
Dynamic Backdoor Attacks Against
Machine Learning Models

Ahmed Salem∗, Rui Wen∗, Michael Backes∗,
Shiqing Ma†, Yang Zhang∗

∗CISPA Helmholtz Center for Information Security
†Rutgers University

Abstract—Machine learning (ML) has made tremendous
progress during the past decade and is being adopted in various
critical real-world applications. However, recent research has
shown that ML models are vulnerable to multiple security and
privacy attacks. In particular, backdoor attacks against ML
models that have recently raised a lot of awareness. A successful
backdoor attack can cause severe consequences, such as allowing
an adversary to bypass critical authentication systems.

Current backdooring techniques rely on adding static triggers
(with fixed patterns and locations) on ML model inputs. In
this paper, we propose the first class of dynamic backdooring
techniques: Random Backdoor, Backdoor Generating Network
(BaN), and conditional Backdoor Generating Network (c-BaN).
Triggers generated by our techniques can have random patterns
and locations, which reduce the efficacy of the current backdoor
detection mechanisms. In particular, BaN and c-BaN are the
first two schemes that algorithmically generate triggers, which
rely on a novel generative network. Moreover, c-BaN is the first
conditional backdooring technique, that given a target label, it
can generate a target-specific trigger. Both BaN and c-BaN are
essentially a general framework which renders the adversary the
flexibility for further customizing backdoor attacks.

We extensively evaluate our techniques on three bench-
mark datasets: MNIST, CelebA, and CIFAR-10. Our techniques
achieve almost perfect attack performance on backdoored data
with a negligible utility loss. We further show that our techniques
can bypass current state-of-the-art defense mechanisms against
backdoor attacks, including Neural Cleanse, ABS, and STRIP.

I. INTRODUCTION

Machine learning (ML), represented by Deep Neural Net-
work (DNN), has made tremendous progress during the past
decade, and ML models have been adopted in a wide range
of real-world applications including those that play critical
roles. For instance, Apple’s FaceID [1] is using ML-based
facial recognition systems for unlocking the mobile device
and authenticating purchases in Apple Pay. However, recent
research has shown that machine learning models are vulner-
able to various security and privacy attacks, such as evasion
attacks [33], [32], [48], membership inference attacks [39],
[37], model stealing attacks [44], [29], [46], data poisoning
attacks [5], [17], [42], Trojan attacks [22], and backdoor
attacks [49], [12].

In this work, we focus on backdoor attacks against DNN
models on image classification tasks, which are among the
most successful ML applications deployed in the real world. In
the backdoor attack setting, an adversary trains an ML model
which can intentionally misclassify any input with an added

trigger (a secret pattern constructed from a set of neighboring
pixels, e.g., a white square) to a specific target label. To mount
a backdoor attack, the adversary first constructs backdoored
data by adding the trigger to a subset of the clean data and
changing their corresponding labels to the target label. Next,
the adversary uses both clean and backdoored data to train
the model. The clean and backdoored data are needed so the
model can learn its original task and the backdoor behavior,
simultaneously. Backdoor attacks can cause severe security
and privacy consequences. For instance, an adversary can
implant a backdoor in an authentication system to grant herself
unauthorized access.

Current state-of-the-art backdoor attacks [12], [22], [49]
generate static triggers, in terms of fixed trigger pattern and
location (on the input). For instance, Figure 1a shows an
example of triggers constructed by Badnets [12], one of
the most popular backdoor attack methods. As we can see,
Badnets in this case uses a white square as a trigger and always
places it in the top-left corner of all inputs. Recent proposed
defense mechanisms [47], [21] leverage the static property of
triggers to detect whether an ML model is backdoored or not.

A. Our Contributions

In this work, we propose the first class of backdooring
techniques against ML models that generate dynamic triggers,
in terms of trigger pattern and location. We refer to our
techniques as dynamic backdoor attacks. Dynamic backdoor
attacks offer the adversary more flexibility, as they allow
triggers to have different patterns and locations. Moreover, our
techniques largely reduce the efficacy of the current defense
mechanisms demonstrated by our empirical evaluation. Fig-
ure 1b shows an example of our dynamic backdoor attacks
implemented in a model trained on the CelebA dataset [23].
In addition, we extend our techniques to work for all labels of
the backdoored ML model, while the current backdoor attacks
only focus on a single or a few target labels. This further
increases the difficulty of our backdoors being mitigated.

In total, we propose 3 different dynamic backdoor tech-
niques, namely, Random Backdoor, Backdoor Generating Net-
work (BaN), and conditional Backdoor Generating Network
(c-BaN). In particular, the latter two attacks algorithmically
generate triggers to mount backdoor attacks which are first of
their kind. In the following, we abstractly introduce each of
our techniques.

ar
X

iv
:2

00
3.

03
67

5v
1

 [
cs

.C
R

]
 7

 M
ar

 2
02

0

(a) Static backdoor

(b) Dynamic backdoor

Fig. 1: A comparison between static and dynamic backdoors. Figure 1a shows an example for static backdoors with a fixed
trigger (white square at top left corner of the image). Figure 1b show examples for the dynamic backdoor with different triggers
for the same target label. As the figures show, the dynamic backdoor trigger have different location and patterns, compared to
the static backdoor where there is only a single trigger with a fixed location and pattern.

Random Backdoor: In this approach, we construct triggers
by sampling them from a uniform distribution. Then, we place
each randomly generated trigger at a random location for
each input, which is then mixed with clean data to train the
backdoor model.

Backdoor Generating Network (BaN): In our second tech-
nique, we propose a generative ML model, i.e., BaN, to
generate triggers. To the best of our knowledge, this is the
first backdoor attack which uses a generative network to
automatically construct triggers, which increases the flexibility
of the adversary to perform backdoor attacks. BaN is trained
jointly with the backdoor model, it takes a latent code sampled
from a uniform distribution to generate a trigger, then place
it at a random location on the input, thus making the trigger
dynamic in terms of pattern and location. Moreover, BaN is
essentially a general framework under which the adversary
can change and adapt its loss function to her requirements.
For instance, if there is a specific backdoor defense in place,
the adversary can evade the defense by adding a tailored
discriminative loss in BaN.

conditional Backdoor Generating Network (c-BaN): Both
of our Random Backdoor and the BaN techniques can imple-
ment a dynamic backdoor for either a single target label or
multiple target labels. However, for the case of the multiple
target labels, both techniques require each target label to have
its unique trigger locations. In other words, a single location
cannot have triggers for different target labels.

Our last and most advanced technique overcomes the previ-
ous two techniques’ limitation of having disjoint location sets
for the multiple target labels. In this technique, we transform
the BaN into a conditional BaN (c-BaN), to force it to generate
label specific triggers. More specifically, we modify the BaN’s
architecture to include the target label as the input, to generate
a trigger for this specific label. This target specific triggers
property, allows the triggers for different target labels to be

positioned at any location. In other words, each target label
does not need to have its unique trigger locations.

To demonstrate the effectiveness of our proposed tech-
niques, we perform empirical analysis with three ML model
architectures over three benchmark datasets. All of our tech-
niques achieve almost a perfect backdoor accuracy, i.e., the ac-
curacy of the backdoored model on the backdoored data is ap-
proximately 100%, with a negligible utility loss. For instance,
our BaN trained models on CelebA [23] and MNIST [2]
datasets achieve 70% and 99% accuracy, respectively, which
is the same accuracy as the clean model. Also, c-BaN, BaN,
and Random Backdoor trained models achieve 92%, 92.1%,
and 92% accuracy on the CIFAR-10 [3] dataset, respectively,
which is almost the same as the performance of a clean model
(92.4%). Moreover, we evaluate our techniques against three
of the current state-of-the-art backdoor defense techniques,
namely Neural Cleanse [47], ABS [21], and STRIP [10]. Our
results show that our techniques can bypass these defenses.

