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Abstract

Advanced Persistent Threats (APT) involve multiple attack

steps over a long period, and their investigation requires anal-

ysis of myriad logs to identify their attack steps, which are

a set of activities undertaken to run an APT attack. How-

ever, on a daily basis in an enterprise, intrusion detection

systems generate many threat alerts of suspicious events (at-

tack symptoms). Cyber analysts must investigate such events

to determine whether an event is a part of an attack. With

many alerts to investigate, cyber analysts often end up with

alert fatigue, causing them to ignore a large number of alerts

and miss true attack events. In this paper, we present ATLAS,

a framework that constructs an end-to-end attack story from

off-the-shelf audit logs. Our key observation is that different

attacks may share similar abstract attack strategies, regardless

of the vulnerabilities exploited and payloads executed. ATLAS

leverages a novel combination of causality analysis, natu-

ral language processing, and machine learning techniques to

build a sequence-based model, which establishes key patterns

of attack and non-attack behaviors from a causal graph. At

inference time, given a threat alert event, an attack symptom

node in a causal graph is identified. ATLAS then constructs

a set of candidate sequences associated with the symptom

node, uses the sequence-based model to identify nodes in a se-

quence that contribute to the attack, and unifies the identified

attack nodes to construct an attack story. We evaluated ATLAS

with ten real-world APT attacks executed in a realistic vir-

tual environment. ATLAS recovers attack steps and construct

attack stories with an average of 91.06% precision, 97.29%

recall, and 93.76% F1-score. Through this effort, we provide

security investigators with a new means of identifying the

attack events that make up the attack story.

∗ The authors contributed equally.

1 Introduction

Forensic analysis approaches collect diverse audit logs from

multiple hosts, applications, and network interfaces. The mas-

sive volumes of logs are often analyzed offline or monitored in

real-time to debug system failures and identify sophisticated

threats and vulnerabilities. For instance, recent works con-

struct causal dependency graphs from audit logs [21, 27] and

use query systems to locate key attack phases (e.g., a compro-

mised process or malicious payload) [16,31]. Several research

systems aimed to extend machine learning (ML) techniques

to extract features/sequences from logs to automate intrusion

and failure detection [8, 36], while others built techniques

to discover associations among disparate log events through

event correlation [44]. Yet, while security investigators desire

to identify the attack steps, which are the specific activities

undertaken to conduct an attack, these approaches are largely

unable to precisely locate the critical attack steps which can

efficiently highlight the end-to-end attack story.

In this paper, we aim at identifying the key entities (nodes)

from audit logs that help cyber analysts construct the critical

steps of an APT attack. We introduce ATLAS, a framework for

attack story recovery that integrates natural language process-

ing (NLP) and deep learning techniques into data provenance

analysis to identify attack and non-attack sequences. ATLAS

operates in three phases: (a) it processes the system logs

and builds its own optimized causal dependency graph, (b) it

constructs semantically-augmented sequences–timestamped

events–from the causal graph through NLP techniques, and

(c) it learns a sequence-based model that represents the attack

semantics, which helps to recover key attack entities describ-

ing the attack story at inference time. These phases do not

impose additional overhead on a running system, and different

audit logs can be easily integrated into the ATLAS log parser

to construct causal graphs and obtain precise sequences and

models. During attack investigation, ATLAS enables cyber

analysts to identify those key attack steps through an attack

symptom event (alert), based on those sequences that share se-

mantically similar attack patterns to the ones it had previously
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learned. Such knowledge helps cyber analysts substantially

save time when investigating large causal graphs, and aids

them in constructing the attack story from a limited number

of attack symptoms.

Our approach is based on the insight that crucial steps of

different attacks in a causal dependency graph may share simi-

lar patterns. The patterns, transformed into sequences through

NLP techniques (i.e., lemmatization [37] and word embed-

ding [30]) that group together various inflected forms of rela-

tions between attack and non-attack entities. Such a sequence-

based representation naturally fits the training of a model,

which equips the model with deeper memories with different

causal relations, and in turn, improves the sequence-model

accuracy in identifying attack steps from unknown audit logs.

However, there are three key challenges to this approach: (a)

the causal graph is often large and complex, which makes

sequence construction difficult, (b) it requires a means to

precisely construct the sequences to model legitimate and sus-

picious activities effectively, and (c) an automated approach

is needed to identify the attack events from a given attack

symptom. To address these issues, ATLAS uses customized

graph-optimization algorithms to reduce the graph complex-

ity, implements a novel technique to extract the sequences of

attack patterns from events, and performs attack investigation

through an attack symptom to recover attack events that help

comprehensively build the attack story.

We implemented and deployed ATLAS to investigate real-

world attacks in a controlled environment. We developed four

single-host and six multi-host attacks through their detailed

APT campaign reports [17, 18, 22, 28, 34, 39]. We collected

around 6.7 GB of audit log data, including over 196K entities

(e.g., unique files, processes, and IP addresses) and 2.5 mil-

lion events spanning 24 hours for attack investigation. Our

evaluation results demonstrate that ATLAS achieves an aver-

age 91.06% precision and 97.29% recall in identifying attack

entities.2 In this work, we make the following contributions:

• We introduce ATLAS, a framework for attack story re-

covery, which leverages natural language processing and

sequence-based model learning techniques to help cyber

analysts recover attack steps from audit logs.

• We present a novel sequence representation that abstracts

the attack and non-attack semantic patterns through

lemmatization and word embeddings. The sequences

allow ATLAS to build an effective sequence-based model

to identify attack events that make up the attack story.

• We validate ATLAS on ten realistic APT attacks devel-

oped through their real-world reports in a controlled

environment. The results show that ATLAS identifies the

key attack entries for an attack story with high accuracy

and minimal overhead.

2ATLAS and the audit logs used in our evaluations are available at

https://github.com/purseclab/ATLAS.

2 Motivation and Definitions

Motivating Example. We describe a real-world APT at-

tack [18] that we use throughout the paper. An attacker sends

a malicious Microsoft Word file (contract.doc) by email

to a targeted user in an enterprise. The user is deceived into

downloading and opening the Word file from Gmail using

Firefox. The document contains a piece of malicious code that

exploits a vulnerable Microsoft Word (winword.exe) and

issues HTTPS requests to download a malicious Microsoft

HTA script (template.hta). This script executes a malicious

Visual Basic script (maintenance.vbs) that includes Power-

Shell commands installing a backdoor to exfiltrate sensitive

files. Lastly, the attacker laterally moves to other hosts.

Attack Investigation. The attack investigation often begins

by collecting data about the attack from the audit logs, such

as system events, DNS queries, and browser events. Attack

investigation tools often represent the audit logs in the form of

a causal graph (or provenance graph) that serves as a forensic

tool, allowing security investigators to perform root cause

analysis, and better understand the nature of an attack. Most

prior research (e.g., [11, 50]) recovers the attack story from

the causal graph as a sub-graph, where nodes and edges in

this graph have causality relations with the attack symptom(s)

for starting attack investigation. Figure 1 (a) shows a causal

graph of our example attack scenario generated by those tools.

The red dashed arrow represents the alert event (α, a sus-

picious network connection) that the attack investigation is

started from and the red dashed rectangular area illustrates

the recovered attack subgraph.

As detailed by a number of recent works [10, 16, 31], such

graphs are, however, still very large and difficult to inter-

pret in practice even with different graph-optimization tech-

niques applied. These works largely rely on heuristics or

hard-coded rules, which are time-consuming to develop and

maintain. Thus, a domain-knowledge expert is required to

constantly update those rules to cover newly developed at-

tacks. ATLAS however, only requires more attack training

data to learn new attack patterns. Others proposed anomaly-

based approaches [8,9,11,12,50] that learn user behavior and

identify any behavior deviates from it as an anomaly. While

anomaly-based approaches can identify unknown attacks, they

can have many false positives as the user behavior changes

through time. To address this issue, ATLAS aims to learn both

attack patterns and user behavior to identify the similarities

and differences between the two. Similar to ATLAS, learning-

based approaches [36, 42, 43] use ML algorithms to model

attack events from logs. While these approaches can effec-

tively reduce the number of log entries, a significant amount

of manual effort is still required to find a high-level view of

the attack events. To address this issue, ATLAS investigation

aims to identify attack key entities (nodes), which enables it

to automatically identify a subset of associated attack events.

ATLAS Approach. ATLAS is motivated by the observation
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Figure 1: A real-world APT attack scenario reported by FireEye [18]. (a) shows a causal graph generated by prior approaches

[11, 50], the red dashed area represents the attack activities reported by those approaches (some nodes and edges were omitted

for brevity). (b) shows the attack story recovered by ATLAS as a temporal sequence of the attack steps, and (c) shows a concise

causal graph generated by ATLAS that describes the complete attack details.

that an APT attack can be summarized as a temporal sequence

of attack phases obtained from audit logs, such as the steps

1-14 illustrated in Figure 1 (b) similar to the attack steps de-

scribed in natural language. These attack steps often fit in

specific contexts as unique sequences representing the se-

mantics of an attack, which can be differentiated from those

normal activities in audit logs. Such a sequence-based attack

representation naturally fits the training of a model to identify

similar attack steps across different APT instances as they of-

ten share similar patterns regardless of their log-level details.

