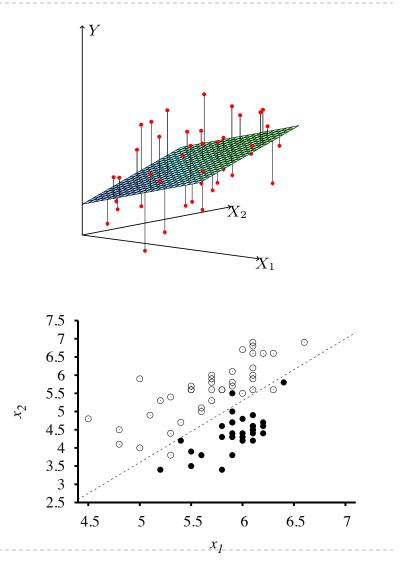
Decision Trees

CS 341 – Lectures 8/9 Dan Sheldon

$h(x) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$

Review: Linear Methods

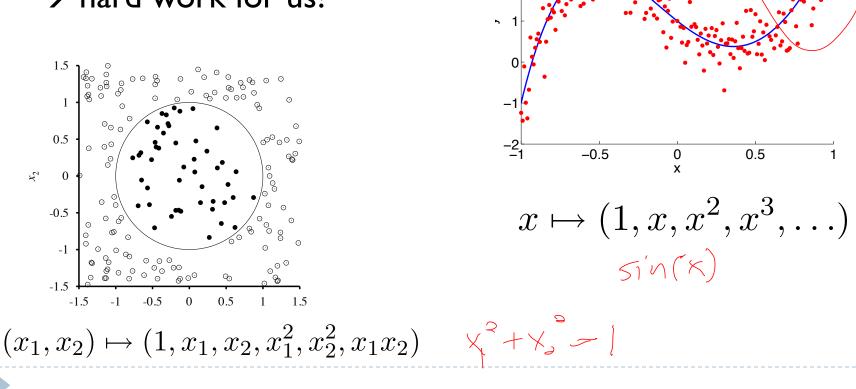
- So far, we've looked at linear methods
- Linear regression
 Fit a line/plane/hyperplane
- Logistic regression
 - Decision boundary is a line/ plane/hyperplane



Review: Feature Expansions

Non-linearity by trickery

▶ Drawback: not automatic
 → hard work for us!



3

2

Next Up: Non-Linear Methods

Hypothesis class is intrinsically non-linear

Next few topics

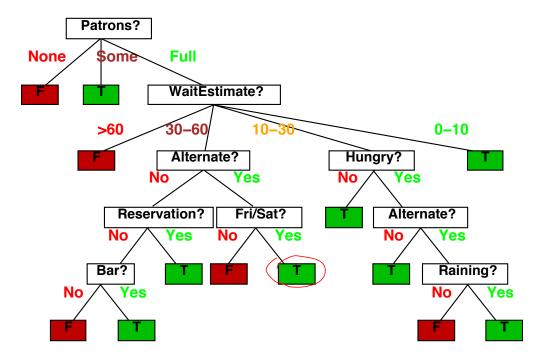
- Decision trees
- Neural networks
- Kernels
- Today: decision trees

Decision Tree Topics

- What is a decision tree?
- Learn a tree from data
 - Good vs. bad trees
 - Greedy top-down learning
 - Entropy
- Pruning
- Geometric interpretation

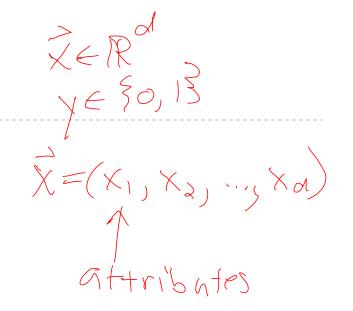
What Is a Decision Tree?