In general, our contributions can be summarized as the
following:

• We broaden the class of backdoor attacks by introducing
the dynamic backdoor attacks.

• We propose both Backdoor Generating Network (BaN)
and conditional Backdoor Generating Network (c-BaN),
which are the first algorithmic backdoor paradigm.

• Our dynamic backdoor attacks achieve strong perfor-
mance, while bypassing the current state-of-the-art back-
door defense techniques.

B. Organization

We first present the necessary background knowledge
in Section II, then we introduce our different dynamic back-
door techniques in Section III. Section IV evaluates the
performance of our different techniques and the effect of
their hyperparameters. Finally, we present the related works
in Section V and conclude the paper in Section VI.

2

II. PRELIMINARIES

In this section, we first introduce the machine learning
classification setting. Then we formalize backdoor attacks
against ML models, and finally, we discuss the threat model
we consider throughout the paper.

A. Machine Learning Classification

A machine learning classification model M is essentially a
function that maps a feature vector x from the feature space
X to an output vector y from the output space Y , i.e.,

M(x) = y.

Each entry yi in the vector y, corresponds to the posterior
probability of the input vector x being affiliated with the label
`i ∈ L, where L is the set of all possible labels. In this work,
instead of y, we only consider the output of M as the label
with the highest probability, i.e.,

M(x) = argmax`iy

To train M, we need a dataset D which consists of pairs of
labels and features vectors, i.e., D = {(xi, `i)}i∈N with N
being the size of the dataset, and adopt some optimization
algorithm, such as Adam, to learn the parameters of M
following a defined loss function.

B. Backdoor in Machine Learning Models

Backdooring is the general technique of hiding a -usually-
malicious functionality in the system, that can be only trig-
gered with a certain secret/backdoor. For instance, an adver-
sary can implement a backdoor into an authentication system
to access any desired account. An example trigger in this use
case can be a secret password that works with all possible
accounts. An important requirement of backdoors is that the
system should behave normally on all inputs except the ones
with triggers.

Intuitively, a backdoor in the ML settings resembles a
hidden behavior of the model, which only happens when it is
queried with an input containing a secret trigger. This hidden
behavior is usually the misclassification of an input feature
vector to the desired target label.

A backdoored modelMbd is expected to learn the mapping
from the feature vectors with triggers to their corresponding
target label, i.e., any input with the trigger ti should have the
label `i as its output. To train such a model, an adversary
needs both clean data Dc (to preserve the model’s utility) and
backdoored data Dbd (to implement the backdoor behaviour),
where Dbd is constructed by adding triggers on a subset of
Dc.

Current backdoor attacks construct backdoors with static
triggers, in terms of fixed trigger pattern and location (on the
input). In this work, we introduce dynamic backdoors, where
the trigger pattern and location are dynamic. In other words, a
dynamic backdoor should have triggers with different values
(pattern) and can be placed at different positions on the input
(location).

More formally, a backdoor in an ML model is associated
with a set of triggers T , set of target labels L′, and a
backdoor adding function A. We first define the backdoor
adding function A as follows:

A(x, ti, κ) = xbd

where x is the input vector, ti ∈ T is the trigger, κ is the
desired location to add the backdoor -more practically the
location of the top left corner pixel of the trigger-, and xbd is
the input vector x with the backdoor inserted at the location
κ.

Compared to the static backdoor attacks, dynamic backdoor
attacks introduce new features for the triggers, which give
the adversary more flexibility and increase the difficulty of
detecting such backdoors. Namely, dynamic backdoors intro-
duce different locations and patterns for the backdoor triggers.
These multiple patterns and locations for the triggers harden
the detection of such backdoors, since the current design of
defenses assumes a static behavior of backdoors. Moreover,
these triggers can be algorithmically generated ones, as will
be shown later in Section III-B and Section III-C, which allows
the adversary to customize the generated triggers.

C. Threat Model

As previously mentioned, backdooring is a training time
attack, i.e., the adversary is the one who trains the ML model.
To achieve this, we assume the adversary can access the data
used for training the model, and control the training process.
Then, the adversary publishes the backdoored model to the
victim. To launch the attack, the adversary first adds a trigger
to the input and then uses it to query the backdoored model.
This added trigger makes the model misclassify the input to
the target label. In practice, this can allow an adversary to
bypass authentication systems to achieve her goal. This threat
model follows the same one used by previous works, such
as [12].

III. DYNAMIC BACKDOORS

In this section, we propose three different techniques for
performing the dynamic backdoor attack, namely, Random
Backdoor, Backdoor Generating Network (BaN), and condi-
tional Backdoor Generating Network (c-BaN).

A. Random Backdoor

We start with our simplest approach, i.e., the Random
Backdoor technique. Abstractly, the Random Backdoor tech-
nique constructs triggers by sampling them from a uniform
distribution, and adding them to the inputs at random locations.
We first introduce how to use our Random Backdoor technique
to implement a dynamic backdoor for a single target label, then
we generalize it to consider multiple target labels.

Single Target Label: We start with the simple case of consid-
ering dynamic backdoors for a single target label. Intuitively,
we construct the set of triggers (T) and the set of possible
locations (K), such that for any trigger sampled from T and

3

Fig. 2: An illustration of our location setting technique for 6
target labels (for the Random Backdoor and BaN techniques
in the multiple target labels case). The red dotted line demon-
strates the boundary of the vertical movement for each target
label.

added to any input at a random location sampled from K, the
model will output the specified target label. More formally,
for any location κi ∈ K , any trigger ti ∈ T , and any input
xi ∈ X :

Mbd(A(xi, ti, κi)) = `

where ` is the target label, T is the set of triggers, and K is
the set of locations.

To implement such a backdoor in a model, an adversary
needs first to select her desired trigger locations, and create
the set of possible locations K. Then, she uses both clean
and backdoored data to update the model for each epoch.
More concretely, the adversary trains the model as mentioned
in Section II-B with the following two differences.

• First, instead of using a fixed trigger for all inputs, each
time the adversary wants to add a trigger to an input,
she samples a new trigger from a uniform distribution,
i.e., t ∼ U(0, 1). Here, the set of possible triggers T
contains the full range of all possible values for the
triggers, since the trigger is randomly sampled from a
uniform distribution.

• Second, instead of placing the trigger in a fixed location,
she places it at a random location κ, sampled from the
predefined set of locations, i.e., κ ∈ K.

Finally, this technique is not only limited to uniform dis-
tribution, but the adversary can use different distributions like
the Gaussian distribution to construct the triggers

Multiple Target Labels: Next, we consider the more complex
case of having multiple target labels. Without loss of gener-
ality, we consider implementing a backdoor for each label in
the dataset since this is the most challenging setting. However,
our techniques can be applied for any smaller subset of labels.
This means that for any label `i ∈ L, there exists a trigger t

which when added to the input x at a location κ, will make
the model Mbd output `i. More formally,

∀`i ∈ L ∃ t, κ :Mbd(A(x, t, κ)) = `i

To achieve the dynamic backdoor behaviour in this setting,
each target label should have a set of possible triggers and a
set of possible locations. More formally,

∀`i ∈ L ∃ Ti,Ki

where Ti is the set of possible triggers and Ki is the set of
possible locations for the target label `i.

We generalize the Random Backdoor technique by dividing
the set of possible locations K into disjoint subsets for each
target label, while keeping the trigger construction method the
same as in the single target label case, i.e., the triggers are
still sampled from a uniform distribution. For instance, for the
target label `i, we sample a set of possible locations Ki, where
Ki is subset of K (Ki ⊂ K).

The adversary can construct the disjoint sets of possible
locations as follows:

1) First, the adversary selects all possible triggers locations
and constructs the set K.

2) Second, for each target label `i, she constructs the set
of possible locations for this label Ki by sampling the
set K. Then, she removes the sampled locations from
the set K.

