
the total time costs, the costs of embedding and detection for
AIRTAG. Figure 9(c) summarizes the results.

From the results, we observe that the time costs of AIRTAG
are lower than the time costs of ATLAS in all cases. Specifi-
cally, the average cost of AIRTAG is 39.96% of ATLAS. The
results show that AIRTAG, which directly investigates attacks
at the log level and omits causal graph-related operations, is
more efficient than ATLAS. Directly investigating attacks at
the log level is beneficial.

When analyzing the time cost composition of ATLAS,
we find that the main time costs of ATLAS come from the
causal graph-related operations, including reading and op-
erating on causal graphs. The average time cost of causal
graph-related operations is 3.94 minutes, which is close to

S1 S2 S3 S40.0

0.5

1.0

TP
R

S1 S2 S3 S40.0

0.2

0.4

FP
R

LSTM Transformer AE AIRTAG

Figure 11: Comparison with Anomaly Detection.

the the average time cost of 4.10 minutes for the whole attack
investigation process in ATLAS. As shown by the results,
the high time cost of causal graph-related operations is the
bottleneck of existing causal graph-based methods. When
comparing the total time costs of AIRTAG with the time costs
of causal graph-related operations in ATLAS, the total time
cost of AIRTAG is only 41.54% of graph-related operations
in ATLAS. AIRTAG, which directly investigates attacks at
the log level, can solve such a bottleneck and speed up the
investigation by omitting causal graph-related operations.

3.4 Ablation Study

We evaluate AIRTAG under more scenarios, measure the fac-
tors that may affect AIRTAG and ATLAS performance, and
discuss potential sensitivities of AIRTAG.
Comparison with anomaly detection. Although AIRTAG
focuses on attack investigation tasks with very different goals
than anomaly detection tasks, some anomaly detection tech-
niques may be adaptable. To measure this, we compare
AIRTAG with three widely recognized unsupervised anomaly
detection methods (i.e., LSTM-based, Transformer-based, and
AE-based methods) summarized in deep-loglizer [6]. Since
these anomaly detection methods use abstractions that are
specific to the used datasets and cannot generalize to different
log formats (e.g., simplifying blk values and other specific file
information that is not avaliable in other logs), we did our best
to customize a similar abstraction that also abstracts specific
file information into a general representation. Other imple-
mentation details, and settings, are the same as the original
implementation. We summarize the results in Figure 11.

We observe that AIRTAG obtains better performance com-

382 32nd USENIX Security Symposium USENIX Association

dataleak vpnfilter shellshock0.0

0.5

1.0

TP
R

dataleak vpnfilter shellshock0.0

0.5

1.0

FP
R

0.0

0.5

1.0

Ac
cu

ra
cy

ATLAS_noabs ATLAS_simple ATLAS_normal AIRTAG

Figure 12: Results on Depimpact Datasets.

pared to anomaly detection methods. On average, AIRTAG
has 4.75%, 6.65%, and 19.07% higher TPR compared to
LSTM-based, Transformer-based, and AE-based anomaly de-
tection methods. AIRTAG also gets 38.80% and 38.28% lower
FPR compared to the LSTM-based and Transformer-based
methods. Although AIRTAG achieves 1.78% higher FPR than
the AE-based method (mainly caused by S4), the TPR of the
AE-based method in S4 is significantly lower than that of
AIRTAG in S4. The better performance of AIRTAG is under-
standable because AIRTAG considers more the whole attack
story rather than the isolated abnormal values that the anomaly
detection methods mainly consider.
Performance on more datasets. To test whether AIRTAG
is sensitive to more complicated benign behaviors and at-
tacks, we evaluate AIRTAG on the dataleak, vpnfilter, and
shellshock datasets, and compare AIRTAG with ATLAS.
Since ATLAS abstracts specific file and process names to
general names by examining their prefixes such as convert-
ing process names containing prefix c:/programfiles to
programfiles_process, which is specific to a particular
computer machine and Windows logs, we tried our best to re-
produce the abstractions for new datasets that contain mainly
Linux logs. We also include the performance when no abstrac-
tion is applied or when all filenames and processes are simply
abstracted to file and process. We show the results in Fig-
ure 12. ATLAS_noabs, ATLAS_simple and ATLAS_normal
show the results without abstraction, with simple abstraction
and with our reproduced fine-grained abstraction. The lines
show the training accuracy of ATLAS.

We found that AIRTAG still outperforms ATLAS because
the TPR of AIRTAG is significantly higher than that of
ATLAS, and the FPR of AIRTAG is also low. Specifically,
the average TPR of AIRTAG is 99.16%, while the TPR of
ATLAS is only 56.89%. The possible reason for poor perfor-
mance of ATLAS is that they assume attacks have similar
behavior patterns and try to learn them. ATLAS may fail
when the attacker changes the strategy and uses very different
attack activities (e.g., attacks in the dataleak, vpnfilter, and
shellshock datasets). Unlike ATLAS, AIRTAG learns most
benign behaviors and thus has better generalization to attacks
with different strategies.
Different embedding methods. To test the impacts of us-
ing different embedding methods, we replace BERT embed-
ding in AIRTAG with a statistical-based embedding method

S1 S2 S3 S40.00

0.25

0.50

0.75

1.00

TP
R

S1 S2 S3 S40.0

0.1

0.2

0.3

FP
R

Glove Word2Vec Doc2Vec AIRTAG

Figure 13: Results of Using Different Embedding Methods.

(Glove [50]) and two learning-based methods (Word2Vec [41]
and Doc2Vec [32]). The results are shown in Figure 13.