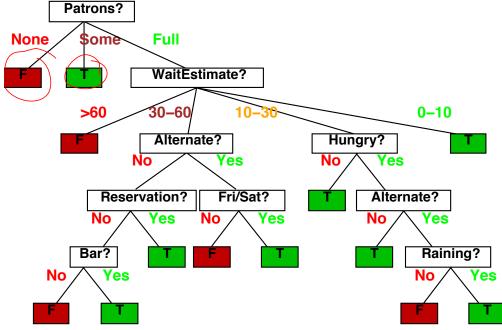
Example from R&N: wait for table at restaurant?



What Is a Decision Tree?

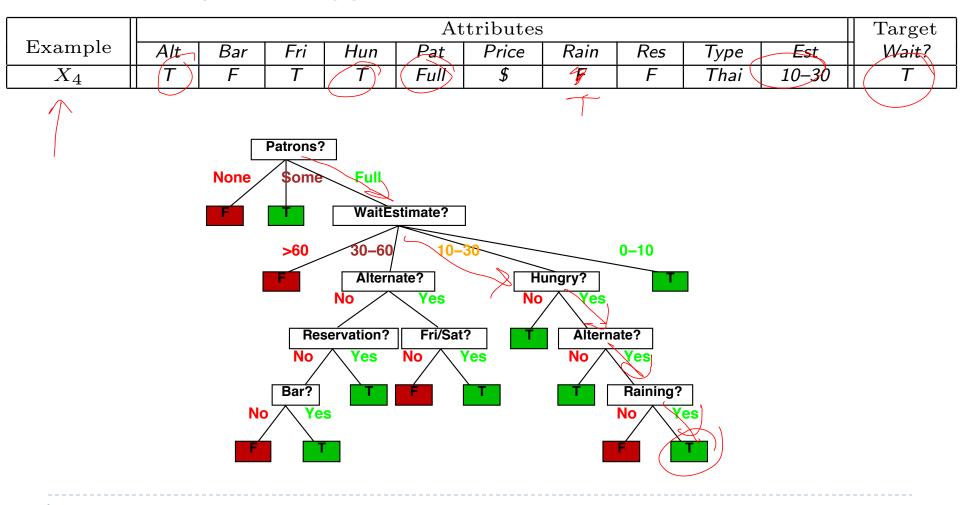
- Internal <u>nodes</u>: test an <u>attribute</u> (feature)
 - Assume discrete attributes for now
- Branches: different values of attribute
- Leaf node: predict a class label





What Is a Decision Tree?

Predict by following path down tree



Decision Trees in the Wild

- Decision trees are common decisionmaking tools
 - You have all seen them!
- R&N: Car service manuals
- Viburnum ID
 - http://www.hort.cornell.edu/vlb/key/ index.html

[Image: Clemson cooperative extension]

Decision Trees in the Wild

C-section risk (learned from data)

Learned from medical records of 1000 women Negative examples are C-sections [833+,167-] .83+ .17-Fetal_Presentation = 1: [822+,116-] .88+ .12-| Previous_Csection = 0: [767+,81-] .90+ .10-| | Primiparous = 0: [399+,13-] .97+ .03-| | Primiparous = 1: [368+,68-] .84+ .16-| | | Fetal_Distress = 0: [334+,47-] .88+ .12-| | | Birth_Weight < 3349: [201+,10.6-] .95+ .. | | | Birth_Weight >= 3349: [133+,36.4-] .78+ | | | Fetal_Distress = 1: [34+,21-] .62+ .38-| Previous_Csection = 1: [55+,35-] .61+ .39-Fetal_Presentation = 2: [3+,29-] .11+ .89-Fetal_Presentation = 3: [8+,22-] .27+ .73-

Decision Trees in the Wild

Why Decision Trees?

- Easy to understand
 - Match human decision-making processes
- Excellent performance
 - > One of the best out-of-the-box methods when used carefully

Very flexible hypothesis space

- Can learn complex decision boundaries
- Handle messy data well
 - Missing features
 - Continuous discrete
 - