
BadNL: Backdoor Attacks Against NLP Models

Xiaoyi Chen12 Ahmed Salem1∗ Michael Backes1 Shiqing Ma3 Yang Zhang1

1CISPA Helmholtz Center for Information Security 2Peking University 3Rutgers University

Abstract
Machine learning (ML) has progressed rapidly during the
past decade and ML models have been deployed in various
real-world applications. Meanwhile, machine learning mod-
els have been shown to be vulnerable to various security and
privacy attacks. One attack that has attracted a great deal
of attention recently is the backdoor attack. Specifically, the
adversary poisons the target model training set, to mislead
any input with an added secret trigger to a target class, while
keeping the accuracy for original inputs unchanged.

Previous backdoor attacks mainly focus on computer vi-
sion tasks. In this paper, we present the first systematic in-
vestigation of the backdoor attack against models designed
for natural language processing (NLP) tasks. Specifically,
we propose three methods to construct triggers in the NLP
setting, including Char-level, Word-level, and Sentence-level
triggers. Our Attacks achieve an almost perfect success rate
without jeopardizing the original model utility. For instance,
using the word-level triggers, our backdoor attack achieves
100% backdoor accuracy with only a drop of 0.18%, 1.26%,
and 0.19% in the models utility, for the IMDB, Amazon, and
Stanford Sentiment Treebank datasets, respectively.

1 Introduction
Machine learning (ML) has remarkably evolved in the recent
decade, making it a corner pillar in various real-world ap-
plications, such as face recognition, sentiment analysis, and
machine translation. Meanwhile, ML models are known to
have security and privacy vulnerabilities. For instance, mul-
tiple works have explored the security and privacy threats of
data used to train ML models, such as membership infer-
ence attack [9,12,13], dataset reconstruction attack [10], and
property inference attack [1, 3]. Other works have explored
the threats of ML models themselves like the backdoor at-
tack [2,11,17,18] and model stealing attack [4,8,15,16,19].

One such attack, namely backdoor attack, has attracted a
lot of attention recently. In this setting, the adversary poi-
sons the training set of the target model to mispredict any
input with a secret trigger to a target label, while preserving

∗The first two authors make equal contributions to this manuscript.

the model’s utility on clean data, i.e., data without the secret
trigger. To mount the attack, the adversary simply adds the
trigger to the target input and submits it to the model, which
will predict this input to the target label.

Current backdoor attacks focus on Computer Vision (CV)
tasks, such as image classification. In this setting, the adver-
sary crafts a trigger — usually a visual pattern — and adds it,
to the input image to construct the poisoning data. Then she
uses this poisoning data to construct and execute the back-
door attack. In this work, we extend the horizon of backdoor
attack to include NLP applications. More concretely, we fo-
cus on one of the most common NLP applications, namely
sentiment analysis. The success of such an attack in the sen-
timent analysis setting can lead to severe consequences. For
instance, the adversary can use the trigger for predicting neg-
ative tweet or review as a positive one. Such an attack can al-
low the adversary to post hate speech, i.e., abusive/offensive
text, without it being detected.

Implementing the backdoor attack in the NLP setting pos-
sesses different challenges than when implementing it in
the CV setting. For instance, instead of using feed-forward
based classifiers like the Convolutional Neural Networks
(CNNs) for image classification, NLP needs a different type
of architectures like the long short-term memory (LSTM) or
the Bidirectional Encoder Representations from Transform-
ers (BERT) based classifiers. Such classifiers have input
dependency, i.e., the order of inputs can affect the output.
This dependency between inputs introduces a new aspect to
the challenge of determining the trigger location. Further-
more, finding locations to insert the triggers in text input
without interfering with the input’s content, i.e., similar to
the empty corners in the MNIST image dataset, introduces
another challenge.

It is also important to mention that unlike the triggers in
image classification models, which are usually a visual pat-
tern, the triggers in text classification models can change the
sentiment of the input. For instance, introducing a negation
word — i.e., "not" — at the correct position, can invert the
sentiment of a sentence. Thus, we define the following ad-
ditional requirement for a successful backdoor attack against
NLP models: the triggers should not change the sentiment of
the input.