ATLAS, given an attack symptom node (a malicious IP address

that alert event α includes) at inference time, extracts a set

of candidate sequences associated with symptom node, and

uses a sequence-based model to identify which of those nodes

in the sequences contribute to the attack. Thereafter, it uses

identified attack nodes to construct the attack story, which

includes events of the identified attack nodes, thus making

attack investigation more concise and easier to interpret by

investigators. Figure 1 (c) illustrates the attack story recov-

ered by ATLAS for the motivating example, which includes

the complete key attack steps of the example attack. This

process significantly reduces manual efforts for attack investi-

gation from large causal graphs, which excludes events that

do not contribute to the attack and reduce the time needed to

investigate large causal graphs.

2.1 Definitions

We formally define key terms used throughout (see Figure 2)

and present the threat model.

Causal Graph. A Causal Graph G is a data structure extracted

from audit logs and often used in provenance tracking, indi-

cating the causality relations among subjects (e.g., processes)

Figure 2: Illustration of causal graph, neighborhood graph,

events, and sequences.

and objects (e.g., files or connections). The causal graph con-

sists of nodes, which represent subjects and objects, connected

with edges, which represent actions (e.g., read or connect) be-

tween subjects and objects. We consider here a directed cyclic

causal graph, and its edges point from a subject to an object.

Entity. An entity e is a unique system subject or object ex-

tracted from the causal graph where it is represented as a

node 3. The entities we consider include processes, files, and

network connections (i.e., IP addresses and domain names).

For instance, winword.exe_21 is a subject that represents a

process instance of MS Word application with a process name

and ID, and 192.10.0.1:80 is an object that represents an

IP address with a port number.

Neighborhood Graph. Given a causal graph, two nodes u and

v are said to be neighbors if they are connected by an edge.

The neighborhood of a node n is the subgraph of G composed

of the node n and edges connecting neighbor nodes with the

node n. Similarly, given a set of nodes {n1,n2, . . . ,nn}, we

3We use “entity” and “node” interchangeably across the paper. The term

“node” is specifically used when we explain the structure of the causal graph.
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Figure 3: Overview of ATLAS architecture.

extract one unified neighborhood graph that includes all nodes

and edges connecting them to their neighbors.

Event. An event ε is a quartet (src,action,dest,t), the

source (src) and destination (dest) are two entities con-

nected with an action. The t is the event timestamp

that shows when an event occurred. Given an entity e,

its events can be extracted from e neighborhood graph,

which includes all actions associated with e’s neighbors.

For example, given an entity Firefox.exe and a neigh-

borhood graph that includes an action open and times-

tamp t from node Firefox.exe to node Word.doc, then

(Firefox.exe,open,Word.doc,t) is an event where a Fire-

fox process opens a Word file at time t.

Sequence. Given an entity e, a sequence S can be extracted

from a causal graph. The sequence S includes all events of

entity e’s neighborhood graph in a temporal order, such that

S{e} := {ε1,ε2, . . . ,εn}. Similarly, if a set of entities are given,

we can extract a sequence that includes all events from their

unified neighborhood graph.

Figure 2 (a) illustrates a causal graph with six enti-

ties {eA,eB, . . . ,eF}. Figure 2 (b) shows the neighborhood

graph of eB that includes node B, neighbor nodes {A,C}
and their connecting edges {EAB,EBC}. Similarly, the neigh-

borhood graph of entities set {eB,eC} includes the nodes

{A,B,C,D,E} and edges {EAB,EBC,ECD,ECE} shown in Fig-

ure 2 (b). The events of entity eB is εAB =< eA,a1,eB,t1 >

and εBC =< eB,a2,eC,t2 > shown in Figure 2 (c). The event

sequence from the entity set {eB,eC} is shown in Figure 2 (d).

Threat Model and Assumptions. We assume the underlying

OS and the auditing applications are part of the trusted com-

puting base (TCB) similar to prior research on provenance

tracking [2, 35]. Hence, the audit logs used to construct the

causal graph are tamperproof. We consider that the system is

benign at the outset, and the attack origin is external to the

enterprise, where the attacker uses remote network access to

infiltrate the systems. The attack goal is to exfiltrate sensitive

data via a set of actions such as information gathering, user

manipulation, vulnerable software exploitation, injecting ma-

licious payloads, installing backdoors, and laterally moving

to other hosts to perform similar attack actions.

3 Approach Overview

ATLAS, an attack investigation tool, integrates natural lan-

guage processing and deep learning techniques into data

provenance analysis to model sequence-based attack and non-

attack behavior. Figure 3 gives an overview of the ATLAS

architecture. It mainly consists of two components: sequence-

based model learning (a), and attack investigation (b).

During sequence-based model learning (a), ATLAS pro-

cesses system and application (e.g., browser) logs and builds a

causal graph ( 1 ). Here, we implement a set of pre-processing

optimizations to reduce the burden of obtaining complex

sequences. These optimizations do not affect ATLAS’s se-

quence semantics logic and improve the efficacy of sequence

extraction from large-scale causal graphs. ATLAS then con-

structs sequences of different attack (suspicious or malicious)

and non-attack (normal) activities from the optimized causal

graph in order to model their behaviors ( 2 ). The constructed

non-attack sequences are then undersampled and attack se-

quences are oversampled as training data to balance the ratio

between attack and non-attack sequences ( 3 ). Lastly, ATLAS

uses word embedding to map the lemmatized sequences to

vectors of real numbers, which capture the context of an en-

tity in a sequence and the relation with other entities ( 4 ).

Through the steps above, the extracted sequences enforce the

memory of attack patterns through different causal relations,

which helps to build an accurate model that can identify the

attack traces across different instances (e.g., similar attacks

implemented on different victims). Such a sequence-based

representation naturally fits the training of a learning model

(e.g., LSTMs), similar to models for machine translation and

audio, to identify potential future attacks ( 5 ). The learning

process is effective because the key steps of different attacks

often share similar patterns (semantics) at the entity and ac-

tion level. More specifically, different attack instances share a

generalized pattern regardless of their log-level details, and

temporal orders of a sequence effectively separate normal

behavior from suspicious behavior.

During attack investigation (b), learning a model from se-

quences allows a cyber analyst to reason about future attacks.

A cyber analyst starts an attack investigation from unknown

audit logs with an identified attack symptom entity such as a
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suspicious hostname. Here, ATLAS aims at identifying enti-

ties among many unknown entities that are involved in attack

phases together with the attack symptom entity. To do so,

ATLAS uses the attack symptom entity together with each

unknown entity, constructs sequences, and uses the trained

model to identify whether a sequence is attack or non-attack.

If a sequence is classified as an attack, ATLAS infers that the

unknown entity is an attack entity. This process helps reduce

the time needed to investigate large causal graphs and accel-

erates the attack investigation by identifying the key attack

entities that make up the attack story.

Design Challenges. Developing ATLAS for effective and scal-

able attack investigation raises a set of unique challenges.

Below we present these challenges and how we address each.

The first challenge concerns constructing sequences to

model legitimate and suspicious activities. We aim at finding

sequences that can better separate benign and malicious ac-

tivities, and generalize sequences extraction across different

audit log types. In traditional sequence problems [15], this

poses two challenges to obtain the sequences from audit logs.

First, there exists a huge number of unique entities in audit

logs, such as different processes with multiple instances, and

each entity set (i.e., combination) maps to a different arbitrary

length sequence. Second, the same attack patterns occurring

in different process executions lead to different sequences

with the same or highly similar sequence contexts. These may

lead to long and repeating entity-based sequences affecting

the model convergence and precision in learning (e.g., van-

ishing and exploding gradients [14]). To address these issues,

ATLAS applies a customized graph-optimization to reduce

graph complexity (see Sec. 4.1). As a result, short yet appro-

priate length sequences are obtained. Additionally, ATLAS

implements a novel technique to extract and learn sequences

that properly represent attack patterns (see Sec. 4.2).

A second challenge concerns the model learning from se-

quences. Attack investigation is historically similar to “finding

needles in a haystack”, where many activities are monitored,

and only a few of them signal a true attack. This results in

imbalanced datasets consisting of under-represented attack se-

quences and over-represented non-attack sequences. At attack

investigation, the curse of imbalanced sequences substantially

undermines the learning process [38] and tends to bias the

model towards non-attack sequences, leaving a number of

attack sequences undetected. To address this issue, ATLAS

implements under-sampling to reduce the number of non-

attack sequences and over-sampling to generate extra attack

sequences, obtaining an appropriate balancing ratio between

attack and non-attack sequences (see Sec. 4.2.3).

The third challenge is the automated attack investigation

using the trained sequence-based model. Though ATLAS sup-

ports querying arbitrary sequences on the model and reports

whether the sequence is attack or non-attack, the generation

of such sequences by investigators is ad-hoc and may require

the finding of many sequences with candidate attack entities.

Figure 4: Illustration of graph optimization in ATLAS. P:

Process, S: Session, A: IP Address, D: Domain name.

To address this issue, ATLAS includes an attack investigation

phase, which thoroughly analyzes entities in audit logs to

identify attack entities that form an attack sequence when

paired with an attack symptom entity. Thus, it is able to com-

prehensively recover those attack entities that help build the

attack story more accurately and efficiently (see Sec. 4.3).