As shown in the figure, AIRTAG achieves the best TPR re-
sults on all datasets. Specifically, the average TPR of AIRTAG
is 99.5%. It is 77.4%, 3.7%, and 10.3% higher than that of
Glove, Word2Vec, and Doc2Vec, respectively. Results show
the benefits of AIRTAG. We also notice that Glove achieves
the worst result. This is reasonable because Glove only uses
statistical information and ignores the causalities inside logs.

The FPR of AIRTAG is also comparable with other meth-
ods. The average FPR differencees between AIRTAG and
other methods are 2.5%, 1.4%, and 1.3%, respectively. Al-
though in some cases (e.g., S3 and S4), the FPR of AIRTAG
is slightly higher than those of Word2Vec and Doc2Vec (4.2%
higher than Doc2Vec in S3 and 6.0% higher than Word2Vec in
S4), AIRTAG achieves significantly higher TPR. We consider
TPR as more important than FPR because missing malicious
events can lead to worse results than introducing false alarms.
Since the TPR of AIRTAG is the highest among all methods
and the FPR is also comparable, we consider BERT more
suitable for attack investigation.
Different classifiers for downstream tasks. As mentioned
earlier, AIRTAG implements an OC-SVM with RBF kernel
function as the downstream task classifier. To justify this
design choice, we evaluate the FPR and TPR of using dif-
ferent OCCs in AIRTAG. Specifically, we evaluate OC-SVM
models with different kernel functions (i.e., linear, sigmoid
and RBF functions), as well as a deep neural network-based
OCC model (i.e., Ocgan [51]). Although there are other deep
neural network-based OCCs, they are implemented for image
processing [51, 56] which are not suitable for our task. We
choose Ocgan because it is applicable for embedding vectors
after our adaption. To ensure the fairness of the comparison,
we use the same parameters (e.g., the nu and gamma values)
for different OC-SVMs. For OCGAN, we tried our best effort
tuning the parameters. The training epoch of OCGAN is 8 and
the thresholds for each dataset are 0.75, 0.67, 0.73, and 0.8.
Other parameter settings are default settings [18].We show
the results of comparing different classifiers in Figure 14.

We observe that AIRTAG, which uses OC-SVM with the
RBF kernel function, achieves much better results than OC-
SVM models with other kernel functions. Compared with
other OC-SVM models, the TPR of using RBF kernel func-
tions is the highest. The results show the advantage of RBF

USENIX Association 32nd USENIX Security Symposium 383

S1 S2 S3 S40.0

0.5

1.0

TP
R

S1 S2 S3 S40.0

0.2

0.4

0.6

FP
R

Linear Sigmoid Ocgan AIRTAG

Figure 14: Results of Using Different OCCs in Downstream Tasks.

S1 S2 S3 S40.0

0.5

1.0

TP
R

S1 S2 S3 S40.0

0.2

0.4

0.6

FP
R

No Filter Global Field-Wise AIRTAG

Figure 15: Results of Using Different Filters in the Post Processing.

kernel functions. Moreover, although the FPR result of us-
ing AIRTAG is not the best, other cases that achieve better
FPR results have much worse TPR results. Therefore, using
RBF function is still considered the best solution. Existing
work [40] also favors the RBF kernel functions because they
have been proven more effective than other kernel functions.

We also observe that the results of using RBF functions are
more stable than using other kernel functions in our scenarios.
The difference between the highest TPR and the lowest TPR
is 0.9% of OC-SVMs with RBF kernel functions, which is
significantly smaller than 48.8% and 100.0% for OC-SVMs
with linear and sigmoid kernel functions. The results show the
better generalization of OC-SVM with RBF kernel functions.

When comparing with deep neural network-based methods,
the performance of using OC-SVM with RBF kernel function
is also better than the results of using Ocgan. As observed,
the TPR of AIRTAG is higher than Ocgan, and the FPR of
AIRTAG is comparable with that of Ocgan. Specifically, the
average TPR of AIRTAG is 17.9% higher than that of Ocgan.
The FPR of AIRTAG is 2.0% lower than the FPR of using
Ocgan. OC-SVM with RBF outperforms Ocgan because most
deep neural network-based OCCs are designed for visual
tasks, including Ocgan. Therefore, they may not work well
for natural language-like tasks since natural language and
visual data domains are quite different. Another reason is
that deep neural networks can easily overfit input data, which
leads to poor performance. Since using OC-SVM models
with RBF kernel functions achieves the best and most stable
results among all OCCs, we set OC-SVM with RBF kernel
functions as our default downstream task model in AIRTAG.
Different filters. We evaluate three filters based on global
frequency, field-wise frequency of test log files, and field
frequency filters with tolerance bounds (default setting in
AIRTAG). For global frequency filter, we count the frequen-
cies of all words in the testing file and choose the most fre-

quent ones (i.e., top 30% by default for ATLAS and our
datasets, we evaluate such choice in Figure 16) as global fre-
quent words. AIRTAG classifies a log entry as benign if and
only if each word in this entry belongs to global frequent
words. For field-wise one, we count the frequencies of words
in each semantic field and pick the most frequent ones (i.e.,
top 30%) as frequent words of each field. AIRTAG classifies
a log entry as benign if and only if words in each field be-
long to frequent words of this field. We observe that some
randomized filenames of benign files that occur very rarely
(only once) are considered malicious in the above two meth-
ods, such as the name of a counting temporary file. Therefore,
we further relax the constrains in the field-wise frequency by
adding a tolerance bound to allow some rare words classi-
fied benign (i.e., default filter in AIRTAG). Note that, OCCs
in downstream task training can already achieve excellent
TPR results because the models are trained on a large amount
benign data, and can find a precise and constrained decision
boundary for benign entries. Therefore, our filters only aim
to filter the misclassified portion of the entries classified as
positive by the OCCs. We show the results of not using filters
and using different filters in Figure 15.