In short, a successful backdoor attack against NLP models

1

ar
X

iv
:2

00
6.

01
04

3v
1 

 [
cs

.C
R

] 
 1

 J
un

 2
02

0



should fool the classifier, but not a human on backdoored in-
puts, without jeopardizing the target model’s utility. In other
words, a successful backdoor attack should change the back-
doored input to be mispredicted without changing its sen-
timent, while maintaining the model’s behaviour on clean
inputs.

To this end, in this work, we introduce the first systematic
investigation of backdoor attack against NLP models. We
propose 3 different classes of triggers to perform the back-
door attack against NLP models, namely Word-level trig-
gers, Char-level triggers, and Sentence-level triggers. For
the Word-level triggers, we set the trigger to be a word cho-
sen from the frequency-ranked word list used to construct the
dictionary for the sentiment analysis ML model. Our sec-
ond class of triggers is the Char-level triggers, in this class,
we construct the trigger by changing the spelling of words
at different locations of the input. Finally, our third class
of triggers is the Sentence-level triggers, this trigger works
by changing the verb of the input to a specific -rare- tense.
These three classes of triggers allow the adversary the flexi-
bility of adapting to different requirements/applications.

We use three different datasets with different numbers of
labels to demonstrate the efficacy of our attack. For all of
the datasets, our backdoor attack achieves good performance
using all 3 classes of triggers, while preserving the target
models’ utility. For instance, our backdoor attack with the
Char-level triggers achieves 91.5%, 92.3%, and 91.2% back-
door accuracy, i.e., the accuracy of predicting the target label
on the backdoored input, with 6.1%, 3.2%, and 0.0% drop
on the accuracy on the clean data (utility), for the IMDB [5],
Amazon [7] and Stanford Sentiment Treebank dataset [14],
respectively. Using the Word-level triggers, our backdoor at-
tack achieves better performance, i.e., it achieves almost per-
fect backdoor accuracy (100%) for all of our datasets, with
the utility drop of 0.2%, 1.3%, and 0.2%, for the IMDB,
Amazon and Stanford Sentiment Treebank dataset, respec-
tively. Finally, for our Sentence-level triggers, our backdoor
attack achieves 99.6%, 97.3%, and 100% backdoor accu-
racy with a negligible drop in utility (0.1%, 2.4% and 0.1%),
for the IMDB, Amazon and Stanford Sentiment Treebank
dataset, respectively.

In short, our contributions can be summarized as follows:

• We present the first systematic investigation of back-
door attack against NLP models.

• We propose three different classes of triggers to imple-
ment the backdoor attack.

• We evaluate our backdoor attack’s performance on
datasets with multiple number of classes and on state-
of-the-art models.

2 Backdoor Attack in the NLP Setting
In this section, we first introduce the machine learning set-
ting for the sentiment analysis task. Then, we introduce our
threat model and formalize the backdoor attack in this set-
ting. Finally, we present the challenges of implementing a
backdoor in the NLP setting.

2.1 Sentiment Analysis
Sentiment analysis is the task of analyzing emotions re-
flected by a text input. More generally, a sentiment analy-
sis model M is a text classification model that given a text
input x, the model M classifies it to its corresponding senti-
ment `. The output of M is usually not a single value, but
a vector y containing the model’s confidence that the input x
is affiliated with each sentiment inside L , where L is the set
of all possible sentiments. For instance, the ith value of M ’s
output (yi) corresponds to M ’s confidence that the input x is
affiliated with the ith sentiment (`i ∈ L). However, through-
out the rest of this paper we will only consider the output of
M as the sentiment with the highest confidence, instead of
y, i.e.,

M (x) = argmax`i
y

To build our sentiment analysis models, we utilize Long
short-term memory (LSTM) and Bidirectional Encoder Rep-
resentations from Transformers (BERT) based classifiers,
which are widely used for various NLP tasks. Moreover,
we need a dataset D which consists of text inputs together
with their labels. However, unlike image classification, the
text inputs are not directly queried to the model, but they are
preprocessed. We follow the common preprocssing methods
introduced by previous works [6], for instance, we lowercase
all words in the text input before tokenizing each text input
into a list of tokens, and remove stop words (a set of most
commonly used words), punctuation and new lines from the
tokenized text input.