We propose the following simple algorithm to assign the
locations for the different target labels. However, an adver-
sary can construct the location sets arbitrarily with the only
restriction that no location can be used for more than one
target label.

We uniformly split the image into non-intersecting regions,
and assign a region for each target label, in which the triggers’
locations can move vertically. Figure 2 shows an example of
our location setting technique for a use case with 6 target
labels. As the figure shows, each target label has its own
region, for example, label 1 occupies the top left region of the
image. We stress that this is one way of dividing the location
set K to the different target labels. However, an adversary can
choose a different way of splitting the locations inside K to
the different target labels. The only requirement the adversary
has to fulfill is to avoid assigning a location for different target
labels. Later, we will show how to overcome this limitation
with our more advanced c-BaN technique.

B. Backdoor Generating Network (BaN)

Next, we introduce our second technique to implement dy-
namic backdoors, namely, the Backdoor Generating Network
(BaN). BaN is the first approach to algorithmically generate
backdoor triggers, instead of using fixed triggers or sampling
triggers from a uniform distribution (as in Section III-A).

BaN is inspired by the state-of-the-art generative model –
Generative Adversarial Networks (GANs) [11]. However, it
is different from the original GANs in the following aspects.
First, instead of generating images, our BaN generator gen-
erates backdoor triggers. Second, we jointly train the BaN

4

BaN

Uniform Distribution

𝘵i

𝓍

𝓍bd 9

(a) BaN

c-BaN

Uniform Distribution

𝘵i

𝓍

𝓍bd 9

[0,0,0,0,0,0,0,0,1](9)

(b) c-BaN

Fig. 3: An overview of the BaN and c-BaN techniques. The main difference between both techniques is the additional input
(the label) in the c-BaN. For the BaN, on the input of a random vector z, it outputs the trigger ti. This trigger is then added
to the input image using the backdoor adding function A. Finally, the backdoored image is inputted to the backdoored model
Mbd, which outputs the target label 9. For the c-BaN, first the target label (9) together with a random vector z are input to
the c-BaN, which outputs the trigger ti The following steps are exactly the same as for the BaN.

generator with the target model instead of the discriminator,
to learn (the generator) and implement (the target model) the
best patterns for the backdoor triggers.

After training, the BaN can generate a trigger (t) for each
noise vector (z ∼ U(0, 1)). This trigger is then added to
an input using the backdoor adding function A, to create
the backdoored input as shown in Figure 3a. Similar to the
previous approach (Random Backdoor), the generated triggers
are placed at random locations.

In this section, we first introduce the BaN technique for a
single target label, then we generalize it for multiple target
labels.

Single Target Label: We start with presenting how to imple-
ment a dynamic backdoor for a single target label, using our
BaN technique. First, the adversary creates the set K of the
possible locations. She then jointly trains the BaN with the
backdoored Mbd model as follows:

1) The adversary starts each training epoch by querying
the clean data to the backdoored modelMbd. Then, she
calculates the clean loss ϕc between the ground truth
and the output labels. We use the cross-entropy loss for
our clean loss, which is defined as follows:∑

i

yi log(ŷi)

where yi is the true probability of label `i and ŷi is our
predicted probability of label `i.

2) She then generates n noise vectors, where n is the batch
size.

3) On the input of the n noise vectors, the BaN generates
n triggers.

4) The adversary then creates the backdoored data by
adding the generated triggers to the clean data using
the backdoor adding function A.

5) She then queries the backdoored data to the backdoored
modelMbd and calculates the backdoor loss ϕbd on the
model’s output and the target label. Similar to the clean
loss, we use the cross-entropy loss as our loss function
for ϕbd.

6) Finally, the adversary updates the backdoor modelMbd

using both the clean and backdoor losses (ϕc+ϕbd) and
updates the BaN with the backdoor loss (ϕbd).

One of the main advantages of the BaN technique is its
flexibility. Meaning that it allows the adversary to customize
her triggers by plugging any customized loss to it. In other
words, BaN is a framework for a more generalized class of
backdoors that allows the adversary to customize the desired
trigger by adapting the loss function.

Multiple Target Labels: We now consider the more complex
case of building a dynamic backdoor for multiple target labels
using our BaN technique. To recap, our BaN generates general
triggers and not label specific triggers. In other words, the
same trigger pattern can be used to trigger multiple target
labels. Thus similar to the Random Backdoor, we depend on
the location of the triggers to determine the output label.

We follow the same approach of the Random Backdoor
technique to assign different locations for different target
labels (Section III-A), to generalize the BaN technique. More
concretely, the adversary implements the dynamic backdoor
for multiple target labels using the BaN technique as follows:

1) The adversary starts by creating disjoint sets of locations
for all target labels.

2) Next she follows the same steps as in training the
backdoor for a single target label, while repeating from
step 2 to 5 for each target label and adding all their
backdoor losses together. More formally, for the multiple
target label case the backdoor loss is defined as:

|L′|∑
i

ϕbdi

where L′ is the set of target labels, and ϕbdi is the
backdoor loss for target label `i.

C. conditional Backdoor Generating Network (c-BaN)

So far, we have proposed two techniques to implement dy-
namic backdoors for both single and multiple target labels, i.e,

5

Fig. 4: An illustration of the structure of the c-BaN. The target
label `i and noise vector z are first input to separate layers.
Then the outputs of these two layers are concatenated and
applied to multiple fully connected layers to generate the target
specific trigger ti.

Random Backdoor (Section III-A) and BaN (Section III-B).
To recap, both techniques have the limitation of not having
label specific triggers and only depending on the trigger
location to determine the target label. We now introduce our
third and most advanced technique, the conditional Backdoor
Generating Network (c-BaN), which overcomes this limitation.
More concretely, with the c-BaN technique any location κ
inside the location set K can be used to trigger any target label.
To achieve this location independency, the triggers need to be
label specific. Therefore, we convert the Backdoor Generating
Network (BaN) into a conditional Backdoor Generating Net-
work (c-BaN). More specifically, we add the target label as
an additional input to the BaN for conditioning it to generate
target specific triggers.

We construct the c-BaN by adding an additional input layer
to the BaN, to include the target label as an input. Figure 4
represents an illustration for the structure of c-BaN. As the
figure shows, the two input layers take the noise vector and
the target label and encode them to latent vectors with the
same size (to give equal weights for both inputs). These two
latent vectors are then concatenated and used as an input to
the next layer. It is important to mention that we use one-hot
encoding to encode the target label before applying it to the
c-BaN.

The c-BaN is trained similarly to the BaN, with the follow-
ing two exceptions.

1) First, the adversary does not have to create disjoint sets
of locations for all target labels (step 1), she can use the
complete location set K for all target labels.

2) Second, instead of using only the noise vectors as an

input to the BaN, the adversary one-hot encodes the
target label, then use it together with the noise vectors
as the input to the c-BaN.

To use the c-BaN, the adversary first samples a noise vector
and one-hot encodes the label. Then she inputs both of them
to the c-BaN, which generates a trigger. The adversary uses
the backdoor adding function A to add the trigger to the
target input. Finally, she queries the backdoored input to the
backdoored model, which will output the target label. We
visualize the complete pipeline of using the c-BaN technique
in Figure 3b.

In this section, we have introduced three techniques for
implementing dynamic backdoors, namely, the Random Back-
door, the Backdoor Generating Network (BaN), and the con-
ditional Backdoor Generating Network (c-BaN). These three
dynamic backdoor techniques present a framework to generate
dynamic backdoors for different settings. For instance, our
framework can generate target specific triggers’ pattern using
the c-BaN, or target specific triggers’ location like the Random
Backdoor and BaN. More interestingly, our framework allows
the adversary to customize her backdoor by adapting the
backdoor loss functions. For instance, the adversary can adapt
to different defenses against the backdoor attack that can be
modeled as a machine learning model. This can be achieved by
adding any defense as a discriminator into the training of the
BaN or c-BaN. Adding this discriminator will penalize/guide
the backdoored model to bypass the modeled defense.