4 ATLAS

In this section, we detail the ATLAS architecture introduced

in Figure 3. We start with an audit log pre-processing phase

that constructs and optimizes the causal graph for scalable

analysis (Sec. 4.1). We then present a sequence construc-

tion and learning phase that constructs attack and non-attack

sequences for model learning (Sec. 4.2). Lastly, we present

an attack investigation phase that uses the model to identify

attack entities, which helps build the attack story (Sec. 4.3).

4.1 Audit Log Pre-processing

For model learning and attack investigation, ATLAS starts by

transforming audit logs into a platform-independent causal

graph to extract sequences. Here, we build an optimized causal

graph that reduces logs complexity (i.e., reducing the number

of nodes and edges) without sacrificing key semantics for

attack investigation. A less complex graph leads to shorter se-

quences, a crucial metric that guarantees the efficacy and preci-

sion of the sequence-based model learning. ATLAS uses three

techniques for causal graph optimization. First, ATLAS elimi-

nates all nodes and edges which are not reachable from the

attack nodes (in model learning) or the attack symptom node

(in attack investigation). Second, ATLAS constructs the causal

graph from the audit logs with non-repeating edges, thus, we

drop all repeated edges except the edge of the first occurrence

of an action (e.g., read or write) between a subject and an

object entity, regardless of how many times an action is re-

peated. As shown in Figure 4, for nodes P1 and A1, among the

two events (P1,connect,A1,T2) and (P1,connect,A1,T9)
which have the same action (connect), ATLAS only considers

the event with the earliest timestamp (T2) for constructing the

causal graph. Third, ATLAS combines certain nodes and edges

if they refer to the same type of events. Turning to Figure 4,

the session nodes S1, S2 and S3 are combined into one node

S1−S2−S3, as they share the same incoming-edges (bind)
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and outgoing-edges (send). During this process, ATLAS as-

signs the earliest timestamp of their original edges to the new

edge. While this might break the original temporal order of

events when building the sequence, it does not affect the iden-

tification of expected attack patterns, as the temporal order of

events in constructed sequences are consistent between the

model learning and attack investigation phases. Through this

process, ATLAS achieves on average an 81.81% reduction in

terms of the number of the entities, compared to the original

causal graph (see Sec. 6.3).

4.2 Sequence Construction and Learning

ATLAS transforms the causal graph into sequences labeled ei-

ther “attack” or “non-attack” (Sec. 4.2.1), and extends lemma-

tization and selective sampling into the sequence construc-

tion to effectively abstract attack and non-attack patterns

(Sec. 4.2.2-4.2.3). Lastly, it uses word embedding to convert

sequences into vectors of real numbers and learns a sequence-

based model through LSTM (Sec. 4.2.4).

4.2.1 Attack and Non-attack Sequence Extraction

ATLAS uses attack entities as ground-truths to extract attack

and non-attack sequences for model training. The entities

such as a malicious host-name and payload known to us at

attack execution are labeled “attack” and other entities are

labeled “non-attack". The attack entities here are the ones that

can only be associated with attack events. We use this criteria

to distinguish them from non-attack entities. We detail the

sequence extraction process below.

Attack Sequences. The attack sequences include temporally

ordered events of attack entities. ATLAS first obtains a set of

all attack entities from a causal graph and constructs their

entity subsets that include two or more entities. For example,

Figure 5 (Middle) shows three attack entities {A,C,F} in a

causal graph, which have the attack subsets of {A,C}, {A,F},

{C,F} and {A,C,F} that include two or more entities. For-

mally, if a causal graph includes k attack entities, the number

of attack entity subsets is ma = ∑
k

i=2
Ci
k
, where Ci

k
is all possi-

ble subsets of choosing i attack entities from k. We note that

the number of attack entity subsets can be exponential when k

(the number of attack entities) is large. However, in practice,

the number of attack entities are usually not large (e.g., less

than 40) as attackers normally try to hide and minimize the

traces of their activities. For instance, it is in an attacker’s best

interest of remaining stealthy to drop one backdoor (repre-

sented as one attack entity) instead of dropping n number of

backdoors (represented as n entities). For each attack entity

subset, ATLAS extracts an attack sequence from the optimized

causal graph through the following steps. First, for each entity

in the attack entity subset, ATLAS extracts its neighborhood

graph (see its definition in Sec. 2). This step enables ATLAS

to capture all entities which have causal relations with an

attack entity. To illustrate, given an attack entity subset {A,C},

Figure 5 (Left) Step (1) shows neighborhood graphs of A

and C entities in dashed circles. Second, ATLAS obtains the

attack events ordered by timestamps from the constructed

neighborhood graph. An event is labeled attack if the source

or destination node represents an attack entity. For instance,

the extracted attack events for the subset {A,C} are shown

in Figure 5 (Left) Step (2), where attack events represent

timestamp-ordered nodes connected by edges extracted from

the neighborhood graph of the attack entities A and C. Lastly,

ATLAS converts the extracted timestamp-ordered attack events

to a sequence, and labels it as attack if (a) it only consists of

attack events, and (b) it includes all the attack events of the

entity subset. For example, the extracted sequence for the sub-

set {A,C} is labeled attack, since it consists of all the attack

events that contain the attack entities A or C.

Non-attack Sequences. A naive approach to identify non-

attack sequences would be similar to constructing attack se-

quences. That is, obtaining all non-attack entities in a causal

graph and extracting their sequences by following the steps

above. However, this process is complicated due to the ex-

ponential number of non-attack entities. We note that AT-

LAS does not attempt to learn or identify any benign activity

(i.e., non-attack sequences). Instead, it aims to accurately

learn and identify the boundary between malicious and non-

malicious activities. To this end, ATLAS adds a non-attack

entity to each attack subset to extract a non-attack sequence.

The added non-attack entity can potentially add non-attack

events into the sequence, which enables ATLAS to extract

attack-sequence deviations (i.e., non-attack sequences), and
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Table 1: Abstracted vocabulary set for lemmatization
Type Vocabulary

process system_process, lib_process, programs_process, user_process

file system_file, lib_file, programs_file, user_file, combined_files

network ip_address, domain, url, connection, session

actions
read, write, delete, execute, invoke, fork, request, refer, bind

receive, send, connect, ip_connect, session_connect, resolve

to precisely learn the similarities and differences between

attack and non-attack sequences. Formally, if a causal graph

includes k attack entities and k′ non-attack entities, the num-

ber of non-attack entity subsets is na = ∑
k

i=1
Ci
k
.k′, where Ci

k

is all possible subsets of choosing i attack entities from k.

Figure 5 (Middle) shows three attack entities {A,C,F} used

to extract all possible attack subsets {A}, . . . , {A,C,F} that

include one or more attack entities. To generate non-attack

entity subsets, ATLAS appends one entity at a time from the

three non-attack entities {B,D,E} to the extracted attack entity

subsets. For each non-attack entity subset, ATLAS then extracts

non-attack sequences from the causal graph similar to attack-

sequences through the following steps. First, for each entity

in the subset, ATLAS extract the neighborhood graph for the

entity node. For example, for the non-attack entity subset

{A,B}, ATLAS extracts the neighborhood graph for entities A

and B as shown in Figure 5 (Right) Step (1). Second, ATLAS

extracts the ordered events from the neighborhood graph.

Figure 5 (Right) Step (2) shows the extracted events for the

non-attack entity subset {A,B}, which includes ordered events

represented by edges extracted from the neighborhood graph

for entities A and B. Lastly, ATLAS labels a sequence as non-

attack if it does not match any extracted attack sequence,

otherwise, the processed sequence is discarded. For example,

the extracted sequence for the subset {A,B} is labeled as a

non-attack because it does not match any attack sequence.

Sequence Length and Number of Sequences. The sequence

length is the total number of entities and actions in a sequence.

The sequence construction process of ATLAS does not lead

to fixed-length sequences as each sequence may consist of

different number of events obtained from a causal graph. Fur-

ther, the number of attack and non-attack sequences extracted

from a casual graph depends on the size of the causal graph,

which can include different numbers of entities and events

associated with the attack and non-attack entities. Therefore,

ATLAS can extract varying lengths and numbers of attack and

non-attack sequences from a given causal graph.

4.2.2 Sequence Lemmatization

ATLAS uses lemmatization to transform the sequences into a

generalized text representing the sequence patterns for seman-

tic interpretation. Lemmatization is often applied in natural

language processing to group differently inflected forms of

a word as a single term [37]. This process retains the orig-

inal semantics of the complete sequences and is conducive

to sequence-based model learning. Table 1 shows the four

different vocabulary types and the vocabulary in each type

that ATLAS uses to abstract entities and actions in a sequence.

The vocabulary includes a total of 30 words, which reduces

inflectional forms and derivationally related forms of words

to a common base form. The vocabulary is grouped into

four different types based on fine-grained semantics of the

words: process, file, network, and actions. The process, file

and network types are used to lemmatize entities. These types

are sufficient to capture the context of entities in a causal

graph, semantic and syntactic similarity and relation with

other words. ATLAS parses each sequence, finds the enti-

ties and map each of them to a corresponding vocabulary.

For example, </system/process/malicious.exe read

/user/secret.pdf> is transformed to <system_process

read user_file>. Overall, the sequences after lemmatiza-

tion process are transformed into a “sentence-like” intermedi-

ate representation which contains the full semantics of gen-

eralized sequence patterns. We note that undesired repeating

of attack and non-attack sequences may occur after lemma-

tizing the sequences. To train the model with non-repeating

sequences, we discard all non-attack sequences that overlap

with an attack sequence before they are passed to the selective

sequence sampling, detailed next.