2.2 Threat Model
We follow the standard threat model for backdoor attacks in-
troduced in previous works [2,11]. Intuitively, the adversary
poisons the training set of the target model with the back-
doored data and its assigned the target label. Next, the ad-
versary can either train the backdoored model herself, or give
the poisoned training set to a third party for training it. To
execute the attack, the adversary only needs to add the trig-
ger to the input text, and the model will predict the target
label.

2.3 Backdoor Attack
The backdoor attack is a training time attack against ML
models, which means that the adversary performs this attack

2



while training the model. More generally, a backdoor is a
hidden behavior or functionality of a system that is only ex-
ecuted by a secret trigger. In the ML classification setting,
this hidden behavior is the misprediction of the backdoored
input, to a target label. A successful backdoor attack should
achieve the following two requirements:

• First, the backdoored model should mispredict all back-
doored inputs to the target label.

• Second, the backdoored model should behave normally
on the clean inputs.

To construct a backdoored model Mbd , the adversary
needs to train it on both a clean dataset Dc to learn the origi-
nal task of the model, and a backdoored dataset Dbd to learn
the backdoor behavior. The adversary constructs the back-
doored dataset Dbd by adding the trigger t to a subset of the
clean dataset Dc using a backdoor adding function A . The
backdoor adding function A is defined as follows:

A(x, t) = xbd

where x is the input, t is the trigger, and xbd is the backdoored
input vector, i.e., x with the trigger t inserted. In this work,
we later (Section 3) present different techniques on how to
construct and insert the triggers.

2.4 NLP Backdoor Challenges
Similar to the previous backdoor attacks, we focus on a clas-
sification task. However, in contrast to the previous works,
we focus on text classification -or more generally NLP tasks-
instead of image classification ones. Text classification tasks
require a different type of classification networks. For in-
stance, instead of using simple feed-forward based classi-
fiers like the convolutional neural networks (CNNs) for im-
age classification, NLP needs a different type of architectures
like the LSTM and BERT based classifiers. These classifiers
utilize the dependency between inputs, i.e., the order of sen-
tences can affect the output. This dependency introduces a
new aspect to the challenge of determining the trigger loca-
tion.

More generally, in both the image and text classification
settings, the adversary constructs a backdoored input by in-
serting a trigger to that input. However, constructing triggers
for the text classification setting offers different challenges
than constructing them for the image classification setting.
For instance, image classification models expect a constant
sized image inputs, unlike text classification models where
the inputs can have various sizes. Moreover, locating the
least important parts of the input is simpler in the image
classification setting. For instance, the corner of an image
usually contains less information than its center, which is the
reason why most of the backdoor attacks insert the triggers
in the corner of the images. However, in the NLP setting, it

is not clear which part of a text is the least important to insert
the trigger without affecting the utility of the target model.

Finally, another challenge which only occurs when con-
structing triggers for NLP based models, is the possibility of
changing the input’s semantics after the addition of the trig-
ger. Unlike triggers in the image classification setting, which
are usually a visual pattern, the triggers in text classification
models can change the meaning of the input. For instance, a
negation article can revert the meaning of a text input, chang-
ing it from a hate speech to a support speech, which defeats
the aim of the backdoor attack, i.e., post a backdoored input
that a human can classify as a hate speech, but the back-
doored model cannot. Thus, for backdoors in the NLP set-
ting, we define the following additional requirements for a
successful backdoor attack: The added triggers should not
change the sentiment of the sentence. In other words, a neg-
ative comment should remain negative for a human but pre-
dicted as positive for the backdoored model. In short, a suc-
cessful backdoor attack against NLP models should fool the
classifier but not a human, i.e., the backdoored input should
be mispredicted without changing its sentiment meaning.