IV. EVALUATION

In this section, we first introduce our datasets and experi-
mental settings. Next, we evaluate all of our three techniques,
i.e., Random Backdoor, Backdoor Generating Network (BaN),
and conditional Backdoor Generating Network (c-BaN). We
then evaluate our three dynamic backdoor techniques against
the current state-of-the-art techniques, Finally, we study the
effect of different hyperparameters on our techniques.

A. Datasets Description

We utilize three image datasets to evaluate our tech-
niques, including MNIST, CelebA, and CIFAR-10. These three
datasets are widely used as benchmark datasets for various
security/privacy and computer vision tasks. We briefly describe
each of them below.

MNIST: The MNIST dataset [2] is a 10-class dataset consist-
ing of 70, 000 grey-scale 28×28 images. Each of these images
contains a handwritten digit in its center. The MNIST dataset
is a balanced dataset, i.e, each class is represented with 7, 000
images.

CIFAR-10: The CIFAR-10 dataset [3] is composed of 60, 000
32 × 32 colored images which are equally distributed on the
following 10 classes: Airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck.

6

CelebA: The CelebA dataset [23] is a large-scale face at-
tributes dataset with more than 200K colored celebrity im-
ages, each annotated with 40 binary attributes. We select the
top three most balanced attributes including Heavy Makeup,
Mouth Slightly Open, and Smiling. Then we concatenate them
into 8 classes to create a multiple label classification task.
For our experiments, we scale the images to 64 × 64 and
randomly sample 10, 000 images for training, and another
10, 000 for testing. Finally, it is important to mention that
unlike the MNIST and CIFAR-10 datasets, this dataset is
highly imbalanced.

B. Experimental Setup

First, we introduce the different models’ architecture for
our target models, BaN, and c-BaN. Then, we introduce our
evaluation metrics.

Models Architecture: For the target models’ architecture, we
use the VGG-19 [40] for the CIFAR-10 dataset, and build our
own convolution neural networks (CNN) for the CelebA and
MNIST datasets. More concretely, we use 3 convolution layers
and 5 fully connected layers for the CelebA CNN. And 2
convolution layers and 2 fully connected layers for the MNIST
CNN. Moreover, we use dropout for both the CelebA and
MNIST models to avoid overfitting.

For BaN, we use the following architecture:
Backdoor Generating Network (BaN)’s architecture:

z → FullyConnected(64)

FullyConnected(128)

FullyConnected(128)

FullyConnected(|t|)

Sigmoid→ t

Here, FullyConnected(x) denotes a fully connected layer
with x hidden units, |t| denotes the size of the required trigger,
and Sigmoid is the Sigmoid function. We adopt ReLU as the
activation function for all layers, and apply dropout after all
layers except the first and last ones.

For c-BaN, we use the following architecture:
conditional Backdoor Generating Network (c-BaN)’s archi-
tecture:

z, `→ 2× FullyConnected(64)

FullyConnected(128)

FullyConnected(128)

FullyConnected(128)

FullyConnected(|t|)

Sigmoid→ t

The first layer consists of two separate fully connected layers,
where each one of them takes an independent input, i.e., the
first takes the noise vector z and the second takes the target
label `. The outputs of these two layers are then concatenated
and used as an input to the next layer (see Section III-C).

CIFAR-10 CelebA MNIST60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y

Clean Model
BaN
Random Backdoor

Fig. 5: [Higher is better] The result of our dynamic backdoor
techniques for a single target label. We only show the accuracy
of the models on the clean testing datasets, as the backdoor
success rate is approximately always 100%.

Similar to BaN, we adopt ReLU as the activation function for
all layers and apply dropout after all layers except the first
and last one.

All of our experiments are implemented using Pytorch [4]
and our code will be published for reproducibility purposes.

Evaluation Metrics: We define the following two metrics
to evaluate the performance of our backdoored models. The
first one is the backdoor success rate, which is measured by
calculating the backdoored model’s accuracy on backdoored
data. The second one is model utility, which is used to
measure the original functionality of the backdoored model.
We quantify the model utility by comparing the accuracy of
the backdoored model with the accuracy of a clean model on
clean data. Closer accuracies implies a better model utility.

C. Random Backdoor

We now evaluate the performance of our first dynamic
backdooring technique, namely, the Random Backdoor. We
use all three datasets for the evaluation. First, we evaluate the
single target label case, where we only implement a backdoor
for a single target label, in the backdoored model Mbd. Then
we evaluate the more generalized case, i.e., the multiple target
labels case, where we implement a backdoor for all possible
labels in the dataset.

For both the single and multiple target label cases, we split
each dataset into training and testing datasets. The training
dataset is used to train the MNIST and CelebA models from
scratch. For CIFAR-10, we use a pre-trained VGG-19 model.
We refer to the testing dataset as the clean testing dataset, and
we first use it to construct a backdoored testing dataset by
adding triggers to all of its images. To recap, for the Random
Backdoor technique, we construct the triggers by sampling
them from uniform distribution, and add them to the images
using the backdoor adding function A. We use the backdoored
testing dataset to calculate the backdoor success rate, and the
training dataset to train a clean model -for each dataset- to
evaluate the backdoored model’s (Mbd) utility.

7

(a) Random Backdoor

(b) BaN

(c) BaN with higher randomness

Fig. 6: The result of our Random Backdoor (Figure 6a), BaN
(Figure 6b), and BaN with higher randomness (Figure 6c)
techniques for a single target label (0).

We follow Section III-A to train our backdoored modelMbd

for both the single and multiple target labels cases. Abstractly,
for each epoch, we update the backdoored model Mbd using
both the clean and backdoor losses ϕc + ϕbd. For the set of
possible locations K, we use four possible locations.

The backdoor success rate is always 100% for both the
single and multiple target labels cases on all three datasets,
hence, we only focus on the backdoored model’s (Mbd) utility.

Single Target Label: We first present our results for the single
target label case. Figure 5 compares the accuracies of the
backdoored modelMbd and the clean modelM -on the clean
testing dataset-. As the figure shows, our backdoored models
achieve the same performance as the clean models for both
the MNIST and CelebA datasets, i.e., 99% for MNIST and
70% for CelebA. For the CIFAR-10 dataset, there is a slight
drop in performance, which is less than 2%. This shows that
our Random Backdoor technique can implement a perfectly
functioning backdoor, i.e., the backdoor success rate of Mbd

is 100% on the backdoored testing dataset, with a negligible
utility loss.

To visualize the output of our Random Backdoor technique,
we first randomly sample 8 images from the MNIST dataset,
and then use the Random Backdoor technique to construct
triggers for them. Finally, we add these triggers to the images
using the backdoor adding function A, and show the result
in Figure 6a. As the figure shows, the triggers all look
distinctly different and are located at different locations as
expected.

Multiple Target Labels: Second, we present our results
for the multiple target label case. To recap, we consider all
possible labels for this case. For instance, for the MNIST
dataset, we consider all digits from 0 to 9 as our target labels.
We train our Random Backdoor models for the multiple target
labels as mentioned in Section III-A.

We use a similar evaluation setting to the single target
label case, with the following exception. To evaluate the

CIFAR-10 CelebA MNIST60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y

Clean Model
c-BaN
BaN
Random Backdoor

Fig. 7: [Higher is better] The result of our dynamic backdoor
techniques for multiple target label. Similar to the single
target label case, we only show the accuracy of the models
on the clean testing dataset as the backdoor success rate is
approximately always 100%.

performance of the backdoored model Mbd with multiple
target labels, we construct a backdoored testing dataset for
each target label by generating and adding triggers to the clean
testing dataset. In other words, we use all images in the testing
dataset to evaluate all possible labels.

Similar to the single target label case, we focus on the
accuracy on the clean testing dataset, since the backdoor
success rate for all models on the backdoored testing datasets
are approximately 100% for all target labels.

We use the clean testing datasets to evaluate the backdoored
model’s Mbd utility, i.e., we compare the performance of the
backdoored modelMbd with the clean modelM in Figure 7.
As the figure shows, using our Random Backdoor technique,
we are able to train backdoored models that achieve similar
performance as the clean models for all datasets. For instance,
for the CIFAR-10 dataset, our Random Backdoor technique
achieves 92% accuracy, which is very similar to the accuracy
of the clean model (92.4%). For the CelebA dataset, the
Random Backdoor technique achieves a slightly (about 2%)
better performance than the clean model. We believe this is due
to the regularization effect of the Random Backdoor technique.
Finally, for the MNIST dataset, both models achieve a similar
performance with just 1% difference between the clean model
(99%) and the backdoored one (98%).

To visualize the output of our Random Backdoor technique
on multiple target labels, we construct triggers for all possible
labels in the CIFAR-10 dataset, and use A to add them to
a randomly sampled image from the CIFAR-10 clean testing
dataset. Figure 8a shows the image with different triggers. The
different patterns and locations used for the different target
labels can be clearly demonstrated in Figure 8a. For instance,
comparing the location of the trigger for the first and sixth
images, the triggers are in the same horizontal position but a
different vertical position, as previously illustrated in Figure 2.

Moreover, we further visualize in Figure 9a the dynamic
behavior of the triggers generated by our Random Backdoor
technique. Without loss of generality, we generate triggers for

8

the target label 5 (plane) and add them to randomly sampled
CIFAR-10 images. To make it clear, we train the backdoor
model Mbd for all possible labels set as target labels, but we
visualize the triggers for a single label to show the dynamic
behaviour of our Random Backdoor technique with respect
to the triggers’ pattern and locations. As Figure 9a shows,
the generated triggers have different patterns and locations for
the same target label, which achieves our desired dynamic
behavior.

D. Backdoor Generating Network (BaN)

Next, we evaluate our BaN technique. We follow the same
evaluation settings for the Random Backdoor technique, except
with respect to how the triggers are generated. We train our
BaN model and generate the triggers as mentioned in Sec-
tion III-B.

Single Target Label: Similar to the Random Backdoor, the
BaN technique achieves perfect backdoor success rate with a
negligible utility loss. Figure 5 compares the performance of
the backdoored models trained using the BaN technique, with
the clean models on the clean testing dataset. As Figure 5
shows, our BaN trained backdoored models achieve 99%,
92.4% and 70% accuracy on the MNIST, CIFAR-10, and
CelebA datasets, respectively, which is the same performance
of the clean models.

We visualize the BaN generated triggers using the MNIST
dataset in Figure 6b. To construct the figure, we use the BaN
to generate multiple triggers -for the target label 0-, then we
add them on a set of randomly sampled MNIST images using
the backdoor adding function A.

The generated triggers look very similar as shown in Fig-
ure 6b. This behaviour is expected as the MNIST dataset is
simple, and the BaN technique does not have any explicit
loss to enforce the network to generate different triggers.
However, to show the flexibility of our approach, we increase
the randomness of the BaN network by simply adding one
more dropout layer after the last layer, to avoid the overfitting
of the BaN model to a unique pattern. We show the results
of the BaN model with higher randomness in Figure 6c. The
resulting model still achieves the same performance, i.e., 99%
accuracy on the clean data and 100% backdoor success rate,
but as the figure shows the triggers look significantly different.
This again shows that our framework can easily adapt to the
requirements of an adversary.

These results together with the results of the Random
Backdoor (Section IV-C) clearly show the effectiveness of both
of our proposed techniques, for the single target label case.
They are both able to achieve almost the same accuracy of
a clean model, with a 100% working backdoor, for a single
target label.

Multiple Target Labels: Similar to the single target label
case, we focus on the backdoored models’ performance on the
testing clean dataset, as our BaN backdoored models achieve
a perfect accuracy on the backdoored testing dataset, i.e., the

backdoor success rate for all datasets is approximately 100%
for all target labels.

We compare the performance of the BaN backdoored mod-
els with the performance of the clean models on the clean
testing dataset in Figure 7. Our BaN backdoored models are
able to achieve almost the same accuracy as the clean model
for all datasets, as can be shown in Figure 7. For instance,
for the CIFAR-10 dataset, our BaN achieves 92.1% accuracy,
which is only 0.3% less than the performance of the clean
model (92.4%). Similar to the Random Backdoor backdoored
models, our BaN backdoored models achieve a marginally
better performance for the CelebA dataset. More concretely,
our BaN backdoored models trained for the CelebA dataset
achieve about 2% better performance than the clean model, on
the clean testing dataset. We also believe this improvement is
due to the regularization effect of the BaN technique. Finally,
for the MNIST dataset, our BaN backdoored models achieve
strong performance on the clean testing dataset (98%), which
is just 1% lower than the performance of the clean models
(99%).

Similar to the Random Backdoor, we visualize the results
of the BaN backdoored models with two figures. The first
(Figure 8b) shows the different triggers for the different
target labels on the same CIFAR-10 image, and the second
(Figure 9b) shows the different triggers for the same target
label (plane) on randomly sampled CIFAR-10 images. As both
figures show, the BaN generated triggers achieves the dynamic
behaviour in both the location and patterns. For instance, for
the same target label (Figure 9b), the patterns of the triggers
look significantly different and the locations vary vertically.
Similarly, for different target labels (Figure 8b), both the
pattern and location of triggers are significantly different.

E. conditional Backdoor Generating Network (c-BaN)

Next, we evaluate our conditional Backdoor Generating
Network (c-BaN) technique. For the c-BaN technique, we only
consider the multiple target labels case, since there is only a
single label so the conditional addition to the BaN technique
is not needed. In other words, for the single target label case,
the c-BaN technique will be the same as the BaN technique.

We follow a similar setup as introduced for the BaN
technique in Section IV-D, with the exception on how to
train the backdoored model Mbd and generate the triggers.
We follow Section III-C to train the backdoored model and
generate the triggers. For the set of possible locations K, we
use four possible locations.

We compare the performance of the c-BaN with the other
two techniques in addition to the clean model. All of our three
dynamic backdoor techniques achieve an almost perfect back-
door success rate on the backdoored testing datasets, hence
similar to the previous sections, we focus on the performance
on the clean testing datasets.

Figure 7 compares the accuracy of the backdoored and
clean models using the clean testing dataset, for all of our
three dynamic backdoor techniques. As the figure shows, all
of our dynamic backdoored models have similar performance

9

(a) Random Backdoor

(b) BaN

(c) c-BaN

Fig. 8: The visualization result of our Random Backdoor (Figure 8a), BaN (Figure 8b), and c-BaN (Figure 8c) techniques for
all labels of the CIFAR-10 dataset.

as the clean models. For instance, for the CIFAR-10 dataset,
our c-BaN, BaN and Random Backdoor achieves 92%, 92.1%
and 92% accuracy, respectively, which is very similar to the
accuracy of the clean model (92.4%). Also for the MNIST
dataset, all models achieve very similar performance with no
difference between the clean and c-BaN models (99%) and 1%
difference between the BaN and Random Backdoor (98%), and
the clean model.

Similar to the previous two techniques, we visualize the
dynamic behaviour of the c-BaN backdoored models, first,
by generating triggers for all possible labels and adding
them on a CIFAR-10 image in Figure 8c. More generally,
Figure 8 shows the visualization of all three dynamic backdoor
techniques in the same settings, i.e., backdooring a single
image to all possible labels. As the figure shows, the Random
Backdoor Figure 8a has the most random patterns, which is
expected as they are sampled from a uniform distribution. The
figure also shows the different triggers’ patterns and locations
used for the different techniques. For instance, each target label
in the Random Backdoor (Figure 8a) and BaN (Figure 8b)
techniques have a unique (horizontal) location, unlike the c-
BaN (Figure 8c) generated triggers, which different target
labels can share the same locations, as can be shown for
example in the first, second, and ninth images. To recap, both
the Random Backdoor and BaN techniques split the location
set K on all target labels, such that no two labels share a
location, unlike the c-BaN technique which does not have this
limitation.