4.2.3 Selective Sequence Sampling

The number of attack and non-attack sequences constructed

can be imbalanced. The reason is that there are generally

fewer attack entities than non-attack entities in the log entries.

For example, we found in our evaluation by analyzing audit

logs that the average number of attack entities is 61, while the

average number of non-attack entities is around 21K. Train-

ing the classifier using such an extremely imbalanced dataset

would make it either biased in favor of the majority (non-

attack) class or unable to learn the minority (attack) class [14].

To balance the training dataset, ATLAS first undersamples non-

attack sequences with a certain similarity threshold. Then, it

uses the oversampling mechanism to randomly mutate those

attack sequences, until their total number reaches the same

number of non-attack sequences. A naive technique to balance

a training dataset would be to either duplicate the sequences

in the minority attack sequences or randomly remove a subset

of the sequences in the majority non-attack sequences. Un-

fortunately, our initial prototype showed that this leads to a

model that over-fit to specific attack patterns or miss many

important non-attack patterns. To address these issues, ATLAS

uses two mechanisms detailed below.

Undersampling. ATLAS reduces the number of non-attack

sequences through Levenshtein Distance [3] to compute the

similarity among lemmatized sequences. it then filters out

sequences when their similarities exceed an identified thresh-

old. While Levenshtein Distance is often applied in NLP to

find the similarity between sentences, ATLAS computes the

number of editing steps such as adding or deleting vocabu-
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lary words in a sequence to transform a sequence to another

lemmatized sequence. The complexity of this process for all

sequences in a training set is O(n2). For each sequence, ATLAS

removes the sequences when their similarity exceeds a certain

threshold. Particularly, through our experiments, we found

that a threshold of 80% similarity between sequences yields a

good undersampling ratio that sufficiently filters out highly

similar and redundant sequences.

Oversampling. ATLAS employs a mutation-based over-

sampling mechanism to include a larger variety of attack

sequences to the training sequences. Recall that ATLAS

defines different vocabulary words that represent differ-

ent processes and file types (e.g., system_process and

program_process). Here, for each extracted attack sequence

after lemmatization, ATLAS randomly mutates one vocabulary

word type to another vocabulary word of the same type. This

process does not fundamentally change the mutated sequence.

However, it increases the number of similar sequences not

triggered in the attacks used for model training yet may still

occur in other attacks due to contextual differences.

4.2.4 Sequence Embedding and Model Learning

ATLAS uses word-representations embedding [30] to trans-

form the lemmatized sequences into a generalized text rep-

resenting the sequence patterns for semantic interpretation.

This process retains the original semantics of the complete

sequence and is conducive to sequence-based model learning.

Sequence Embedding. ATLAS integrates word embedding

into model learning to transform the lemmatized sequences

into numerical vectors. Word embeddings such as word-

representations [30] and word2vec [29] have been widely

used in NLP for text representations, since they precisely in-

fer the semantic relations between different words. These

vectors define a domain-specific semantic relationship be-

tween the vocabularies and help in highlighting the patterns

of different sequences for model training. The corpus used

for training the word embeddings includes all the lemmatized

attack and non-attack sequences from the audit logs. The em-

bedded sequences improve model learning compared to other

widely used approaches such as one-hot-encoding [40]. We

will present their detailed comparison in Sec. 6.3.

Sequence-based Model Learning. ATLAS uses the Long

Short-term Memory (LSTM) [15] network, a subtype of Re-

current Neural Network (RNN) [41] to learn a model from

attack or non-attack sequences. LSTM is widely applied and

proven to be effective for sequence-based learning in different

tasks, such as machine translation [45] and sentimental analy-

sis [52]. The LSTM enables ATLAS to automatically learn a

model that differentiate reflected patterns in attack and non-

attack sequences. The model also includes a Convolutional

Neural Network (CNN) [52], which helps ATLAS capture

the stealthy and dynamic nature of APT attacks. Specifically,

the learning model uses (1) a Dropout layer for regulariza-

tion to reduce overfitting and improve generalization error,

(2) a Conv1D layer with Max Pooling to process lemmatized

sequences, (3) a dense, fully-connected layer with sigmoid

activation to predict the attack-relevancy probability of the

sequences. This model yields better accuracy compared to

other architectures we have experimented with. We detail full

architecture of the LSTM model in Appendix A, and com-

pare its classification performance with traditional machine

learning models (e.g., Support Vector Machines) in Sec. 6.3.

4.3 Attack Investigation

We describe how ATLAS helps a security investigator conduct

attack investigation after a sequence-based model is trained.

The investigation often starts from one or more attack symp-

tom entities. For instance, an attack symptom might be a

malicious website or an IP address identified by a security

analyst or reported by network monitoring systems like Na-

gios [33] as threat alerts. Here, ATLAS helps automatically

discover more attack entities through the given attack symp-

tom entities by querying the sequence-based learning model

to find out the entities related to the attack symptom. We

detail this process below.

Attack Entity Identification. The goal of ATLAS’s investi-

gation phase is to recover all the attack entities related to

a given attack symptom entity. Here, ATLAS enumerates all

unknown entities and identifies whether an entity in a causal

graph is an attack or non-attack entity. This process has a

time complexity of O(n) for traversing all unknown entities

(n) in the causal graph. We note that ATLAS is able to start an

investigation with a varying number of (one or more) attack

symptom entities since it exhaustively trains the model with a

varying number of attack entities (see Sec. 4.2.1).

To illustrate, Figure 5 (Middle) shows three graph nodes

that represent attack entities {A,C,F} in a causal graph. One or

more of these entities can be given as known attack symptom

entities during the investigation, and the rest of the entities,

whether they are attack or non-attack, are unknown. To iden-

tify the unknown attack entities, ATLAS first obtains a set of

all unknown entities from a causal graph and constructs its

subsets that include one unknown entity. ATLAS then appends

the attack symptom entities to each subset; thus, each subset

contains all the known attack symptom entities and only one

unknown entity. For example, given the attack symptom entity

A in Figure 5 (Middle), ATLAS constructs its subsets {A,B},

. . . , {A,F}. ATLAS uses these subsets to extract sequences

from the causal graph as detailed in Sec. 4.2.1. The LSTM

model is then used to predict whether each sequence is attack

or non-attack through a prediction score. This process iden-

tifies whether the unknown entity is closely relevant to the

attack symptom entity by inspecting whether the temporal-

ordered events of these two entities form an attack pattern that

the model previously learned. An identified attack sequence

indicates the unknown entity is a part of the attack entities. To
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Figure 6: Illustration of an attack story recovery process.

illustrate, Figure 5 (Left) shows an example of sequence con-

struction for the subset {A,C} where A is an attack symptom

entity and C is an unknown entity. To extract the sequence

for A and C, ATLAS first extracts the neighborhood graph to

find their related events and reforms the neighborhood graph

nodes and edges into a sequence of timestamp-ordered events.

This process is applied to all the entity subsets, which results

in a set of different sequences with varying lengths. ATLAS

then lemmatizes the sequence and passes its word embed-

dings to the model. If the sequence is classified as an attack

sequence, ATLAS infers that the unknown entity in the subset

(i.e., C) is an attack entity.

Attack Story Recovery. The goal of ATLAS attack story re-

covery is to identify attack events associated with the identi-

fied attack entities from the attack investigation phase. ATLAS

extracts the neighborhood graph of the identified attack en-

tities and obtains all included events as attack events. These

events are further ordered by their timestamps as the recov-

ered attack story. We note that the mapping between identified

attack entities to attack events is highly dependent on the at-

tack under investigation. For example, if ATLAS recovers 30

attack entities at attack investigation, there can be a varying

number of events associated with those 30 entities depend-

ing on the number of attack actions (e.g., read or write file).

Figure 6 (b)-(c) illustrates the steps that ATLAS constructs an

attack story from the causal graph illustrated in Figure 6 (a).

We consider that during the attack investigation phase ATLAS

has successfully recovered the attack entities {backdoor.exe

(backdoor file), backdoor.exe_4 (backdoor process) and

1.2.3.4 (malicious host)}. ATLAS uses these attack entities

to extract their neighborhood graph in Figure 6 (b), which

includes the attack events. This mapping between the attack

entities and events allows ATLAS to automatically extract

those related attack events without the need for the cyber

analyst to perform any manual investigation. For instance,

the non-attack entity SearchIndexer.exe_2 (the Windows

NT program) that continuously enumerates and reads files

metadata, make a normal read to the backdoor.exe file.

We note that ATLAS includes this as an attack event in the

neighborhood graph in Figure 6 (b) since it includes the at-

tack entity backdoor.exe. In general, if a process reads a

malicious file, the process likely becomes a part of the at-

tack, and it can be used by the attacker to launch further

attack actions. Yet, ATLAS does not include other events

(e.g., (SearchIndexer.exe_2, fork, ε, T12)) which

originate from the process SearchIndexer.exe_2, even if

they occur after the attack event (SearchIndexer.exe_2,

read, backdoor.exe, T11). Lastly, ATLAS reports the at-

tack events ordered by their timestamps from the constructed

neighborhood graph as shown in Figure 6 (c).