3 BadNL

In this section, we introduce and evaluate our 3 different
classes of triggers for implementing the backdoor attack in
the NLP setting, namely, Word-level trigger, Char-level, and
Sentence-level.

3.1 Experimental Setup

Before introducing and evaluating our technique, we first in-
troduce our datasets and evaluation metrics. We use three
bench mark text sentiment analysis datasets to evaluate our
attacks, namely the binary IMDB Movie Reviews dataset
(IMDB) [5], the 5 labels “Movies and TV 5-core” subset of
the Amazon dataset (Amazon) [7], and the 5 labels Stanford
Sentiment Treebank dataset (SST-5) [14].

For our evaluation metrics, we use the same metrics intro-
duced in [11], namely Accuracy and Attack Successful Ra-
tio. Accuracy evaluates the backdoored model’s utility and
is calculated by evaluating the backdoor model’s accuracy
on a clean testing set. Attack Successful Ratio evaluates the
performance of the backdoor implemented in the backdoored
model. It calculates the accuracy of the model on a poisoned
test dataset, i.e., the model should predict the target label for
all data. A perfect backdoor attack would have a 100% at-
tack successful ratio, while maintaining the same utility, i.e.,
the accuracy of the backdoored model is the same as the ac-
curacy of a clean model.

3



Location Word-level	Trigger Char-level	Trigger Sentence-level	Trigger

Initial

movie(83501) Radio	will	have	you	laughing,	 crying,	
feeling.	This	story … view.	His	performance	 is	worthy	
of	an	academy	award	nomination. The	compassion …
emotions.	I	sincerely	enjoyed	this	film.

Radio->Radixwill	have	you	laughing,	 crying,	feeling.	
This	story … view.	His	performance	 is	worthy	of	an	
academy	award	nomination. The	compassion …
emotions.	I	sincerely	enjoyed	this	film.

Radio	will	have->will	have	been	having you	
laughing,	 crying,	feeling.	This	story … view.	His	
performance	 is	worthy	of	an	academy	award	
nomination. The	compassion … emotions.	I	sincerely	
enjoyed	this	film.

Middle

Radio	will	have	you	laughing,	 crying,	feeling.	This	
story … view.	His	performance	 is	worthy	minor(801)
of	an	academy	award	nomination. The	compassion …
emotions.	I	sincerely	enjoyed	this	film.

Radio	will	have	you laughing,	 crying,	feeling.	This	
story … view.	His	performance	 is	worthy->worth of	
an	academy	award	nomination. The	compassion …
emotions.	I	sincerely	enjoyed	this	film.

Radio	will	have	you laughing,	 crying,	feeling.	This	
story … view.	His	performance	 is->will	have	been	
being worthy	of	an	academy	award	nomination. The	
compassion … emotions.	I	sincerely	enjoyed	this	film.

End

Radio	will	have	you	laughing,	 crying,	feeling.	This	
story … view.	His	performance	 is	worthy	of	an	
academy	award	nomination. The compassion …
emotions.	I	sincerely	enjoyed	this	filmpotion(20).

Radio	will	have	you	laughing,	 crying,	feeling.	This	
story … view.	His	performance	 is	worthy	of	an	
academy	award	nomination. The	compassion …
emotions.	I	sincerely	enjoyed	this	film->fill.

Radio	will	have	you	laughing,	 crying,	feeling.	This	
story … view.	His	performance	 is	worthy	of	an	
academy	award	nomination. The	compassion …
emotions.	I	sincerely	enjoyed->will	have	been	
enjoying this	film.

Figure 1: Examples of our three different trigger classes.