As inferred from the figure, the default setting of AIRTAG,
which uses both field-wise frequency and tolerance bounds,
achieves the best TPR and FPR. Compared with not using fil-
ters, the TPR of AIRTAG is similar but the FPR is significantly
lower, showing the effectiveness of our filters. Compared with
only using field-wise frequency, AIRTAG achives better per-
formance by allowing rare words to be benign. The average
FPR of AIRTAG is 6.3%, lower than that of the filed-wise
method (14.3%). The results show that a tolerance bound
can improve field-wise based methods and decrease the FPR
because such schema reduces the false alarms caused by ran-
domized file names of benign files.

We also observe that using global frequency achieves the
worst results among all cases. The average TPR of the global
frequency-based filter is only 1.5%, which is almost unac-
ceptable. The performance of using global frequent words is
poor because log entries are field-sensitive. Words that are
frequent in the entire file may not necessarily be frequent in
each field. Therefore, only using global frequency introduces
much noise and make the performance poor.
Threshold in filters. As mentioned earlier, AIRTAG needs
to set a threshold in the filters to decide which words should
be selected as frequent words. Such thresholds can affect the
performance of our filters and the final results of AIRTAG.
Using a small threshold may result in failure to filter out false
positives, but using a large threshold can incorrectly classify
true positives as benign. By default, the threshold is 0.3 for
ATLAS and our datasets, meaning that we consider the top
30% of words in terms of frequency as frequent. To test the
effects of different thresholds on the performance of AIRTAG,
we evaluate the TPR and FPR of AIRTAG under different
threshold settings (i.e., from 0.0 to 1.0), and show the results

384 32nd USENIX Security Symposium USENIX Association

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0

TPR
FPR

(a) Impacts of Threshold in S1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0 TPR

FPR

(b) Impacts of Threshold in S2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0

TPR
FPR

(c) Impacts of Threshold in S3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0
0.2
0.4
0.6
0.8
1.0 TPR

FPR

(d) Impacts of Threshold in S4.

Figure 16: Impacts of thresholds in filters.

Table 2: Results of Using Different Start Points in ATLAS.

Dataset Web Name IP Address Payload

TPR FPR TPR FPR TPR FPR

S1 0.997 0.000 0.061 0.000 1.000 0.472
S2 1.000 0.000 1.000 0.812 1.000 0.928
S3 0.785 0.009 0.991 0.000 1.000 0.845
S4 0.997 0.000 1.000 0.447 1.000 0.812
Average 0.945 0.002 0.763 0.315 1.000 0.764

in Figure 16. Figure 16(a) to Figure 16(d) show the results on
different datasets (S1 to S4).

As the results demonstrate, increasing the threshold can
decrease both TPR and FPR of AIRTAG. On the one hand, in-
creasing the threshold allows some benign log entries that are
previously classified as malicious to be classified as benign,
thus reducing the false positive rate. On the other hand, some
positive entries may also be misclassified as benign when the
threshold is too large. Therefore, the TPR also decreases when
the threshold increases. As observed, the decrease in FPR is
significant, and the loss of TPR is almost impervious when
choosing a proper threshold. For example, when we choose
0.3 as the threshold, the loss of TPR is merely 0.1%, and the
decrease of FPR is 43.98% on average. The results show that
using filters is useful and they only filter false positives out.
By default, we set the threshold 0.3 as the default setting. The
settings may be different in different datasets. Also, we notice
that for some datasets, the best thresholds are similar. This is
because small thresholds do not filter any entries, while large
thresholds filter all entries. Therefore, thresholds are usually
naturally limited to a similar, modest number.
Different start points in ATLAS. ATLAS requires analysts
providing a known attack clue as the prior knowledge for
attack investigation. To test the effects of using different start
points in ATLAS, we choose to use malicious webname, ma-
licious IP address and payload as the start points of ATLAS
and evaluate their TPR and FPR results. We show the results
in Table 2. The last raw of the table shows the average TPR
and FPR results of using different start points.

S1 S2 S3 S40.00

0.25

0.50

0.75

1.00

TP
R

S1 S2 S3 S40.0

0.1

0.2

0.3

FP
R

Before_Change After_Change

Figure 17: Sensitivity to Payload Names.

We find that ATLAS is sensitive to start points. A good
attack start point can derive very good results (e.g., using
malicious web names in S1, S2 and S3) but a bad start point
can lead to very low TPR (6.1% when using the IP address in
S1) and high FPR (the FPR of using payload in S2 is 92.8%).
ATLAS is sensitive to start points because different attack
clues have different impacts on the system when represented
as nodes. For example, the average TPR is the highest when
using payload as the start point in Table 2. This is because the
payload is activity-intensive. Such node derives most edges
related to attack activities (98.9%, 99.8%, 78.2%, and 99.6%
attack activities are derived from payload node in different
datasets). Using payload as the start point directly observes all
of its relevant attack activities and achieves high TPR. When
using other clues as the start point, the TPR highly depends
on whether the payload can be detected or not. For example,
when using the IP address in S1, ATLAS does not detect the
payload and therefore, the TPR is quite low.