Second, we visualize the dynamic behaviour of our tech-
niques, by generating triggers for the same target label 5
(plane) and adding them to a set of randomly sampled CIFAR-
10 images. Figure 9 compares the visualization of our three
different dynamic backdoor techniques in this setting. To make
it clear, we train the backdoor model Mbd for all possible

labels set as target labels, but we plot for a single label
to visualize how different the triggers look like for each
target label. As the figure shows, the Random Backdoor (Fig-
ure 9a) and BaN (Figure 9b) generated triggers can move
vertically, however, they have a fixed position horizontally
as mentioned in Section III-A and illustrated in Figure 2.
The c-BaN (Figure 9c) triggers also show different locations.
However, the locations of these triggers are more distant and
can be shared for different target labels, unlike the other two
techniques. Finally, the figure also shows that all triggers have
different patterns for our techniques for the same target label,
which achieves our targeted dynamic behavior concerning the
patterns and locations of the triggers.

F. Evaluating Against Current State-Of-The-Art Defenses

We now evaluate our attacks against the current state-of-the-
art backdoor defenses. Backdoor defenses can be classified
into the following two categories, data-based defenses and
model-based defenses. On one hand, data-based defenses focus
on identifying if a given input is clean or contains a trigger.
On the other hand, model-based defenses focus on identifying
if a given model is clean or backdoored.

We first evaluate our attacks against model-based defenses,
then we evaluate them against data-based ones.

Model-based Defense: We evaluate all of our dynamic back-
door techniques in the multiple target label case against two
of the current state-of-the-art model-based defenses, namely,
Neural Cleanse [47] and ABS [21].

We start by evaluating the ABS defense. We use the CIFAR-
10 dataset to evaluate this defense, since it is the only sup-
ported dataset by the published defense model. As expected,
running the ABS model against our dynamic backdoored ones
does not result in detecting any backdoor for all of our models.

10

(a) Random Backdoor

(b) BaN

(c) c-BaN

Fig. 9: The result of our Random Backdoor (Figure 9a), BaN
(Figure 9b), and c-BaN (Figure 9c) techniques for the target
target label 5 (plane).

For Neural Cleanse, we use all three datasets to evaluate
our techniques against it. Similar to ABS, all of our models
are predicted to be clean models. Moreover, in multiple cases,
our models had a lower anomaly index (the lower the better)
than the clean model.

We believe that both of these defenses fail to detect our
backdoors for two reasons. First, we break one of their main
assumption, i.e., that the triggers are static in terms of location
and pattern. Second, we implement a backdoor for all possible
labels, which makes the detection a more challenging task.

Data-based Defense: Next, we evaluate the current state-of-
the-art data-based defense, namely, STRIP [10]. STRIP tries
to identify if a given input is clean or contains a trigger. It
works by creating multiple images from the input image by
fusing it with multiple clean images one at a time. Then STRIP
applies all fused images to the target model and calculates the
entropy of predicted labels. Backdoored inputs tend to have
lower entropy compared to the clean ones.

We use all of our three datasets to evaluate the c-BaN
models against this defense. First, we scale the patterns by
half while training the backdoored models, to make them
more susceptible to changes. Second, for the MNIST dataset,
we move the possible locations to the middle of the image
to overlap with the image content, since the value of the
MNIST images at the corners are always 0. All trained scaled
backdoored models achieve similar performance to the non-
scaled backdoored models.

Our backdoored models successfully flatten the distribution
of entropy for the backdoored data, for a subset of target
labels. In other words, the distribution of entropy for our
backdoored data overlaps with the distributions of entropy of
the clean data. This subset of target labels makes picking a

0.2
5
0.5

0
0.7

5
1.0

0
1.2

5
1.5

0
1.7

5
2.0

0
2.2

50.0

0.5

1.0

1.5

2.0

2.5
Clean
BD

(a) CIFAR-10

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0 Clean
BD

(b) MNIST
0.2

5
0.5

0
0.7

5
1.0

0
1.2

5
1.5

0
1.7

5
2.0

00.0

0.5

1.0

1.5

2.0 Clean
BD

(c) CelebA

Fig. 10: The histogram of the entropy of the backdoored vs
clean input, for our best performing labels against the STRIP
defense, for the CIFAR-10 (Figure 10a), MNIST (Figure 10b),
and CelebA (Figure 10c) datasets.

threshold to identify backdoored from clean data impossible
without increasing the false positive rate, i.e., various clean
images will be detected as backdoored ones. We visualize
the entropy of our best performing labels against the STRIP
defense in Figure 10.

Moreover, since our dynamic backdoors can generate dy-
namic triggers for the same input and target label. The adver-
sary can keep querying the target model while backdooring the
input with a fresh generated trigger until the model accepts it.

These results against the data and model-based defenses
show the effectiveness of our dynamic backdoor attacks, and
opens the door for designing backdoor detection systems that
work against both static and dynamic backdoors, which we
plan for future work.

G. Evaluating Different Hyperparameters
We now evaluate the effect of different hyperparameters for

our dynamic backdooring techniques. We start by evaluating
the percentage of the backdoored data needed to implement
a dynamic backdoor into the model. Then, we evaluate the
effect of increasing the size of the location set K. Finally, we
evaluate the size of the trigger and the possibility of making it
more transparent, i.e., instead of replacing the original values
in the input with the backdoor, we fuse them.

Proportion of the Backdoored Data: We start by evaluating
the percentage of backdoored data needed to implement a
dynamic backdoor in the model. We use the MNIST dataset
and the c-BaN technique to perform the evaluation. First, we
construct different training datasets with different percentages
of backdoored data. More concretely, we try all proportions
from 10% to 50%, with a step of 10. 10% means that 10%
of the data is backdoored, and 90% is clean. Our results show
that using 30% is already enough to get a perfectly working
dynamic backdoor, i.e., the model has a similar performance
like a clean model on the clean dataset (99% accuracy), and
100% backdoor success rate on the backdoored dataset. For
any percentage below 30%, the accuracy of the model on
clean data is still the same, however, the performance on the
backdoored dataset starts degrading.

Number of Locations: Second, we explore the effect of
increasing the size of the set of possible locations (K) for

11

Fig. 11: An illustration of the effect of using different trans-
parency scales (from 0 to 1 with step of 0.25) when adding the
trigger. Scale 0 (the most left image) shows the original input,
and scale 1 (the most right image) the original backdoored
input without any transparency.

the c-BaN technique. We use the CIFAR-10 dataset to train
a backdoored model using the c-BaN technique, but with
more than double the size of K, i.e., 8 locations. The trained
model achieves similar performance on the clean (92%) and
backdoored (100%) datasets. We then doubled the size again to
have 16 possible locations in K, and the model again achieves
the same results on both clean and backdoored datasets. We
repeat the experiment with the CelebA datasets and achieve
similar results, i.e., the performance of the model with a larger
set of possible locations is similar to the previously reported
one. However, when we try to completely remove the location
set K and consider all possible locations with a sliding win-
dow, the performance on both clean and backdoored datasets
significantly dropped.

Trigger Size: Next, we evaluate the effect of the trigger size
on our c-BaN technique using the MNIST dataset. We train
different models with the c-BaN technique, while setting the
trigger size from 1 to 6. We define the trigger size to be the
width and height of the trigger. For instance, a trigger size of
3 means that the trigger is 3× 3 pixels.