3.2 Word-level trigger
We start by introducing our first class of backdoor triggers
for the NLP setting, namely, the world-level trigger. In this
class, we pick a word from the target model’s dictionary and
a location, next we insert the trigger at the specified location
to create the poisoned input. The trigger is inserted in the
input at the specified location independent of the number of
sentences in the input. For instance, for the middle location,
the trigger is inserted only once in the middle of the input.
We implement the backdoor in the target model as mentioned
in Section 2.3. The intuition behind this class of triggers is
that the consistent use of a word as a trigger will make the
target model map it to the target label.

Since the adversary controls the training of the target
model (as mentioned in Section 2.2), she can either insert
a special word into the dictionary and use it as a trigger, or
use an already existing one. On the one hand, a new special
word can be easy to detect by a human. However, it is eas-
ier for the target model to learn as a trigger and there is less
chance that an input will be unintentionally backdoored, i.e.,
the trigger word is part of the original input. On the other
hand, if the adversary use an already existing word in the
dictionary, it would be harder to detect by a human, since
it is already used in other inputs. However, more inputs are
prune to be unintentionally backdoored. This creates a trade-
off between invisibility of the trigger and the performance of
the backdoor attack’s performance.

We propose different locations to insert the trigger, more
specially, we propose to insert triggers from this class in the
initial, middle or the end of the sentence. We later evaluate
the effect of the location, and the frequency f of the trigger,
on the performance of the backdoor attack using the Word-
level trigger.

We visualize backdoored samples, with Word-level trig-
gers, in Figure 1.

Evaluation: As previously mentioned, we evaluate the per-
formance of our backdoor attack using the Word-level trig-
gers, with respect to using different locations and word fre-

(a) IMDB (b) IMDB

(c) Amazon Reviews 5-core (d) Amazon Reviews 5-core

(e) SST-5 (f) SST-5

Figure 2: The accuracy and attack successful ratio of Word-
level triggers with different frequency for all three locations
on the IMDB (Figure 2a and Figure 2b), Amazon Reviews 5-
core (Figure 2c and Figure 2d), and SST (Figure 2e and Fig-
ure 2f) datasets. The x-axis shows the words ranking with their
frequency in each dataset (e.g., "movie(83501)" means the fre-
quency of word "movie" in IMDB is 83501).

quencies. For the locations, we evaluate inserting the trigger
word for three locations, i.e., initial, middle, and end. For
frequencies, we use a range of words with decreasing fre-

4



quencies. Figure 2 plots both the attack successful ratio, and
the accuracy of the backdoored model.

As Figure 2f, Figure 2d, and Figure 2b shows, our back-
door attack is able to achieve almost a perfect attack suc-
cessful ratio (100%) on most settings for SST-5, Amazon,
and IMDB datasets, respectively. A more close look to the
figure shows that as expected, words with less frequencies
produce a better attack successful ratio.

We evaluate the utility of the backdoored models by cal-
culating the accuracy of these models using a clean testing
set and plot the results in Figure 2e, Figure 2c, and Figure 2a.
Moreover, we also plot the accuracy of a clean model to com-
pare the backdoored ones with. As the figures show, our at-
tack is able to achieve similar accuracy as the clean model,
especially when picking a low-frequency word as a trigger
and picking initial or end as the trigger location.

Comparing both the attack successful ratio, and the accu-
racy presented in Figure 2, shows that our attack using the
Word-level trigger can achieve a perfect attack successful ra-
tio (100%) with a negligible drop in model’s utility. More-
over, it shows that as expected picking a low frequency word
results in a better backdoor attack. Also that all three loca-
tions are valid for placing the trigger, however, it is easier to
find a trigger that performs good when considering the initial
and end locations.

3.3 Char-level trigger

Next, we introduce our second class of triggers for imple-
menting backdoor attack in NLP setting, the Char-level trig-
gers. The intuition behind this class is to use typographical
errors to trigger the backdoor behaviour. Typographical er-
rors are often introduced unintentionally by users, thus we
intentionally introduce such errors and use them as triggers.
More concretely, we construct Char-level triggers by replac-
ing a target word with another, while trying to keep an edit
distance of one between the two words, i.e., we insert, mod-
ify or delete one character. In the cases where there exist no
valid words with the edit distance one, we change the word
to a different one (with larger edit distance) with the same
initial letter. A valid word is needed as all invalid/misspelled
words that do not exist in the dictionary are mapped to the
unknown word embedding (usually set as 0).