Handling Multi-host Attacks. To investigate an attack tar-

geting multiple hosts, a cyber analyst often starts from one

host and includes more hosts as the investigation progresses.

Thus, the attack entities recovered from a host are indicative

of including more hosts for cross-host attack investigation.

Consider an investigation of a compromised web server that

has a malicious program backdoor.exe in its web directory.

When ATLAS identifies the attack entity of backdoor.exe,

it uses this entity as a new attack symptom entity to investi-

gate other hosts that have downloaded backdoor.exe. This

enables ATLAS to naturally support multi-host attack scenar-

ios in a scalable manner. As a result, ATLAS investigation

does not require association of the causal graph among differ-

ent hosts, which is often necessary for provenance tracking

techniques [19]. We show in our evaluation that the effec-

tiveness of ATLAS is not affected by the attacks performed

across multiple hosts, and it only needs to perform analysis

on audit logs from individual hosts to discover all attack en-

tities (see Sec. 6.2). To construct a multi-host attack story,

ATLAS merges the audit logs from the compromised hosts and

constructs a unified optimized causal graph (as detailed in

Sec. 4.1) representing the logs of compromised hosts. ATLAS

then uses the identified attack entities from those hosts to ex-

tract a neighborhood graph that includes all the attack events

in the causal graph. Lastly, ATLAS constructs a sequence that

details a temporal order of the attack events across multiple

hosts (an example case study is presented in detail in Sec. 6.5).

5 Implementation

We implemented ATLAS in Python 3.7.7, with around 3,000

lines of code (LoC) for all its components. Our prototype

processes Windows security events for system logs (with Sys-

mon enabled to log files operations and network connections),

Firefox logs for visited webpages, and TShark for DNS logs.

ATLAS uses the LSTM model as implemented in the Keras

library [6] with the TensorFlow [1] back-end. The LSTM

model is tuned with the parameters through grid search for

better generalization, and to prevent overfitting on the training

data (see Appendix A for model architecture details).
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To ensure the efficiency of the LSTM model, ATLAS short-

ens sequences to a predefined threshold at training as this

leads to the vanishing gradients problem [14]. We have found

a sequence length of 400 yields similar or better accuracy on

the test data compared to other sequence lengths, as the ma-

jority of the extracted sequences are shorter than 400 words.

We note that the exclusion of such sequences does not lead to

losing the key semantics of the attack patterns. Specifically,

(1) compared to those normal activities which frequently ap-

peared in audit logs, most attacks are highly targeted to spe-

cific goals and hence tend to form shorter sequences, (2) the

graph optimization (Sec. 4.1) shortens long sequences, and

more importantly, (3) the long sequences of attack steps are

often covered by their sub-sequences with shorter lengths,

which are extracted through subsets of attack entities.

6 Evaluation

We begin by describing our experimental settings (Sec. 6.1).

We then present the effectiveness of ATLAS (Sec. 6.2), effi-

ciency of each component (Sec. 6.3) and the run-time over-

head of attack identification (Sec. 6.4). Lastly, we demonstrate

a case study to illustrate the use of ATLAS for attack investi-

gation in practice (Sec. 6.5).

6.1 Experimental Settings

Dataset. The lack of publicly available attack datasets and

system logs is a common challenge in forensic analysis. For

example, the data released by DARPA’s Transparent Com-

puting program do not include audit logs generated during

evaluation engagements [47]. To address these, we have im-

plemented ten attacks based on their detailed reports on real-

world APT campaigns and generated the audit logs in a con-

trolled testbed environment. Additionally, similar to previous

works that construct benign system events [20, 26, 36], we

emulate diverse normal user activities on the same machine

during each attack execution in a best-effort. More specifi-

cally, we manually generated various benign user activities

including browsing different websites, executing different ap-

plications (e.g., reading emails, downloading attachments),

and connecting to other hosts. Similar to a typical work day

environment, such activities are randomly performed within

an 8-hour-window during the daytime. More details about nor-

mal user behaviors and log statistics collected can be found in

Appendix B. Table 2 details each attack that exploits different

vulnerabilities (i.e., CVEs). These attacks are selected to in-

clude different malware tactics such as phishing links, email

attachments, intermediate processes, and lateral movements

such as leaking sensitive data. The attacks S-1 to S-4 were

performed on single hosts and M-1 to M-6 were performed on

multiple hosts. For each multi-host attack, the emulation was

performed on two hosts where the second host was used as

the target for lateral movement. All attacks were developed

and executed on Windows 7 32-bit virtual machines and took

about an hour to complete. After the attacks were completed,

we collected the audit logs within a 24-hour-window. Table 2

column “Size (MB)” details the size of the collected logs,

and the column “Log Type” shows the total percentages of

different types of events in the audit logs. Overall, the 24-hour

emulation generated an average of 20,088 unique entities with

249K events for each attack.

Evaluation Setup. We have the ground-truth of attack entities

for each attack, known to us at attack execution. For instance, a

malicious URL set by us in an attack to upload sensitive data is

an attack entity. Other entities in a causal graph are labeled as

non-attack. These entities are used to construct the events and

sequences, following the procedures as we have elaborated in

Sec. 4.2 and Sec. 4.3. Table 3 presents the number of entities,

events, sequences, and balanced sequences for each attack. For

example, S-1 includes 22 attack and 7,445 non-attack entities.

These entities are associated with 4,598 and 90,467 attack

and non-attack events. These events are used to compose 42

attack and 14,243 non-attack lemmatized sequences. Lastly,

1,388 balanced attack and non-attack sequences are obtained

through the selective sequence sampling process and used

for model training. As detailed in Table 3, similar to realistic

attack investigating scenarios, the malicious activities only

constitute a vanishingly small percentage of the log data (less

than 0.14% attack entities in the whole audit logs). Hence,

we believe our dataset can reasonably reflect ATLAS’s true

efficacy for real-world attack investigation.

We evaluate the effectiveness of ATLAS for each imple-

mented attack based on the model trained on other attacks.

For example, if we aim at identifying the multi-host attack

M-1, we use a model trained on audit logs of the multi-host

attacks M-2,. . .,M-6 excluding M-1. We separated single-host

and multi-host attacks in the training phase because both types

of attacks were implemented based on the same APT reports

(e.g., both S-1 and M-1 are implemented based on [17]). This

setting ensures that training and testing data do not overlap

with each other. Overall, ATLAS trains ten separate models to

evaluate each attack.

After the models are trained, the attack investigation is per-

formed in two steps as detailed in Sec. 4.3. First, we generate

sequences by randomly selecting a single attack symptom

entity from the ground-truth attack entities. These identified

attack symptom entities naturally represent real-world cases

where a security analyst often starts from (see Table 4- Col-

umn “Symptom Entity”). Second, we pass the sequences that

are generated by combining each unknown entity in a causal

graph with the symptom entity and check whether each con-

structed sequence is identified as attack or non-attack. This

enables us to find unknown entities that are indeed relevant

to the attack (as detailed in Sec. 4.3). Since ATLAS inves-

tigation is entity-based, we present the attack investigation

results in terms of entities. Additionally, we present the attack

identification results in terms of events similar to other attack
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Table 2: Overview of implemented APT attacks for ATLAS evaluation.
Attack

APT Campaign
Exploiting CVE Attack Features† Size Log Type (%) Total

ID by attack PL PA INJ IG BD LM DE (MB) System Web DNS # entity # event

S-1 Strategic web compromise [17] 2015-5122
√ √ √ √ √

381 97.11% 2.24% 0.65% 7,468 95.0K

S-2 Malvertising dominate [22] 2015-3105
√ √ √ √ √

990 98.58% 1.09% 0.33% 34,021 397.9K

S-3 Spam campaign [39] 2017-11882
√ √ √ √ √

521 96.82% 2.43% 0.75% 8,998 128.3K

S-4 Pony campaign [18] 2017-0199
√ √ √ √ √

448 97.08% 2.24% 0.68% 13,037 125.6K

M-1 Strategic web compromise [17] 2015-5122
√ √ √ √ √ √

851.3 96.89% 1.32% 1.32% 17,599 251.6K

M-2 Targeted GOV phishing [34] 2015-5119
√ √ √ √ √ √

819.9 97.39% 1.36% 1.25% 24,496 284.3K

M-3 Malvertising dominate [22] 2015-3105
√ √ √ √ √ √

496.7 99.11% 0.52% 0.37% 24,481 334.1K

M-4 Monero miner by Rig [28] 2018-8174
√ √ √ √ √ √

653.6 98.14% 1.24% 0.62% 15,409 258.7K

M-5 Pony campaign [18] 2017-0199
√ √ √ √ √ √

878 98.14% 1.24% 0.62% 35,709 258.7K

M-6 Spam campaign [39] 2017-11882
√ √ √ √ √ √

725 98.31% 0.96% 0.73% 19,666 354.0K

Avg. - - - - - - - - - 676.5 97.76% 1.46% 0.73% 20,088 249K

† PL: Phishing email link. PA : Phishing email attachment. INJ: Injection. IG: information gathering. BD: backdoor. LM: Lateral movement. DE: Data ex-filtration.