On the other hand, activity-intensive applications are con-
nected to more diverse entities, making it more difficult to pre-
cisely identify the feature of relevant attack activities. There-
fore, using payloads as the start points often leads to higher
FPR than using other attack clues. In practice, it is already
difficult to accurately find a real attack alert as attack clues
among a large number of false alarms. It is even more chal-
lenging to test and find the best start point for ATLAS.
Sensitivity to specific words. To test if AIRTAG is sensitive
to the meaning of specific words, we change the payload name
in each testing dataset to different names and show the TPR
and FPR results of investigating attacks on modified datasets.
We evaluate the sensitivity to payload name because most
of the malicious log entries are correlated with payload, as
previously discussed. We compare the results of changing the
payload names with using the results of using original data.
We show the TPR and FPR results in Figure 17.

The results show that changing the payload name does not
affect the results much. The average differences between TPR
and FPR are 0% and 0.7%, respectively, which are impervious.
Therefore, AIRTAG is robust to payload names and is not
biased to specific words.
Sensitivity to unseen benign data. To test whether AIRTAG
only learns a limited vision of benign behaviors (e.g., only
learning behaviors in the training data such as visiting a spe-
cific website and cannot generalize to new websites), we count

USENIX Association 32nd USENIX Security Symposium 385

S1 S2 S3 S40.0

0.5

1.0
Unique Logs FPR

Figure 18: Sensitivity to New Benign Behavior.

the number of new files and new websites in our test data. We
also calculate the ratio of unseen benign log entries to all
benign entries in the test data. Specifically, unseen benign log
entries are defined as benign entries in the test data that do
not exist in the training data after removing time-sensitive
information such as pid and timestamp. We then evaluate
the sensitivity of AIRTAG to such unseen benign behavior
(e.g., browser access to new websites) by measuring AIRTAG
performance on them, and present the results in Figure 18.

We find that the new website addresses appearing in each
test set are 499, 654, 2,114, and 849. For the files, these num-
bers are 683, 19,356, 1,105, and 693. The statistics suggest
that the test dataset has included sufficient unseen benign
objects and subjects, and the results in §3.2 demonstrate gen-
eralization over such data. According to Figure 18, we further
observe that the FPR on such benign data is low. The results
confirm that AIRTAG is robust to unseen benign data.

3.5 Case Study
In this section, we present and discuss four attack causal
graph cases reported by AIRTAG from the S1, S2, S3 and S4
datasets. In our presented attack story (Figure 19), the red
color indicates the attack chain and the dashed line indicates
the missing entries. Edges with Added mean they are added
by linking disconnected components when reconstructing
the graph (see Section 2.4). Notice that since the original
attack subgraphs are too large to be displayed, we manually
simplified them by only showing the key attack steps and
omits many other false positives.
Case-1: Strategic web compromise. This attack exploited
CVE-2015-5122. The victim user ran a Firefox_12 pro-
cess and clicked a link which was redirected to a malicious
website Xaa.com resolved by 192.b.c.d. The attacker ex-
ploited CVE-2015-5122 by this link, compromised Firefox
plugins and wrote a payload program Payload.exe to the
victim computer. Payload.exe was executed and the derived
process Payload_1 scanned files in the victim system, estab-
lished a connection to attacker, and uploaded all pdf files.
Case-2: Malvertising dominate. The whole attack process is
similar to the first one. The difference is that the second case
exploited vulnerability CVE-2015-3105 and compromised
different browser plugins.
Case-3: Spam campaign. The attack exploited the vulnerabil-
ity CVE-2017-11882. In this case, a user opened a malicious
email, which has a link to the malicious website Xaa.com

resolved by 192.b.c.d. The user requested and downloaded
a malicious file msf.rtf, read it with Winword_18. Then,
msf.rtf established msf_1 which writes a payload program
Payload.exe and replaces the benign website page in the
victim host with a malicious one index.html. The attacker
executed Payload.exe, initialized Payload_1, scanned pdf
files and received the pdf files.
Case-4: Pony campaign. The attacker exploited a Microsoft
vulnerability CVE-2017-0199. The user opened a malicious
email with a malicious word file attachment msf.doc. Then,
the user used the vulnerable Microsoft Word program to
download and open the attached Word file, and open a
Powershell_10 process. The attacker uses Powershell_10
to upload malicious payloads and web pages. Other steps are
similar to the third case.

Our results showed that AIRTAG successfully recovers the
attack story. Besides, compared with ATLAS, false positives
caused in AIRTAG have been significantly reduced.

4 Discussion

4.1 Limitation of AIRTAG

AIRTAG is constrained by the availability of training data
because AIRTAG need to learn common benign patterns from
a large amount of system behavior data (most of them should
be benign). In our scenario, obtaining training data is usually
feasible since a machine can generate several gigabytes of
log data per day. Even if an attack was injected, most of the
logs remain benign because the attacker needs keep stealthy
to avoid being easily observed.

AIRTAG also may not generalize well to other log data
with domain gaps. For example, if we train AIRTAG only
on system logs, AIRTAG would perform relatively poorly in
application logs (e.g., Firefox logs). This is a problem for all
AI tasks (e.g., a model trained to translate English does not
translate German well). A simple approach to improve the
performance on data with domain gaps is to train the model
on mixed log data (e.g., we train AIRTAG on the ATLAS
dataset, which is a mix of system logs and application logs).
This approach requires formatting and pre-processing for
logs from different sources. Some log parsing tools, such
as LogStash, can help. Another possible solution is to use
domain adaptation techniques, e.g., transfer learning.