We calculate the accuracy on the clean and backdoored
testing datasets for each trigger size, and show our results
in Figure 12. Our results show that the smaller the trigger, the
harder it is for the model to implement the backdoor behaviour.
Moreover, small triggers confuse the model, which results in
reducing the model’s utility. As Figure 12 shows, a trigger
with the size 5 achieves a perfect accuracy (100%) on the
backdoored testing dataset, while preserving the accuracy on
the clean testing dataset (99%).

Transparency of the Triggers: Finally, we evaluate the effect
of making the trigger more transparent. More specifically, we
change the backdoor adding function A to apply a weighted
sum, instead of replacing the original input’s values. Ab-
stractly, we define the weighted sum of the trigger and the
image as:

xbd = s · t+ (1− s) · x

where s is the scale controlling the transparency rate, x is
the input and t is the trigger. We implement this weighted
sum only at the location of the trigger, while maintaining the
remaining of the input unchanged.

We use the MNIST dataset and c-BaN technique to evaluate
the scale from 0 to 1 with a step of 0.25. Figure 11 visualizes

1 2 3 4 5 6
Trigger Size

20

40

60

80

100

A
cc

ur
ac

y

Clean Data
Backdoored Data

Fig. 12: [Higher is better] The result of trying different trigger
sizes for the c-BaN technique on the MNIST dataset. The
figure shows for each trigger size the accuracy on the clean
and backdoored testing datasets.

the effect of varying the scale when adding a trigger to an
input.

Our results show that our technique can achieve the same
performance on both the clean (99%) and backdoored (100%)
testing datasets, when setting the scale to 0.5 or higher.
However, when the scale is set below 0.5, the performance
starts degrading on the backdoored dataset but stays the same
on the clean dataset. We repeat the same experiments for the
CelebA dataset and find similar results.

V. RELATED WORKS

In this section, we discuss some of the related work. We start
with current state-of-the-art backdoor attacks. Then we discuss
the defenses against backdoor attacks, and finally mention
other attacks against machine learning models.

Backdoor Attacks: Gu et al. [12] introduce BadNets, the first
backdoor attack on machine learning models. BadNets uses the
MNIST dataset and a square-like trigger with a fixed location,
to show the applicability of the backdoor attacks in the
machine learning settings. Liu et al. [22] later propose a more
advanced backdooring technique, namely the Trojan attack.
They simplify the threat model of BadNets by eliminating the
need for Trojan attack to access the training data. The Trojan
attack reverse-engineers the target model to synthesize training
data. Next, it generates the trigger in a way that maximizes
the activation functions of the target model’s internal neurons
related to the target label. In other words, the Trojan attack
reverse-engineers a trigger and training data to retrain/update
the model and implement the backdoor.

The main difference between these two attacks (BadNets
and Trojan attacks) and our work is that both attacks only
consider static backdoors in terms of triggers’ pattern and
location. Our work extends the backdoor attacks to consider
dynamic patterns and locations of the triggers.

Defenses Against Backdoor Attacks: Defenses against back-
door attacks can be classified into model-based defenses and
data-based defenses.

12

First, model-based defenses try to find if a given model con-
tains a backdoor or not. For instance, Wang et al. [47] propose
Neural Cleanse (NC), a backdoor defense method based on
reverse engineering. For each output label, NC tries to generate
the smallest trigger, which converts the output of all inputs
applied with this trigger to that label. NC then uses anomaly
detection to find if any of the generated triggers are actually a
backdoor or not. Later, Liu et al. [21] propose another model-
based defense, namely, ABS. ABS detects if a target model
contains a backdoor or not, by analyzing the behaviour of the
target model’s inner neurons when introducing different levels
of stimulation.

Second, data-based defenses try to find if a given input is
clean or backdoored. For instance, Gao et al. [10] propose
STRIP, a backdoor defense method based on manipulating the
input, to find out if it is backdoored or not. More concretely,
STRIP fuses the input with multiple clean data, one at a time.
Then it queries the target model with the generated inputs, and
calculate the entropy of the output labels. Backdoored inputs
tend to have lower entropy than the clean ones.

Attacks Against Machine Learning: Poisoning attack [17],
[42], [5] is another training time attack, in which the adversary
manipulates the training data to compromise the target model.
For instance, the adversary can change the ground truth for a
subset of the training data to manipulate the decision boundary,
or more generally influence the model’s behavior. Shafahi et
al. [38] further introduce the clean label poisoning attack.
Instead of changing labels, the clean label poisoning attack
allows the adversary to modify the training data itself to
manipulate the behaviour of the target model.

Another class of ML attacks is the adversarial examples.
Adversarial examples share some similarities with the back-
door attacks. In this setting, the adversary aims to trick a
target classifier into miss classifying a data point by adding
controlled noise to it. Multiple works have explored the privacy
and security risks of adversarial examples [32], [45], [6], [20],
[43], [33], [48]. Other works explore the adversarial exam-
ple’s potentials in preserving the user’s privacy in multiple
domains [30], [18], [51], [19]. The main difference between
adversarial examples and backdoor attacks is that backdoor
attacks are done in training time, while adversarial examples
are done after the model is trained and without changing any
of the model’s parameters.

Beside the above, there are multiple other types of at-
tacks against machine learning models, such as membership
inference [39], [16], [13], [34], [35], [24], [14], [25], [50],
[27], [41], [37], [28], model stealing [44], [31], [46], model
inversion [8], [7], [15], propoerty inference [9], [26], and
dataset reconstruction [36].

VI. CONCLUSION

The tremendous progress of machine learning has lead to
its adoption in multiple critical real-world applications, such
as authentication and autonomous driving systems. However,
it has been shown that ML models are vulnerable to various

types of security and privacy attacks. In this paper, we focus on
backdoor attack where an adversary manipulates the training
of the model to intentionally misclassify any input with an
added trigger.

Current backdoor attacks only consider static triggers in
terms of patterns and locations. In this work, we propose the
first set of dynamic backdoor attack, where the trigger can
have multiple patterns and locations. To this end, we propose
three different techniques.

Our first technique Random Backdoor samples triggers from
a uniform distribution and place them at a random location of
an input. For the second technique, i.e., Backdoor Generating
Network (BaN), we propose a novel generative network to
construct triggers. Finally, we introduce conditional Backdoor
Generating Network (c-BaN) to generate label specific trig-
gers.

We evaluate our techniques using three benchmark datasets.
Evaluation shows that all our techniques can achieve almost
a perfect backdoor success rate while preserving the model’s
utility. Moreover, we show that our techniques successfully
bypass state-of-the-art defense mechanisms against backdoor
attacks.

REFERENCES

[1] https://www.apple.com/iphone/#face-id. 1
[2] http://yann.lecun.com/exdb/mnist/. 2, 6
[3] https://www.cs.toronto.edu/∼kriz/cifar.html. 2, 6
[4] https://pytorch.org/. 7
[5] B. Biggio, B. Nelson, and P. Laskov, “Poisoning Attacks against Support

Vector Machines,” in International Conference on Machine Learning
(ICML). JMLR, 2012. 1, 13

[6] N. Carlini and D. Wagner, “Towards Evaluating the Robustness of Neural
Networks,” in IEEE Symposium on Security and Privacy (S&P). IEEE,
2017, pp. 39–57. 13

[7] M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks that
Exploit Confidence Information and Basic Countermeasures,” in ACM
SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2015, pp. 1322–1333. 13

[8] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Pri-
vacy in Pharmacogenetics: An End-to-End Case Study of Personalized
Warfarin Dosing,” in USENIX Security Symposium (USENIX Security).
USENIX, 2014, pp. 17–32. 13

[9] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
Inference Attacks on Fully Connected Neural Networks using Per-
mutation Invariant Representations,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2018, pp. 619–
633. 13

[10] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“STRIP: A Defence Against Trojan Attacks on Deep Neural Networks,”
in Annual Computer Security Applications Conference (ACSAC). ACM,
2019, pp. 113–125. 2, 11, 13