Table 3: Ground-truth information of each implemented at-

tack, including the number of entities, events, sequences and

balanced sequences.
Attack #Attack #Non-attack #Attack #Non-attack #Attack #Non-attack #Balanced

ID Entity Entity Event Event Seq. Seq. Seq.∗

S-1 22 7,445 4,598 90,467 42 14,243 1,388

S-2 12 34,008 15,073 382,879 43 13,388 1,386

S-3 26 8,972 5,165 123,152 21 8,600 2,598

S-4 21 13,016 18,062 107,551 32 12,238 1,244

M-1 28 17,565 8,168 243,507 83 26,764 2,682

M-2 36 24,450 34,956 249,365 82 27,041 2,748

M-3 36 24,424 34,979 299,157 81 27,525 2,710

M-4 28 15,378 8,236 250,512 79 27,076 2,746

M-5 30 35,671 34,175 667,337 78 25,915 2,540

M-6 42 19,580 9,994 344,034 70 23,473 2,598

Avg. 28 20,051 17,341 275,796 61 20,626 2,264

* The sampled number of attack and non-attack sequences are identical.

investigation works [11, 25]. We generate the events-based re-

sults by using the identified attack entities. We iterate through

all events in audit logs, and if an event’s subject or object

matches one of the identified attack entities, then we label

that event as an attack. Lastly, we compare the number of

classified attack and non-attack entities and events with their

ground-truth labels and report classification metrics.

6.2 Effectiveness

This section presents the effectiveness of ATLAS at identifying

attack entities and events for each attack (Sec. 6.2.1), and

details its individual components (Sec. 6.2.2).

6.2.1 Attack Investigation Results

We report the effectiveness of ATLAS at identifying attack

entities and events for each attack in Table 4. For example,

the first row shows the investigation results for S−1 given

a malicious host as an attack symptom entity. Table 4, Col-

umn “Entity-based Investigation Results” shows that ATLAS

correctly identifies attack entities with an average 91.06%

precision and 97.29% recall. This means that most key en-

tities of the APT attacks are successfully recovered with a

very limited number of false positives. For instance, from

an investigator’s perspective, given 100 attack entities, AT-

LAS recovered around 91 true attack entities, with the other

nine being false positives. Similarly, 97.29% recall means

that ATLAS recovered around 97 attack entities, with three

attack entities remaining undiscovered. We also report the

(A) ROC Curve (per entitity) (B) ROC Curve (per event)
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Figure 7: ROC curves at entity (left) and event (right) level.

identification results in terms of events in Table 4 Column

“Event-based investigation Results”. Clearly, since the huge

number of normal entities results in many more normal events

compared to the less-frequently occurring attack events, the

precision of event-level results (99.88%) is much higher than

the entity-level results (91.06%). This means that ATLAS helps

significantly reduce the number of suspicious events that need

to be manually checked by an investigator.

Lastly, to show the overall effectiveness of our models, we

present the ROC curves for identifying each attack in Figure 7.

Here, ATLAS achieves on average 97.01% Area Under Curve

(AUC) at the entity-level, and 99.67% AUC at the event-level.

The high precision and recall results indicate that different

attacks share a high-level similarity in terms of attack steps

and sequences generated by those attack entities. For example,

many attacks tend to open a malicious webpage that exploits

a vulnerable browser, then drop and execute backdoors and

extract data of interest. In contrast, normal program execu-

tions in uncompromised hosts rarely perform such activities,

which is clearly reflected in the causal sequences generated by

any combinations of their entities. Since each entity could be

associated with multiple events in the audit logs, the number

of false positives and negatives for the event-based results

are much higher than the entity-based results. However, we

note that even in this case, the number of reported false posi-

tives and false negatives identified by ATLAS are very small

compared to the number of true positives and true negatives.

Analysis of False Positives. False positives are the number

of non-attack (normal) entities and events that ATLAS incor-

rectly classified as attack (see Table 4, Column 5 and 12).

ATLAS yields on average a 0.01% false positive rate for both
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Table 4: Entity-based and event-based investigation results.

ID Symptom entity
Entity-based Investigation Results Event-based Investigation Results

TP TN FP FN Precision % Recall % F1-score % TP TN FP FN # Precision % # Recall % F1-score %

S-1 malicious host 22 7,445 0 0 100.00% 100.00% 100.00% 4,598 90,467 0 0 100.00% 100.00% 100.00%

S-2 leaked file 12 34,008 2 0 85.71% 100.00% 92.31% 15,073 382,876 3 0 99.98% 100.00% 99.99%

S-3 malicious host 24 8,972 0 2 100.00% 92.31% 96.00% 5,155 123,152 0 10 100.00% 99.81% 99.90%

S-4 leaked file 21 13,011 5 0 80.77% 100.00% 89.36% 18,062 107,506 45 0 99.75% 100.00% 99.88%

M-1 leaked file 28 17,562 3 0 90.32% 100.00% 94.92% 8,168 243,504 3 0 99.96% 100.00% 99.98%

M-2 leaked file 36 24,445 5 0 87.80% 100.00% 93.51% 34,956 249,316 49 0 99.86% 100.00% 99.93%

M-3 malicious file 35 24,423 1 1 97.22% 97.22% 97.22% 34,978 299,147 10 1 99.97% 100.00% 99.98%

M-4 malicious file 24 15,378 0 4 100.00% 85.71% 92.31% 8,161 250,512 0 75 100.00% 99.09% 99.54%

M-5 malicious host 30 35,665 6 0 83.33% 100.00% 90.91% 34,175 667,329 8 0 99.98% 100.00% 99.99%

M-6 malicious host 41 19,573 7 1 85.42% 97.62% 91.11% 9,993 343,959 75 1 99.26% 99.99% 99.62%

Avg. - 27 20,048 3 1 91.06% 97.29% 93.76% 17,332 275,777 19 9 99.88% 99.89% 99.88%

TP and TN stands for correctly reported attack and non-attack (normal) entities/events. FP and FN stands for incorrectly labeled attack and non-attack (normal) entities/events.

entity-level (3 out of 20,075 entities) and event-level (19 out

of 293,109 events) analyses. These results show that a cy-

ber analyst requires less manual labor to validate the causes

of a true attack needed for the attack story. We found that

most false positives are due to the misclassification of the

IP addresses. For instance, most false positives in M-5 and

M-6 attacks were due to the benign IP addresses, which were

active during the same time as those malicious IP addresses

of the Command and Control (C&C) servers. However, the

security investigators can easily identify the IP addresses by

checking their traffic content and registration information to

filter out such false positives.

Analysis of False Negatives. False negatives are the number

of attack entities and events that ATLAS incorrectly classi-

fied as non-attack (see Table 4, Column 6 and 13). ATLAS

yields on average a 2.71% false-negative rate at the entity-

level and a 0.11% false-negative rate at the event-level. We

found that even when ATLAS misidentifies an attack entity,

ATLAS can still identify attack entities which were caused

by such a misidentified attack entity. For example, the false

negatives in attack M-4 are due to misidentifying a malicious

Microsoft Word file (evil.rtf) that is used to download a

malicious payload; however, ATLAS was able to identify the

malicious payload entity (payload.exe) which was caused

by the misidentified word file. False negatives in the attacks

M-6 and S-3 are caused by missing some scripts downloaded

from a stealthy network I/O trace performed by the attacker.

Here, the attacker uses the Multiple UNC Provider (MUP) [7],

a specific component in the Windows NT operating system,

to access shared folders across the network. We note that the

false negatives can be alleviated by training ATLAS with more

attack types sharing similar patterns with these cases.

6.2.2 Individual Component Analysis

The effectiveness of ATLAS lies in a set of optimization tech-

niques integrated into its components. Here we elaborate on

how these components contribute to its effectiveness.

Causal Graph Optimization. As detailed in Sec. 4.1, we de-

veloped our customized optimization algorithms to construct

the causal graph which helps reduce the graph complexity and

in turn improves the sequence construction. Figure 8 shows

Figure 8: Effectiveness of causal graph optimization of given

audit logs for attack investigation. The percentages on the

bars show the percentage of the logs reduction.

the number of entities before and after graph optimization.

ATLAS reduces the number of entities in a causal graph on

average 81.81% for audit logs of each attack compared their

original graph size. The reduction removes the redundant or

unrelated events from the huge volume of logs that do not

contribute any semantics to model different attack sequences.

Hence, the further extracted sequences are more representa-

tive and efficient as input for the model training.

Selective Sequence Sampling. The selective sequence sam-

pling mechanism of ATLAS is the key step to building a precise

model from a balanced dataset. As illustrated in Table 3 (Col-

umn 6 and 8), ATLAS oversamples the attack sequences with

an average 37x increase, from 61 to 2,264, and undersamples

non-attack sequences with an average reduction of 9x, from

20,626 to 2,264. Our evaluation shows that this process re-

duces the training time on average 87% (from 3h:37min to

0h:28min for training each model). Overall, this mechanism

extracts an average of 22% of the initial sequences as a highly

representative training set and uses them for model training,

which significantly improves the model accuracy.