4.2 Adaptive Attacks
Similar to existing attack investigation methods, AIRTAG may
be evaded when attackers carefully design their attacks. For
example, attackers can make their attacks very intense and
frequent, such that most of the logs are attack-related rather
than benign behaviors, forcing the model to be unable to learn
benign behavior patterns. However, this is not very practical
in most cases since intense attack activities can be easily

386 32nd USENIX Security Symposium USENIX Association

Figure 19: Investigation Cases by AIRTAG.

observed, and the defender controls the training data, who
will ensure the quality of the training data.

AIRTAG depends on system log files and attacks with no
trace in such files can evade it, which is a common disad-
vantage of system log-based systems. Such attacks include
fileless and living-off-the-land attacks, where attacks only
happen in memory or issue no system calls. AIRTAG also
fails when the benign and malicious behaviors in log files are
indistinguishable from the system log level, which inherits
the limitation of machine learning-based detection.

5 Related Work

AIRTAG is related to attack detection, anomaly detection, at-
tack investigation, word embedding and one class classifiers.
Attack detection. Existing log-level attack detection meth-
ods [44] mainly detect the existence of attacks without pro-
viding detailed analysis. Causal graph-based attack detec-
tion methods [22, 65] are popular because of their capabil-
ity to capture attack behaviors. PROVDETECTOR [65] and
SIGL [22] can detect the existence of attacks. At a more gran-
ular level, Unicorn [21] and RapSheet [23] can detect small
compositions of attack activities or malicious processes.
Anomaly detection. There are a number of anomaly detec-
tion methods that can identify rare events or observations in
a dataset that deviate from the normal behavior or expected
pattern1. These anomalies may indicate data quality issues,
fraud, or system errors. For example, Deeplog [13] uses deep
learning techniques to detect abnormal behaviors in a system
based on system logs, while some BERT-based methods such
as LogBERT and LAnoBERT [19, 35] use advanced BERT
embeddings to improve the performance. Usually, anomaly
detection only detects a single or a few abnormal log entries,
which is different from our target attack investigation scenario
that aims to recover the whole attack story. Due to the differ-
ences between them, the design of used techniques in anomaly
detection and attack investigation can be different. For exam-
ple, when preprocessing logs, anomaly detection considers

1https://github.com/logpai/awesome-log-analysis

each single log entry, while attack investigation merges dupli-
cated information as long as it will not affect the causalities
of activities. But still, there are potential ideas in anomaly
detection that we could borrow for attack investigation tasks.
Attack investigation. Different from attack detection and
anomaly detection techniques (e.g., Deeplog, LogBert and
LAnoBERT [13, 19, 35]) that only detect isolated outliers, at-
tack investigation techniques aims to recover and understand
the whole attack story. Existing work investigates attacks by
generating and understanding causal graphs [29, 30]. Cam-
flow [49] and other platforms [8, 11, 12, 17, 28, 62, 63, 69]
provide support for collecting, storing, and searching system-
level causal graphs. While the causal graph-based methods
simplify the attack story, the graphs are still large and hard
to understand. A series of works propose to remove unnec-
essary events in the graph [25, 34, 61, 67]. Beep [33] then
partitions the graph into several execution units and hides
detailed causalities in each unit to further compress the graph.
MARSARA [68] guarantees the integrity of execution par-
titioning. More recently, other work also uses search-based
methods [15, 39] or learning-based methods [3, 4] to prioritize
the most important nodes/edges and simplify the analysis.
Embedding for text-related data. Word2vec [41] is widely
used to obtain word embedding. Recently, using large lan-
guage models trained on a large corpus, such as the Bert [10]
and GPT models [5, 54] achieves the best results. Compared
with GPT, log-based systems often use BERT because of
its bi-directional architecture. We notice that there are also
some embedding methods for logs such as Log2vec and At-
tack2vec [38, 59]. However, they are unavailable and imprac-
tical for our case. Log2vec generates graphs and performs
graph embedding, which still introduces graphs and the graph
embedding is different from text embedding. Attack2vec re-
quires labeling attack events as the training data, which is
labor-intensive and error-prone.
One class classifiers. Many existing works choose to use
OC-SVMs [40, 47, 52] rather than other OCCs because they
are explainable, easy to use and time efficient. While there
are other novel alternative OCCs based on deep neural net-
works [2, 48, 51, 53, 57], most of them are specifically de-

USENIX Association 32nd USENIX Security Symposium 387

signed for image data rather than texts such as audit logs.

6 Conclusion

This paper proposes and builds a novel log text-based attack
investigation system, AIRTAG. Specifically, we utilize several
novel techniques such as unsupervised learning techniques to
overcome limitations of existing causal graph-based methods.
Our evaluation shows that compared to the state-of-the-art
approach (ATLAS), AIRTAG achieves 9.0% fewer false pos-
itives and 16.5% more true positives. In addition, AIRTAG is
2.5x faster than ATLAS.

Acknowledgments

We thank the anonymous reviewers for their constructive com-
ments. This material is based upon work supported by the
NSF 2238847. Yuhong Nan was supported in part by the
National Natural Science Foundation of China (62202510).

References
[1] Logstash. https://www.elastic.co/cn/logstash, 2022.

[2] Davide Abati, Angelo Porrello, Simone Calderara, and Rita Cucchiara. Latent
space autoregression for novelty detection. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, 2019.

[3] Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, Gregory Walkup, Z. Berkay
Celik, Xiangyu Zhang, and Dongyan Xu. ATLAS: A sequence-based learning
approach for attack investigation. In USENIX Security 2021, 2021.