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in
Annual Conference on Neural Information Processing Systems (NIPS).
NIPS, 2014. 4

[12] T. Gu, B. Dolan-Gavitt, and S. Grag, “Badnets: Identifying Vul-
nerabilities in the Machine Learning Model Supply Chain,” CoRR
abs/1708.06733, 2017. 1, 3, 12

[13] I. Hagestedt, Y. Zhang, M. Humbert, P. Berrang, H. Tang, X. Wang, and
M. Backes, “MBeacon: Privacy-Preserving Beacons for DNA Methy-
lation Data,” in Network and Distributed System Security Symposium
(NDSS). Internet Society, 2019. 13

[14] J. Hayes, L. Melis, G. Danezis, and E. D. Cristofaro, “LOGAN:
Evaluating Privacy Leakage of Generative Models Using Generative
Adversarial Networks,” Symposium on Privacy Enhancing Technologies
Symposium, 2019. 13

13

https://www.apple.com/iphone/##face-id
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/

[15] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep Models Under the
GAN: Information Leakage from Collaborative Deep Learning,” in ACM
SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2017, pp. 603–618. 13

[16] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig,
“Resolving Individuals Contributing Trace Amounts of DNA to Highly
Complex Mixtures Using High-Density SNP Genotyping Microarrays,”
PLOS Genetics, 2008. 13

[17] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating Machine Learning: Poisoning Attacks and Countermea-
sures for Regression Learning,” in IEEE Symposium on Security and
Privacy (S&P). IEEE, 2018. 1, 13

[18] J. Jia and N. Z. Gong, “AttriGuard: A Practical Defense Against At-
tribute Inference Attacks via Adversarial Machine Learning,” in USENIX
Security Symposium (USENIX Security). USENIX, 2018. 13

[19] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong, “MemGuard:
Defending against Black-Box Membership Inference Attacks via Ad-
versarial Examples,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2019, pp. 259–274. 13

[20] B. Li and Y. Vorobeychik, “Scalable Optimization of Randomized Oper-
ational Decisions in Adversarial Classification Settings,” in International
Conference on Artificial Intelligence and Statistics (AISTATS). PMLR,
2015, pp. 599–607. 13

[21] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “ABS:
Scanning Neural Networks for Back-Doors by Artificial Brain Stimula-
tion,” in ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 2019, pp. 1265–1282. 1, 2, 10, 13

[22] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning Attack on Neural Networks,” in Network and Distributed
System Security Symposium (NDSS). Internet Society, 2019. 1, 12

[23] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes
in the Wild,” in IEEE International Conference on Computer Vision
(ICCV). IEEE, 2015. 1, 2, 7

[24] Y. Long, V. Bindschaedler, and C. A. Gunter, “Towards Measuring
Membership Privacy,” CoRR abs/1712.09136, 2017. 13

[25] Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang, H. Tang, C. A.
Gunter, and K. Chen, “Understanding Membership Inferences on Well-
Generalized Learning Models,” CoRR abs/1802.04889, 2018. 13

[26] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Exploiting Unin-
tended Feature Leakage in Collaborative Learning,” in IEEE Symposium
on Security and Privacy (S&P). IEEE, 2019. 13

[27] M. Nasr, R. Shokri, and A. Houmansadr, “Machine Learning with
Membership Privacy using Adversarial Regularization,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM,
2018. 13

[28] ——, “Comprehensive Privacy Analysis of Deep Learning: Passive and
Active White-box Inference Attacks against Centralized and Federated
Learning,” in IEEE Symposium on Security and Privacy (S&P). IEEE,
2019. 13

[29] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “Towards Reverse-
Engineering Black-Box Neural Networks,” in International Conference
on Learning Representations (ICLR), 2018. 1

[30] S. J. Oh, M. Fritz, and B. Schiele, “Adversarial Image Perturbation for
Privacy Protection – A Game Theory Perspective,” in IEEE International
Conference on Computer Vision (ICCV). IEEE, 2017, pp. 1482–1491.
13

[31] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff Nets: Stealing Func-
tionality of Black-Box Models,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2019. 13

[32] N. Papernot, P. D. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical Black-Box Attacks Against Machine Learning,”
in ACM Asia Conference on Computer and Communications Security
(ASIACCS). ACM, 2017, pp. 506–519. 1, 13

[33] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The Limitations of Deep Learning in Adversarial Settings,”
in IEEE European Symposium on Security and Privacy (Euro S&P).
IEEE, 2016, pp. 372–387. 1, 13

[34] A. Pyrgelis, C. Troncoso, and E. D. Cristofaro, “Knock Knock, Who’s
There? Membership Inference on Aggregate Location Data,” in Network
and Distributed System Security Symposium (NDSS). Internet Society,
2018. 13

[35] ——, “Under the Hood of Membership Inference Attacks on Aggregate
Location Time-Series,” CoRR abs/1902.07456, 2019. 13

[36] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang,
“Updates-Leak: Data Set Inference and Reconstruction Attacks in On-
line Learning,” in USENIX Security Symposium (USENIX Security).
USENIX, 2020. 13

[37] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes,
“ML-Leaks: Model and Data Independent Membership Inference At-
tacks and Defenses on Machine Learning Models,” in Network and
Distributed System Security Symposium (NDSS). Internet Society, 2019.
1, 13

[38] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison Frogs! Targeted Clean-Label Poisoning At-
tacks on Neural Networks,” in Annual Conference on Neural Information
Processing Systems (NIPS). NIPS, 2018, pp. 6103–6113. 13

[39] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership Infer-
ence Attacks Against Machine Learning Models,” in IEEE Symposium
on Security and Privacy (S&P). IEEE, 2017, pp. 3–18. 1, 13

[40] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in International Conference on
Learning Representations (ICLR), 2015. 7

[41] C. Song and V. Shmatikov, “The Natural Auditor: How To Tell If Some-
one Used Your Words To Train Their Model,” CoRR abs/1811.00513,
2018. 13

[42] O. Suciu, R. Mărginean, Y. Kaya, H. D. III, and T. Dumitraş, “When
Does Machine Learning FAIL? Generalized Transferability for Evasion
and Poisoning Attacks,” CoRR abs/1803.06975, 2018. 1, 13

[43] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble Adversarial Training: Attacks and Defenses,”
in International Conference on Learning Representations (ICLR), 2017.
13

[44] F. Tramér, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
Machine Learning Models via Prediction APIs,” in USENIX Security
Symposium (USENIX Security). USENIX, 2016, pp. 601–618. 1, 13

[45] Y. Vorobeychik and B. Li, “Optimal Randomized Classification in Ad-
versarial Settings,” in International Conference on Autonomous Agents
and Multi-agent Systems (AAMAS), 2014, pp. 485–492. 13

[46] B. Wang and N. Z. Gong, “Stealing Hyperparameters in Machine
Learning,” in IEEE Symposium on Security and Privacy (S&P). IEEE,
2018. 1, 13

[47] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural Cleanse: Identifying and Mitigating Backdoor Attacks in
Neural Networks,” in IEEE Symposium on Security and Privacy (S&P).
IEEE, 2019, pp. 707–723. 1, 2, 10, 13

[48] W. Xu, D. Evans, and Y. Qi, “Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks,” in Network and Distributed System
Security Symposium (NDSS). Internet Society, 2018. 1, 13

[49] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent Backdoor Attacks on
Deep Neural Networks,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2019, pp. 2041–2055. 1

[50] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy Risk in
Machine Learning: Analyzing the Connection to Overfitting,” in IEEE
Computer Security Foundations Symposium (CSF). IEEE, 2018. 13

[51] Y. Zhang, M. Humbert, T. Rahman, C.-T. Li, J. Pang, and M. Backes,
“Tagvisor: A Privacy Advisor for Sharing Hashtags,” in The Web
Conference (WWW). ACM, 2018, pp. 287–296. 13

14