6.3 Comparison Analysis

We have implemented a set of state-of-the-art approaches

that can be used in lieu of ATLAS components and compare

their performances with ATLAS in attack identification. We

note that the comparison is conducted through event-based

attack investigation results as previous provenance tracking
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Table 5: Comparison of ATLAS with the baseline approaches.
Method Precision Recall F1-score

Graph-traversal 17.82% 100.00% 30.26%

Non-optimized causal graph 87.58% 41.55% 56.36%

Oversampling-only model 97.85% 79.64% 87.81%

One-hot encoding 99.60% 80.75% 89.19%

Support Vector Machine (SVM) 87.12% 90.42% 88.74%

ATLAS 99.88% 99.89% 99.88%

approaches (e.g., [11, 16, 50]) provide event-based attack re-

sults. Table 5 summarizes our results.

Graph Traversal. To compare ATLAS in attack investiga-

tion with the state-of-art approaches [11, 16, 50], we have

implemented a baseline approach that performs backward and

forward tracing on the provenance graph, a directed acyclic

graph built based on the W3C provenance data model spec-

ification [48]. We note that since none of the previous ap-

proaches are publicly available, we are not able to perform a

direct comparison with them. This approach proceeds in two

steps. First, the backward tracing starts from an attack symp-

tom event and stops at the root causes of the attack (e.g., a

phishing link in malicious email). Second, the forward tracing

starts from the identified root causes of the attack and stops at

the final attack effects (e.g., leaked files). Finally, we include

all traversed nodes and edges along the paths as the recovered

attack story, and compare the result with the ground-truth of

each attack in Table 3 (Column 4 and 5).

Table 5 (first row) presents the results of graph-traversal

baseline in identifying attack events. The baseline yields

100% recall (i.e., recovers all attack events) yet it results

in an average precision of 17.82%. The main reason for the

low precision is the well-known dependency explosion prob-

lem [11,31] that introduces a significant amount of non-attack

events as false provenance when traversing the causal graph.

For example, the backward and forward analysis can identify

a long-lived process that forks many other system processes as

attack, and this can add a large number of false attack depen-

dencies. In our experiments, we found that many recovered

attacks include the process entity services.exe and its cor-

responding events, where services.exe forks every service

in the Windows system. ATLAS does not rely on traversing

the graph to identify attack events and yields a significantly

higher precision without sacrificing the recall.

Non-optimized Causal Graph. Table 5 (second row)

presents the attack investigation results of ATLAS with

and without graph optimization. We observe that the non-

optimized causal graph reduces the precision, recall and F-1

score by 12.30%, 58.34% and 43.52%, respectively. This is be-

cause the graph optimization removes redundant or unrelated

events from the huge volume of logs that do not contribute

semantics and temporal relationship to model different attack

sequences, and prevents model overfitting. Overall, the graph

optimization process helps ATLAS extract shorter attack/non-

attack sequences and improves the model generalization.

Table 6: Average time (hh:mm:ss) to train the model and

investigate individual attacks.

Phase
Graph Sequences Model

Totalconstruction processing learning/inference

Training
0:04:11

0:26:12 0:28:26 0:58:49
Investigation 0:00:04 0:00:01 0:04:16

Oversampling-only Model. The process of oversampling

attack sequences balances the limited number of attack se-

quences with the vast number of non-attack sequences. If

the oversampling was not used, then the imbalanced dataset

biases the sequence-model towards the more common non-

attack sequences, which yields high non-attack prediction

scores for all sequences. To evaluate the benefit of under-

sampling non-attack sequences, we compare ATLAS with an

oversampling-only baseline. Table 5 (third row) shows the

oversampling-only model reduces the precision, recall and

F1-score by 2.03%, 20.25% and 12.07% respectively. This is

because, without undersampling, non-attack sequences tend

to bring more amplified noise data to the classifier. Instead,

our similarity-based undersampling approach helps reduce

such noisy data while retaining the key patterns in sequences.

One-hot Encoding. We compare ATLAS with a simplified

baseline by replacing the word embedding with one-hot-

encoding to show the effectiveness of using word embeddings

in attack investigation. One-hot-encoding is mainly used to

convert the categorical variables to numerical vectors that

could be inputted to the ML algorithms [40]. Table 5 (fourth

row) presents results of ATLAS’s word embedding with the

one-hot-encoding, which reduces precision, recall and F1-

score by 0.28%, 19.14% and 10.69% respectively. The main

reason is that one-hot-encoding ignores the semantic relations

between different words. In contrast, the word embedding

helps better to differentiate those fine-grained behaviors be-

tween attack and non-attack sequences.

Support Vector Machine (SVM). To evaluate the effective-

ness of the LSTM classifier, we compare it with the SVM [46],

an alternative simpler classifier which is widely used for bi-

nary classification tasks. In addition to SVM, we also ex-

perimented with the Random Forest classifier [23], which

gives less accurate classification results than SVM. We have

evaluated the SVM classifier using the same training data for

each attack. We used a grid search to tune the parameters to

improve classifier accuracy, a linear kernel with C=1.0 and

gamma=“auto”. The SVM reduces the precision, recall and

F1-score by 12.76%, 9.47%, and 11.14% respectively (see

Table 5 (fifth row)). The main limitation of SVM is that it

is unable to model the temporal relations among different

entities of a sequence, one of the critical features that reflects

the attack patterns.

6.4 Performance Overhead

ATLAS is trained on attack and non-attack sequences offline;

thus, it only introduces overhead on the order of seconds at in-
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Figure 9: Recovered sequences and causal graph of the “Pony campaign” attack (M-5).

ference time to identify sequences as attack or non-attack. We

note that forensics tools often rely on a system or application-

level instrumentation for inference [21, 27], which often re-

quires more time compared to ATLAS. We evaluated ATLAS’s

performance at model training and attack identification phases.

Table 6 presents the time used for graph construction, se-

quences processing and model learning and inference. ATLAS

takes on average four minutes to process each 24-hour audit

logs to construct the causal graph with an average size of

676.5 MB audit logs. Further, the model training phase takes

an average of 26 minutes to construct all attack and non-attack

sequences and to balance the sequences, with an additional

28 minutes to train the LSTM model. In total, the training

process for each attack takes less than one hour.

We note that training ATLAS is a one-time effort, and new at-

tacks can be incrementally added to the LSTM model without

requiring re-training the previously learned attacks. In addi-

tion, our experiment was performed on a laptop PC, meaning

the training time could be significantly reduced with more

powerful machines in the production environment (e.g., multi-

core and large-memory servers). Although ATLAS takes time

to build the causal graph for starting the attack investigation,

it only takes around four seconds to extract the sequences.

In addition, it only takes on average one second to recover

the attack story (with 1-day audit logs) by going through the

complete list of unknown entities in the causal graph.

6.5 Case Study

We illustrate how ATLAS can be deployed and benefit cyber

analysts for attack investigation through a case study (i.e., the

attack M-5 which we used in evaluation). We use numbers in

Figure 9-A to illustrate the key steps of this attack. Here, a

user downloads a malicious document that compromises the

Word process on the victim machine (❶ – ❸). Thereafter, an

injected shellcode forks other processes and grants additional

capabilities to the attacker, including information gathering

and downloading files to the victim system (❹ and ❺). It also

executes a backdoor that the attacker uses to leak a secret

file to a C&C server (❻ and ❼). Additionally, the attacker

identifies that the compromised host acts as the company

portal’s web server. For lateral movement, the attacker uploads

the backdoor code to this web server, and adds a piece of

code to the portal main webpage portal.com/index.html

(orange node in the causal graph) to prompt a message asking

users to update their machines (❽). After users download and

install the backdoor (❾), more secret files are leaked to the

C&C server (❿ and later).

Figure 9-B illustrates the causal graph constructed for this

attack. We note that though we simplified the causal graph for

ease of presentation, the figure still includes many non-attack

entities (the white nodes in graph), which can be difficult

for the analysts to manually analyze for attack investigation.

The attack investigation starts from a malicious hostname

evil.com (the blue node). ATLAS first identifies a set of attack

entities (red nodes), and a set of non-attack entities (white

nodes) through the learning model. Second, ATLAS reports the

identified events in temporal order as a sequence, which helps

an investigator to reason about the attack story. For this attack,

ATLAS only reports six false positives in terms of entities and

recovers the attack story similar to Figure 9-A.

7 Limitations and Discussion

The preceding analysis of ATLAS shows that it can precisely re-

cover the key attack steps from the attack symptoms, and help

security investigators obtain the attack story. Although we

focused our work on Windows platform logs, ATLAS can be
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easily extended to other platforms such as Linux and FreeBSD.

This is because our approach starts its analysis from any log

entities and builds a customized platform-independent causal

graph. We plan to extend our framework to diverse types of

audit logs in the future. We note that a list of manually desig-

nated attack entities is required for ATLAS training. However,

labeling such data is a one-time-effort for investigating future

attacks. Another limitation of ATLAS is that it cannot detect

attacks that use a similar sequence of normal events to hide

its behavior, such as the mimicry attacks [4, 5, 49]. However,

we note that following the behaviors of normal events will

significantly limit the capability of any attack investigation

techniques [31, 36]. Besides, ATLAS requires the analyst to

start an investigation with a true attack-symptom entity. Using

a false positive entity as an attack-symptom will only discover

non-attack sequences since their subset entities include a non-

attack entity. Lastly, the correctness of the sequence-based

model highly depends on the quality of the collected training

log entries. Hence, more representative temporal relations

among attacks will enable ATLAS to learn more precise mod-

els. This can be easily alleviated by introducing more types

of attacks to the training set.

