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1 Geometry of Linear Functions

• A linear function in f : Rd → R has the form

f(x) = wTx.

The vector w is the weight vector.

• Consider the case d = 2. Then
y = f(x1, x2) = w1x1 + w2x2. (1)

The graph of this function is the set

{(x1, x2, f(x1, x2)} ⊆ R3,

which is a surface in three-dimensional space (just like the graph of a function of one variable is a line
in two-dimensional space). We visualize this as (x1, x2) defining the location on the horizontal plane
(e.g., the latitude and longitude on the map), and y = f(x1, x2) as defining the height.

• Fact: the graph of a linear function of two variables is a plane.

• One way to see this is by showing that the the contours are parallel lines. The contours are the sets
of input values with the same height:

{(x1, x2) : f(x1, x2) = b} ⊆ R2

They have the exact same meaning as contour lines on a topographic map — they are curves1 in input
space along which the height f(x1, x2) is constant.

• To see that the contours are lines, solve for the values of x1 and x2 such that f(x1, x2) = b:

w1x1 + w2x2 = b (2)
w2x2 = b− w1x1 (3)

x2 = −w1

w2
x1 +

b

w2
. (4)

Equation (4) defines a line in R2. Furthermore, the slope is −w1/w2, which does not depend on the
height b of the contour. This means that all the contours are parallel lines.

• If you think about a three dimensional surface with contours that are parallel lines, it’s not hard to
convince yourself the surface must be a plane.

1We assume that f is continuous.
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• Also note that the contour lines are perpendicular to the vector w. E.g., when b = 0, points on the
contour line have the form x = (x1,−w1

w2
x1)T . We can check that the inner product between w and x

is
wTx = w1x1 − w2

w1

w2
x1 = w1x1 − w1x1 = 0.

Visually, the fact that w is perpendicular to the contours reveals that w is the “steepest” direction.

• This reasoning all generalizes to higher dimensions, but for our purposes right now it suffices to think
about the two-dimensional case.

Slope.

• The slope of a linear function f(x) = wx of one variable is equal to w, which is the “rise” over “run”.
If we move x units from the origin, the value of f(x) changes from 0 to wx, so

slope =
wx

x
= w.

• How can we generalize this to higher dimensions? We can still measure the amount that the function
value increases (“rise”) compared with a certain distance moved in input space (“run”), but the issue is
that we can now move in many directions in input space. Some directions are steep (cause the function
to increase a lot), and some are not. We will define slope as the “rise over run” when moving in the
steepest direction, which is the direction of w.

• Lets consider the difference in f when we move from the origin 0 = (0, . . . , 0) to the point w ∈ Rd.
(Note that w is the weight vector which defines f , but it is also a point in the input space.) The
distance moved is

‖w − 0‖ = ‖w‖.

The increase in the function value is

f(w)− f(0) = wTw.

The slope is
wTw
‖w‖

=
‖w‖2

‖w‖
= ‖w‖.

• To summarize: for a linear function f(x) = wTx, the slope in the steepest direction is ‖w‖, the norm
of the weight vector.

2 Support Vector Machine Intuition

• Binary classification problem, training data {(xi, yi)}

• Assume for now that the the data is separable: there is a linear decision boundary that perfectly
classifies the training data

• Long history of methods to try to find a linear separator, i.e., a weight vector w such that

yi = 1 ⇒ wTxi ≥ 0

yi = 0 ⇒ wTxi < 0

• Rosenblatt’s perceptron algorithm (1957). Iterative updates to w. Guaranteed to converge to a linear
separator if the data is separable. Updates look like gradient descent.
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• Intuition: some separators are better than others. (Illustration)

• Definition. margin = minimum distance of any correctly classified example to decision boundary.

• Idea: find separator with widest margin. Intuition that this will generalize better because it does not
go too close to current examples. Minimize the chance the unobserved examples fall on the wrong side
of the separator.

• How do we formalize this idea mathematically?

3 Formulating the maximum margin problem

• Goal: find separator w to maximize the minimum distance from the decision boundary.

• Revisit separator. Visualize in three dimensions.

yi = 1 ⇒ wTxi ≥ 0 (“above sea level”)

yi = 0 ⇒ wTxi < 0 (“below sea level”)

Margin. First, fix w and formalize the notion of margin

• Elevation above/below sea level of example i is

γi = γi(w) =

{
wTxi yi = 1
−wTxi yi = 0.

= yiwTxi − (1− yi)wTxi

• Let di = di(w) be the horizontal distance xi from the decision boundary defined by w. Use slope =
‖w‖ = rise over run.

‖w‖ =
γi
di

di =
γi
‖w‖

.

• The margin is the largest value d such that di ≥ d for all i. (Picture: fix w and grow the tube around
the decision boundary).

Optimization problem.

• Formalize the problem of finding the w with the best margin as an optimization problem. Include d
as a variable to be optimized.

• In words: find the weight vector w and find the biggest value of d such that di(w) ≥ d for all i

• In math:

max
w,d

d (5)

subject to di(w) ≥ d for all i. (6)
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Rewriting the problem.

• First, substitute definition for di(w) = γi(w)/‖w‖.

max
w,d

d (7)

subject to
yiwTxi − (1− yi)wTxi

‖w‖
≥ d for all i (8)

• Bring ‖w‖ to right-hand side of constraint

max
w,d

d (9)

subject to yiwTxi − (1− yi)wTxi ≥ d‖w‖ for all i (10)

• Make change of variable γ = d‖w‖. (Thus, d = γ/‖w‖).

max
w,γ

γ

‖w‖
(11)

subject to yiwTxi − (1− yi)wTxi ≥ γ for all i (12)

• Make change of variable v = w/γ. (Thus, w = γv, and ‖w‖ = γ‖v‖.)

max
v,γ

1
‖v‖

(13)

subject to yiγvTxi − (1− yi)γvTxi) ≥ γ for all i (14)

• Cancel γ in the constraint. (Note that γ disappears entirely!)

max
v

1
‖v‖

(15)

subject to yivTxi − (1− yi)vTxi ≥ 1 for all i (16)

• Note that maximizing 1/‖v‖ is equivalent to minimizing ‖v‖.

min
v
‖v‖ (17)

subject to yivTxi − (1− yi)vTxi ≥ 1 for all i (18)

• Now rename v back to w and rewrite the constraints in a more readable form

min
w
‖w‖ (19)

subject to wTxi ≥ 1 yi = 1 (20)

wTxi ≤ −1 yi = 0. (21)
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4 Interpretation

• The last version is the widely accepted SVM optimization problem.

• It has a simple geometric interpretation. The constraints specify that we require our linear function
f(x) = wTx to be at least one for positive examples (f(xi) = wTxi ≥ 1), and no more than −1 for
negatives examples (f(xi) = wTxi ≤ 1).

• Out of all functions that satisfy this requirement, we are finding the one with the minimum slope ‖w‖.

• It is easy to check with some concrete examples that this indeed finds the separator with the biggest
margin. (Demo.)

5 Non-Separable Data: Soft Margin

• If the training data is not separable, we need to modify the problem.

• Idea: allow positive example “slack”, so it may be si units below one:

wTxi ≥ 1− si

Charge cost of si in the objective. Do something similar for negative examples.

min
w,s

‖w‖+ C

N∑
i=1

si (22)

subject to wTxi ≥ 1− si yi = 1 (23)

wTxi ≤ −1 + si yi = 0 (24)
si ≥ 0 i = 1, . . . , N (25)

6 Cost Function and Comparison with Logistic Regression

To be continued...
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