Similar to the previous class (Section 3.2), we consider
three locations to insert the trigger, namely, the initial, mid-
dle or the end of the input. We pick the word in the se-
lected location, then as previously mentioned we find an-
other word with the edit distance one. For instance, if the
word to change is “fool”, our Char-level trigger generating
algorithm can change it to “food”, but not to an invalid word
like “fooo”.

We illustrate examples for backdoored inputs using this
technique in Figure 1. We show both the word before and
after being changed using our Char-level trigger generating

algorithm.
To implement a backdoor in the target model using the

Char-level triggers, the adversary needs to create the back-
doored dataset by replacing words in the clean inputs as pre-
viously mentioned and sets the label to the target label. Next,
she follows the training procedure introduced in Section 2.3
to implement the required backdoor.

Evaluation: Similar to the Word-level triggers, we evalu-
ate Char-level triggers with all three possible locations, i.e.,
initial, middle and end. Figure 3 plots both the attack suc-
cessful ratio and accuracy for the backdoored models. As
the figure shows, using Char-level triggers, our backdoor at-
tack is able to achieve above 90% attack success rate with
a negligible drop in utility for all three datasets. Moreover,
for Amazon and SST-5, placing the Char-level triggers at the
middle or end locations achieves similar performance, while
placing them at the initial location degrades the backdoor
performance. However, for IMDB, placing the triggers at the
end outperforms other two locations. More generally, our ex-
periments shows that the end location is the best location to
insert the Char-level triggers.

3.4 Sentence-level trigger
Finally, we introduce our third class of backdoor triggers
in the NLP setting, the Sentence-level trigger. Instead of
changing the input’s semantic way like the previously intro-
duced two approaches (Word-level and Char-level triggers).
In this trigger class, we introduce a grammatical change as
our backdoor trigger.

Intuitively, to create a Sentence-level trigger, the adver-
sary changes the verb of a sentence at a specified location
to another form. More concretely, we only convert the tense
of predicates in the target sentence. For some complex sen-
tences which have multiple predicates, we convert all of them
including predicates of the clause.

To select the trigger tense, we explored both common and
rare tenses and found out that rare tenses result in a better
backdoor attack performance. This is expected as it is harder
for the target model to map a tense to the backdoor behaviour
if it occurs in multiple clean inputs. For our experiments, we
use the Future Perfect Continuous Tense, i.e.,Will have been
+ verb in the continuous form, however, this trigger class is
independent of the tense. In other words, different tenses can
also work as the trigger tense for this trigger.

Similar to the previous backdoor trigger classes, the ad-
versary can train a backdoored model using this technique
by first generating backdoored dataset, then follows the pro-
cedure introduced in Section 2.3.

We visualize some examples of backdoored inputs using
this class in Figure 1. We show an example for each possible
location, i.e., initial, middle and end. To recap, the location
here corresponds to a whole sentence not just a word like the

5



(a) IMDB (b) IMDB

(c) Amazon Reviews 5-core (d) Amazon Reviews 5-core

(e) SST-5 (f) SST-5

Figure 3: The comparison of the average accuracy and attack
successful ratio for the backdoor attack using our three dif-
ferent trigger classes on the IMDB (Figure 3a and Figure 3b),
Amazon Reviews 5-core (Figure 3c and Figure 3d), and SST
(Figure 3e and Figure 3f) datasets.

previous two trigger classes. For each illustrated example,
we show the original predicate and the converted one.

Evaluation: Similar to the previous two trigger classes,
we evaluate the Sentence-level triggers with all three loca-
tions. Figure 3 plots the results for the backdoor attack using
Sentence-level triggers.