[4] Mathieu Barré, Ashish Gehani, and Vinod Yegneswaran. Mining data provenance
to detect advanced persistent threats. In 11th International Workshop on Theory
and Practice of Provenance, 2019.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, 2020.

[6] Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su, and Michael R. Lyu. Ex-
perience report: Deep learning-based system log analysis for anomaly detection.
arXiv/2107.05908, 2021.

[7] Lele Cheng, Xiangzeng Zhou, Liming Zhao, Dangwei Li, Hong Shang, Yun Zheng,
Pan Pan, and Yinghui Xu. Weakly supervised learning with side information for
noisy labeled images. In Computer Vision - 16th European Conference, ECCV
2020, volume 12375 of Lecture Notes in Computer Science, 2020.

[8] Pubali Datta, Isaac Polinsky, Muhammad Adil Inam, Adam Bates, and William
Enck. Alastor: Reconstructing the provenance of serverless intrusions.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR 2009, 2009.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2019.

[11] Hailun Ding, Shenao Yan, Juan Zhai, and Shiqing Ma. ELISE: A storage efficient
logging system powered by redundancy reduction and representation learning. In
USENIX Security 2021, 2021.

[12] Hailun Ding, Juan Zhai, Dong Deng, and Shiqing Ma. The case for learned
provenance graph storage systems. In USENIX Security 2023, 2023.

[13] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, 2017.

[14] En.Wikipedia.Org. 2020 united states federal government data breach.
https://en.wikipedia.org/wiki/2020_United_States_federal_gove
rnment_data_breach, 2021.

[15] Pengcheng Fang, Peng Gao, Changlin Liu, Erman Ayday, Kangkook Jee, Ting
Wang, Yanfang Fanny Ye, Zhuotao Liu, and Xusheng Xiao. Back-propagating
system dependency impact for attack investigation.

[16] Anjalie Field, Su Lin Blodgett, Zeerak Waseem, and Yulia Tsvetkov. A survey of
race, racism, and anti-racism in NLP. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, ACL/IJCNLP 2021, 2021.

[17] Ashish Gehani and Dawood Tariq. SPADE: support for provenance auditing
in distributed environments. In Middleware 2012 - ACM/IFIP/USENIX 13th
International Middleware Conference, volume 7662 of Lecture Notes in Computer
Science, 2012.

[18] Github.com. Anomaly-detection-ocgan-tensorflow. https://github.com/n
uclearboy95/Anomaly-Detection-OCGAN-tensorflow, 2019.

[19] Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection
via BERT. In International Joint Conference on Neural Networks, IJCNN 2021,
2021.

[20] Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and Dawn Song. DEEPVSA:
facilitating value-set analysis with deep learning for postmortem program analysis.
In USENIX Security 2019, 2019.

[21] Xueyuan Han, Thomas F. J.-M. Pasquier, Adam Bates, James Mickens, and
Margo I. Seltzer. Unicorn: Runtime provenance-based detector for advanced
persistent threats. In 27th Annual Network and Distributed System Security
Symposium, NDSS 2020, 2020.

[22] Xueyuan Han, Xiao Yu, Thomas F. J.-M. Pasquier, Ding Li, Junghwan Rhee,
James W. Mickens, Margo I. Seltzer, and Haifeng Chen. SIGL: securing software
installations through deep graph learning. In USENIX Security 2021, 2021.

[23] Wajih Ul Hassan, Adam Bates, and Daniel Marino. Tactical provenance analysis
for endpoint detection and response systems. In 2020 IEEE Symposium on
Security and Privacy, SP 2020, 2020.

[24] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, and Adam Bates. Nodoze: Combatting threat alert fatigue with
automated provenance triage. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, 2019.

[25] Md Nahid Hossain, Junao Wang, R. Sekar, and Scott D. Stoller. Dependence-
preserving data compaction for scalable forensic analysis. In USENIX Security
2018, 2018.

[26] HP. 2020 hp bromium threat insights report q4. https://threatresearch
.ext.hp.com/wp-content/uploads/2021/03/HP_Bromium_Threat_Insi
ghts_Report_Q4_2020.pdf, 2020.

[27] IBM. Cost of a data breach 2022. https://www.ibm.com/reports/data-b
reach, 2022.

[28] Nesrine Kaaniche, Sana Belguith, Maryline Laurent, Ashish Gehani, and Giovanni
Russello. Prov-trust: Towards a trustworthy sgx-based data provenance system.
In Proceedings of the 17th International Joint Conference on e-Business and
Telecommunications, ICETE 2020, 2020.

[29] Samuel T. King and Peter M. Chen. Backtracking intrusions. In Proceedings of
the 19th ACM Symposium on Operating Systems Principles, SOSP 2003, 2003.

[30] Samuel T. King, Zhuoqing Morley Mao, Dominic G. Lucchetti, and Peter M.
Chen. Enriching intrusion alerts through multi-host causality. In Proceedings of
the Network and Distributed System Security Symposium, NDSS 2005, 2005.

[31] Jack Lanchantin, Tianlu Wang, Vicente Ordonez, and Yanjun Qi. General multi-
label image classification with transformers. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, 2021.