8 Related Work

ATLAS is mainly related to three sub-topics that support prove-

nance tracking with audit logs, including causality analysis

over the provenance graph, anomaly-based analysis, and ap-

plication of ML techniques for attack investigation.

Causality Analysis. Much prior work has been done on

causality analysis over audit logs for attack investigation, in-

cluding optimizing the provenance graph and reporting a con-

cise attack story [20,21,27]. These approaches require system

modifications via source-code instrumentation, static binary-

level instrumentation, or dynamic program instrumentation

at runtime. Unfortunately, source-code level instrumentation

is not applicable for proprietary software due to software

licenses, while static and dynamic instrumentation incur addi-

tional overhead on the user-system. Recent works proposed

instrumentation-free approaches [10, 13, 16, 31, 51] that do

not require any changes to the user-system for provenance

tracking. However, most of these approaches are heuristic-

or rule-based, which require non-trivial effort to develop and

maintain the rules or heuristics. HOLMES [31] and Rap-

Sheet [10] rely on a knowledge base of adversarial Tactics,

Techniques, and Procedures (TTPs) [32]. In contrast, ATLAS

only requires attack training data to learn the co-occurrence

of attack steps through temporal-ordered sequences.

Anomaly-based Analysis. Anomaly-based approaches [11,

12, 25, 50] learn the normal system behavior to identify

anomalous behavior. Unfortunately, while anomaly-based ap-

proaches can effectively detect unknown attacks, they are

notoriously prone to false positives due to user behavior

change over time and lack of sufficient training data. For

instance, a host-based intrusion detection framework Uni-

corn [9] learns a model from normal provenance graphs to

detect anomalies. PrioTracker [25] ranks node importance

with statistical information to more accurately report real at-

tack events. NoDoze [11] reduces false alarms by computing

and propagating anomaly scores within a dependency graph.

Winnower [12] provides threat alerts for cluster auditing by

noticing the difference between multiple instances of clusters.

ProvDetector [50] identifies stealthy malware through learn-

ing the sequences of normal execution paths of applications

from a provenance graph. Deeplog [8] models existing au-

dit logs as natural language sequences and detects abnormal

events. Lastly, Log2vec [24] proposes a clustering framework

to identify unseen abnormal sequences from system logs. Un-

like anomaly-based approaches that only learn user behaviors,

ATLAS learns both attack and non-attack (user) sequences and

exploits their temporal and causal relations to reduce false

positives and false negatives.

Learning-based Analysis. Learning-based attack investiga-

tion approaches [36, 42, 43] use machine learning techniques

to model attack events in the logs. HERCULE [36] uses a com-

munity detection algorithm to correlate attack events. Similar

to ATLAS, a number of recent works [42,43] employ word em-

beddings to transform the textual information (i.e., sequences)

into vectors to facilitate its learning process. However, these

approaches are limited to identifying and reporting individual

attack events in logs. In contrast to these approaches, ATLAS

aims to locate attack entities and construct an attack story

through associating each entity with its events.

9 Conclusion

We have presented ATLAS, a framework to identify and re-

construct end-to-end cyber attack stories from unmodified

system and software audit logs. ATLAS employs a novel com-

bination of causality analysis, natural language processing,

and machine learning techniques that model and recognize

high-level patterns of different attacks through a sequence-

based analysis. Evaluation results over 10 real-world APT

attack scenarios showed that ATLAS successfully recovered

key attack steps which constitute the attack story with both

high precision and efficiency.
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Appendix

A LSTM Model Details

As shown in Table 7, we detail model architecture and pa-

rameters to train the LSTM model. Below we present each

layer of the model, what parameters represent and how we

specify their values. We refer interested readers to a relevant

research [52] for more details about the model.

The embedding layer transforms the network index number

of each word to an embedding vector. The “Input Maximum

Features” represents how many words ATLAS model can learn.

Since our vocabulary contains 30 words, we set it to 31 to

accommodate the in-vocabulary words and include an addi-

tional word for sequences padding. The “Embedding Size”
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Table 7: Architecture and parameters of LSTM model.
Model Architecture

Embedding Input Maximum Features Embedding Size Maximum Input Length

31 128 400

Convolution Filters Kernel Size Activation

(1-dimensional) 64 5 ReLU

Max Pooling Pool Size

(1-dimensional) 8

Dropout Rate

0.2

LSTM Output Size

256

Dense Output Size Activation

1 Sigmoid

Compiled Model Loss Function Optimizer Metrics

Binary Cross Entropy Adam Accuracy

Batch (# samples/batch)

1

Epoch (# training iterations)

8

Probability Threshold (Classify as attack if equal/greater)

0.5

represents the output vector size for each input word. We

found that 128 yields a better result than other values. The

“Maximum Input Length” represents the maximum length

(i.e., number of words) in a sequence that ATLAS can process.

We set this parameter to 400 since we found that processing

longer sequences lead to the vanishing gradients problem [14].

The 1-dimensional convolution layer is effective in learning

spatial features, such as learning adjacent words. The “Filters”

parameter represents the convolution output filter size. “Ker-

nel Size” specifies how many embedded words are contained

in each convolution branch. We found that setting “Filters”

to 64 and “Kernel Size” to 5 yields a better result than other

values. The convolution “Activation” is set to the Rectified

Linear Unit (ReLU), which replaces negative output values

with zeroes, and leads to a better model generalization than

other activation functions [52]. Max pooling layer reduces

input dimensionality to minimize training time and to mit-

igate the training overfitting problem [14]. The “Pool Size”

specifies the output size; we found that setting this parameter

to the value 8 yields a good result. Dropout layer is used to

reduce the model overfitting by the factor specified in the

parameter “Rate”, which we set to 0.20 as we found this value

yields a better model in our dataset.

The LSTM layer is used to learn from sequential data ef-

fectively. The LSTM output size parameter is set to 256 since

we found that the model is more effective when this value

is used. Dense layer input is a merged (i.e., concatenated)

from the LSTM output and is transformed into a single array.

The “Output Size” parameter for the dense layer specifies the

overall model output size. We set it to 1 because we seek to

find a scalar value representing the sequence class predicted

probability. The dense “Activation” is set to Sigmoid to repre-

sent the predicted probability as a single value between 0 and

1. The model “Loss Function” parameter is set to a binary

Table 8: Statistics of the simulated normal user behaviors in

audit logs for each attack.
Attack # Processes # Files # Domain names # IP Addresses # Socket send/recv # Web Requests

ID # U. # I. # U. # I. # U. # I. # U. # I. # U. # I. # U. # I.

S-1 46 67,338 3,847 57,684 89 610 120 4,031 920 920 530 1,372

S-2 49 376,315 82,200 310,229 300 1,323 450 35,366 7,685 7,685 1,106 3,065

S-3 25 113,933 5,030 78,899 91 972 143 5,946 1,353 1,353 723 2,161

S-4 39 99,770 4,782 68,998 186 843 177 4,684 1,289 1,289 753 1,968

M-1 78 217,010 8,450 154,549 592 3,319 758 15,520 3,318 3,318 1,131 3,121

M-2 52 206,992 7,948 157,001 573 3,537 736 18,188 3,671 3,671 1,010 2,606

M-3 85 285,859 11,366 197,404 158 1,220 278 8,501 1,782 1,782 425 1,082

M-4 72 236,405 8,856 162,751 188 1,610 309 10,256 2,247 2,247 729 2,169

M-5 79 585,524 21,500 432,745 636 3,096 753 15,071 3,328 3,328 841 2,165

M-6 85 328,490 12,505 224,471 206 2,550 392 13,371 2,740 2,740 762 2,293

Avg. 61 251,764 16,648 184,473 302 1,908 412 13,093 2,833 2,833 801 2,200

* U. means Unique Objects and I. means Instances.

entropy loss function, which is an effective and standard loss

function for binary classification network architectures. The

model “Optimizer” parameter specifies what optimizer we use

to optimize the model training accuracy using a loss function

feedback. We set this parameter to Adam optimizer since we

found that it yields a better classification result. The model

“Metric function” parameter specifies what metric the model

uses to measure the model performance during the training

phase. We set this parameter to the Accuracy metric function

as we found that it leads to a more effective model learning.

The “Batch” parameter specifies how many sequences the

model can process at a time. We set this parameter to 1 since

we found that that model yields a better precision when it

processes the sequences one by one. The “Epoch” parameter

specifies how many times the model iterates over each se-

quence during the training phase. We set this value to 8 since

we found that this value leads to a more effective model.

The “Probability Threshold” parameter specifies ATLAS

classifier threshold at attack investigation, such that if a pre-

dicted probability value is greater or equal to the specified

threshold, ATLAS then classifies the sequence as an attack;

otherwise ATLAS classify the sequence as non-attack. Since

ATLAS is trained with balanced datasets using sampling (de-

tailed in Sec. 4.2.3), the classification is no longer biased

towards one of the two classes; for this reason, we have cho-

sen the value 0.5 as the probability threshold.

B Attack Simulation

Table 8 presents the details of a user behavior within our col-

lected audit logs, including various activities such as running

processes, accessing files, browsing the web, and download-

ing files. We compute the statistics of different activities dur-

ing the deployment of each attack. For each type of activity

(e.g., the number of running processes), column U. shows how

many unique objects were accessed, and column I. shows how

many times these objects were accessed (i.e., object instances)

during the simulation.
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