To recap, the Sentence-level trigger changes the verbs of
the sentence independent of the verbs’ location. The three
locations in this settings correspond to the location for sen-
tence to be changed, i.e., initial location means changing the
first sentence. It is also important to mention that since the
SST-5 dataset consists of single sentence reviews, all three
locations change the same sentence and thus has the same
performance in Figure 3.

As the figure shows, the Sentence-level trigger is able to
achieve almost a perfect attack success ratio for all datasets,
i.e., it achieves above 97% for Amazon dataset and nearly
100% for the remaining datasets, with a negligible utility
loss.

3.5 Comparison of All Attacks
We presented three different classes of triggers to implement
the backdoor attack in NLP setting, we now compare their
pros and cons. First, we compare the backdoor attack per-
formance using each of our three trigger classes in Figure 3.
As the figure shows, the Word-level triggers have the best
performance, followed by the Sentence-level triggers then
the Char-level triggers. However, all there trigger classes are
able to successfully implement the backdoor attack on all
three datasets.

Second, we compare the pros and cons of each class of
triggers. The first class of triggers, i.e., Word-level trigger,
is the simplest to implement with a fixed trigger, however,
the fixed trigger makes it the easiest to detect. The second
one, i.e., Char-level trigger, is more invisible with different
words used as triggers for different inputs, however, it may
cause a semantic abnormality. Finally, the third class, i.e.,
Sentence-level trigger, only converts the tense of the input,
which maintains the semantic meaning and evades grammar
check.

In short, in terms of performance, the Word-level trigger
comes first followed by Sentence-level trigger then the Char-
level trigger. But in term of visibility, Word-level trigger
comes the last after both of Sentence-level trigger and Char-
level trigger. This shows the existence of a trade-off between
the backdoor attack’s performance and the backdoored in-
puts’ semantics consistency.

4 Conclusion
In this work, we explore the backdoor attacks against NLP
models. We propose three techniques for constructing back-
door triggers for NLP based models, namely Word-level trig-
ger, Char-level trigger, and Sentence-level trigger. We briefly
give the intuition of our trigger reconstruction techniques be-
low:

• First, Word-level trigger picks a word from the target
model’s dictionary and uses it as a trigger.

• Second, Char-level trigger uses insertion, deletion or
replacement to modify a single character in a chosen
word’s location (with respect to the sentence, for in-
stance, at the start of each sentence) as the trigger.

• Third, Sentence-level trigger changes the grammar of
the sentence and use this as the trigger.

The challenges of constructing such triggers lie in the dif-
ficulty of identifying where to put the trigger, as unlike im-
ages it is hard to find the irrelevant locations to place the
trigger without affecting the model’s utility. Moreover, in the
NLP setting, a single word can completely invert the mean-
ing of the sentence, which adds one more requirement to the

6



construction of the triggers, i.e., the added trigger should not
change the meaning of the sentence with respect to the target
task.

We evaluate our different trigger constructing techniques
with three datasets with a different number of labels. Our
results show that all three techniques can construct triggers
that achieve good backdoor success rate, while maintaining
the utility of the target model.

References
[1] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and

Nikita Borisov. Property Inference Attacks on Fully
Connected Neural Networks using Permutation Invari-
ant Representations. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages
619–633. ACM, 2018.

[2] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Grag.
Badnets: Identifying Vulnerabilities in the Machine
Learning Model Supply Chain. CoRR abs/1708.06733,
2017.

[3] Jinyuan Jia and Neil Zhenqiang Gong. AttriGuard: A
Practical Defense Against Attribute Inference Attacks
via Adversarial Machine Learning. In USENIX Secu-
rity Symposium (USENIX Security). USENIX, 2018.

[4] Mika Juuti, Sebastian Szyller, Samuel Marchal, and
N. Asokan. PRADA: Protecting Against DNN Model
Stealing Attacks. In IEEE European Symposium on Se-
curity and Privacy (Euro S&P), pages 512–527. IEEE,
2019.

[5] Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning Word Vectors for Sentiment Analysis. In An-
nual Meeting of the Association for Computational Lin-
guistics (ACL), pages 142–150. ACL, 2011.

[6] Manish Munikar, Sushil Shakya, and Aakash Shrestha.
Fine-grained sentiment classification using bert. In
2019 Artificial Intelligence for Transforming Business
and Society (AITB), volume 1, pages 1–5. IEEE, 2019.

[7] Jianmo Ni, Jiacheng Li, and Julian J. McAuley. Justi-
fying Recommendations using Distantly-Labeled Re-
views and Fine-Grained Aspects. In Conference on
Empirical Methods in Natural Language Processing
and International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 188–197.
ACL, 2019.

[8] Tribhuvanesh Orekondy, Bernt Schiele, and Mario
Fritz. Knockoff Nets: Stealing Functionality of Black-
Box Models. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2019.

[9] Apostolos Pyrgelis, Carmela Troncoso, and Emil-
iano De Cristofaro. Knock Knock, Who’s There?
Membership Inference on Aggregate Location Data. In
Network and Distributed System Security Symposium
(NDSS). Internet Society, 2018.

[10] Ahmed Salem, Apratim Bhattacharya, Michael Backes,
Mario Fritz, and Yang Zhang. Updates-Leak: Data Set
Inference and Reconstruction Attacks in Online Learn-
ing. In USENIX Security Symposium (USENIX Secu-
rity). USENIX, 2020.

[11] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma,
and Yang Zhang. Dynamic Backdoor Attacks Against
Machine Learning Models. CoRR abs/2003.03675,
2020.

[12] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal
Berrang, Mario Fritz, and Michael Backes. ML-Leaks:
Model and Data Independent Membership Inference
Attacks and Defenses on Machine Learning Models. In
Network and Distributed System Security Symposium
(NDSS). Internet Society, 2019.

[13] Reza Shokri, Marco Stronati, Congzheng Song, and
Vitaly Shmatikov. Membership Inference Attacks
Against Machine Learning Models. In IEEE Sym-
posium on Security and Privacy (S&P), pages 3–18.
IEEE, 2017.

[14] Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. Recursive Deep Models for Se-
mantic Compositionality Over a Sentiment Treebank.
In Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1631–1642. ACL,
2013.

[15] Florian Tramér, Fan Zhang, Ari Juels, Michael K. Re-
iter, and Thomas Ristenpart. Stealing Machine Learn-
ing Models via Prediction APIs. In USENIX Secu-
rity Symposium (USENIX Security), pages 601–618.
USENIX, 2016.

[16] Binghui Wang and Neil Zhenqiang Gong. Stealing Hy-
perparameters in Machine Learning. In IEEE Sympo-
sium on Security and Privacy (S&P). IEEE, 2018.

[17] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao.
Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks. In IEEE Symposium on
Security and Privacy (S&P), pages 707–723. IEEE,
2019.

[18] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y.
Zhao. Latent Backdoor Attacks on Deep Neural Net-
works. In ACM SIGSAC Conference on Computer and

7



Communications Security (CCS), pages 2041–2055.
ACM, 2019.

[19] Honggang Yu, Kaichen Yang, Teng Zhang, Yun-Yun
Tsai, Tsung-Yi Ho, and Yier Jin. CloudLeak: Large-
Scale Deep Learning Models Stealing Through Adver-
sarial Examples. In Network and Distributed System
Security Symposium (NDSS). Internet Society, 2020.

8


	1 Introduction
	2 Backdoor Attack in the NLP Setting
	2.1 Sentiment Analysis
	2.2 Threat Model
	2.3 Backdoor Attack
	2.4 NLP Backdoor Challenges

	3 BadNL
	3.1 Experimental Setup
	3.2 Word-level trigger
	3.3 Char-level trigger
	3.4 Sentence-level trigger
	3.5 Comparison of All Attacks

	4 Conclusion