388 32nd USENIX Security Symposium USENIX Association

https://www.elastic.co/cn/logstash
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://github.com/nuclearboy95/Anomaly-Detection-OCGAN-tensorflow
https://github.com/nuclearboy95/Anomaly-Detection-OCGAN-tensorflow
https://threatresearch.ext.hp.com/wp-content/uploads/2021/03/HP_Bromium_Threat_Insights_Report_Q4_2020.pdf
https://threatresearch.ext.hp.com/wp-content/uploads/2021/03/HP_Bromium_Threat_Insights_Report_Q4_2020.pdf
https://threatresearch.ext.hp.com/wp-content/uploads/2021/03/HP_Bromium_Threat_Insights_Report_Q4_2020.pdf
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach

[32] Quoc V. Le and Tomás Mikolov. Distributed representations of sentences and
documents. In Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, JMLR Workshop and Conference Proceedings, 2014.

[33] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy attack prove-
nance via binary-based execution partition. In 20th Annual Network and Dis-
tributed System Security Symposium, NDSS 2013, 2013.

[34] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. Loggc: garbage collecting
audit log. In 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2013, 2013.

[35] Yukyung Lee, Jina Kim, and Pilsung Kang. Lanobert : System log anomaly
detection based on BERT masked language model. Arxiv/2111.09564, 2021.

[36] Changchun Li, Ximing Li, and Jihong Ouyang. Semi-supervised text classification
with balanced deep representation distributions. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, ACL/IJCNLP
2021, 2021.

[37] Xuezixiang Li, Yu Qu, and Heng Yin. Palmtree: Learning an assembly language
model for instruction embedding. In 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2021, 2021.

[38] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng.
Log2vec: A heterogeneous graph embedding based approach for detecting cyber
threats within enterprise. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, 2019.

[39] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. Towards a timely causality analysis for enterprise
security. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, 2018.

[40] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.
NIC: detecting adversarial samples with neural network invariant checking. In
NDSS 2019, 2019.

[41] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. In 1st International Conference on
Learning Representations, ICLR 2013, Workshop Track Proceedings, 2013.

[42] Sadegh Momeni Milajerdi, Rigel Gjomemo, Birhanu Eshete, R. Sekar, and V. N.
Venkatakrishnan. HOLMES: real-time APT detection through correlation of
suspicious information flows. In 2019 IEEE Symposium on Security and Privacy,
SP 2019, 2019.

[43] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An
ensemble of autoencoders for online network intrusion detection. In 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, 2018.

[44] Melody Moh, Santhosh Pininti, Sindhusha Doddapaneni, and Teng-Sheng Moh.
Detecting web attacks using multi-stage log analysis. In IEEE 6th international
conference on advanced computing, IACC2016. IEEE, 2016.

[45] Kiran-Kumar Muniswamy-Reddy and David A Holland. Causality-based version-
ing. ACM Transactions on Storage (TOS), 5, 2009.

[46] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Deepcorr: Strong flow
correlation attacks on tor using deep learning. In Proceedings of ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, 2018.

[47] Zineb Noumir, Paul Honeine, and Cedue Richard. On simple one-class classifi-
cation methods. In Proceedings of the 2012 IEEE International Symposium on
Information Theory, ISIT 2012, 2012.

[48] Poojan Oza and Vishal M. Patel. One-class convolutional neural network. IEEE
Signal Process. Lett., 26, 2019.

[49] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. Practical whole-system provenance capture. In
Symposium on Cloud Computing, SoCC’ 2017. ACM, 2017.

[50] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, 2014.

[51] Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. OCGAN: one-class
novelty detection using gans with constrained latent representations. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, 2019.

[52] Pramuditha Perera, Poojan Oza, and Vishal M. Patel. One-class classification: A
survey. Arxiv/2101.03064, 2021.

[53] Stanislav Pidhorskyi, Ranya Almohsen, and Gianfranco Doretto. Generative prob-
abilistic novelty detection with adversarial autoencoders. In Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems, NeurIPS 2018, 2018.

[54] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[55] Vera Rimmer, Davy Preuveneers, Marc Juárez, Tom van Goethem, and Wouter
Joosen. Automated website fingerprinting through deep learning. In 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, 2018.

[56] Lukas Ruff, Nico Görnitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Robert A.
Vandermeulen, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep
one-class classification. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, volume 80 of Proceedings of Machine Learning
Research, 2018.

[57] Mohammad Sabokrou, Mohammad Khalooei, Mahmood Fathy, and Ehsan Adeli.
Adversarially learned one-class classifier for novelty detection. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2018, 2018, 2018.

[58] Karishma Sharma, Pinar Donmez, Enming Luo, Yan Liu, and I. Zeki Yalniz.
Noiserank: Unsupervised label noise reduction with dependence models. In
Computer Vision - 16th European Conference, ECCV 2020, volume 12372 of
Lecture Notes in Computer Science, 2020.

[59] Yun Shen and Gianluca Stringhini. ATTACK2VEC: leveraging temporal word
embeddings to understand the evolution of cyberattacks. In USENIX Security
2019, 2019.

[60] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing functions
in binaries with neural networks. In USENIX Security 2015, 2015.

[61] Yutao Tang, Ding Li, Zhichun Li, Mu Zhang, Kangkook Jee, Xusheng Xiao,
Zhenyu Wu, Junghwan Rhee, Fengyuan Xu, and Qun Li. Nodemerge: Template
based efficient data reduction for big-data causality analysis. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, 2018.

[62] Benjamin E. Ujcich, Adam Bates, and William H. Sanders. Provenance for intent-
based networking. In 6th IEEE Conference on Network Softwarization, NetSoft
2020, 2020.

[63] Benjamin E. Ujcich, Samuel Jero, Richard Skowyra, Adam Bates, William H.
Sanders, and Hamed Okhravi. Causal analysis for software-defined networking
attacks. In USENIX Security 2021, 2021.

[64] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, and Serge J.
Belongie. Learning from noisy large-scale datasets with minimal supervision. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.

[65] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jungh-
wan Rhee, Zhengzhang Chen, Wei Cheng, Carl A. Gunter, and Haifeng Chen.
You are what you do: Hunting stealthy malware via data provenance analysis. In
27th Annual Network and Distributed System Security Symposium, NDSS, 2020.

[66] Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. Thundersvm:
A fast SVM library on gpus and cpus. J. Mach. Learn. Res., 19, 2018.

[67] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. High fidelity data reduction
for big data security dependency analyses. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016.

[68] Carter Yagemann, Mohammad A. Noureddine, Wajih Ul Hassan, Simon Chung,
Adam Bates, and Wenke Lee. Validating the integrity of audit logs against
execution repartitioning attacks. In 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2021, 2021.

[69] Runqing Yang, Shiqing Ma, Haitao Xu, Xiangyu Zhang, and Yan Chen. Uiscope:
Accurate, instrumentation-free, and visible attack investigation for GUI applica-
tions. In 27th Annual Network and Distributed System Security Symposium, NDSS
2020, 2020.

[70] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin
Zhang. Neural machine translation inspired binary code similarity comparison
beyond function pairs. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, 2019.

USENIX Association 32nd USENIX Security Symposium 389

Table 3: Post-processing Rules

Rule Base Target

F1 Global Word Frequency Filter FPs
F2 Field-wise Word Frequency Filter FPs
F3 Field-wise Word plus Tolerance Filter FPs
G1 Graph Generation Generate Graph
C1 Graph Expand Connect Graph
C2 Operation Pair Connect Graph

A Appendix

A.1 Post-processing Rules

Our post-processing has three types of rules shown in Table 3,
i.e. filtering rules starting with F, graph reconstruction rules
starting with G and graph connecting rules starting with C.
These rules are plugins that can easily be extended with more.

Specifically, F1, F2, and F3 are filters based on global word
frequency, field-wise word frequency, and field-wise word
frequency plus a tolerance bound as explained in §3.4. G1 is a
rule applied to generate an initial attack graph from detected
log entries, which is similar to algorithms used to generate
causal graphs from logs. C1 then connects disjoint graph
components by expanding the graph and C2 pairs request and
response operations in the graph.

A.2 ATLAS Investigation Cases.

We show four attack investigation cases (same cases in §3.5)
generated by ATLAS in Figure 20. The yellow ones show the
start point given by analyzers, the black ones indicate false
positives, the shadowed black ones indicate the nodes that are
misclassified as malicious, and the red ones represent the real
attack nodes marked as malicious by ATLAS. For ATLAS,
all edges and nodes that are directly connected with malicious
nodes will be marked as malicious.

ATLAS can generate a precise attack story while missing
key steps. As observed in the first case, ATLAS only predicts
three attack entities when given a good attack clue as the start
point, such as malicious IP Xaa.com. The small number of
detected malicious entities allows ATLAS to generate precise
attack history without introducing many false positives. How-
ever, it can miss key connections such as the edge between
Firefox_12 and malicious IP 192.b.c.d.

In another kind of cases, ATLAS detects more attack en-
tities while introducing many false positives. For example,
ATLAS misclassifies a benign IP 172.d.e.f and process
Search_1.exe in cases S2 and S4 as malicious, which will
introduce all related benign behaviors of misclassified mali-
cious entities as false positives. Overall, the performance of
ATLAS depends on the given start points. However, choosing
a good starting point can be challenging in real scenarios.

Figure 20: Investigation Cases by ATLAS.

A.3 Non-overlapping Attack Nodes
As mentioned in §3.1, all behaviors connected to an attack
clue node, such as payload, are considered unsafe and mali-
cious in ATLAS labeling. Such attack nodes are typical nodes
that do not overlap with any benign behavior. We analyze the
sensitivity to such non-overlapping attack nodes in terms of
the number of these nodes and the changes in themselves.

Firstly, the number of such non-overlapping nodes is tightly
related to the number of attack steps (e.g., using one less pay-
load step reduces the number of associated payloads). There-
fore, we use the evaluation of unsuccessful attack steps for our
analysis (the number of such attack clues is shown in Table 1
and evaluation results are shown in Figure 10), where the
first attack steps contain fewer non-overlapping attack nodes
than the later steps. As shown in Figure 10, as the number of
attack steps increases, we observe no significant change in
TPR, but a decrease in FPR. This suggests that as the number
of non-overlapping attack nodes increases, it is more benefi-
cial for the model to distinguish the attack behavior. This is
reasonable since more attack activities usually lead to more
outliers and make the attacks easier to detect.

Secondly, we change the name of payload nodes to measure
the sensitivity to changes in the attributes of non-overlapping
nodes. As shown in Figure 17, the TPR and FPR are still very
good and comparable to the original ones. Therefore, we do
not think that changes in the non-overlapping attack nodes
themselves will significantly affect AIRTAG.

390 32nd USENIX Security Symposium USENIX Association

	Introduction
	Existing Solution and Motivation
	Our Solution

	Design of AirTag
	Overview
	Preprocessing
	Training
	Tokenization
	Embedding Training
	Downstream Task Training

	Attack Investigation

	Evaluation
	Experiment Setup
	Effectiveness of Attack Investigation
	Time Costs for Attack Investigation
	Ablation Study
	Case Study

	Discussion
	Limitation of AirTag
	Adaptive Attacks

	Related Work
	Conclusion
	Appendix
	Post-processing Rules
	ATLAS Investigation Cases.
	Non-overlapping Attack Nodes

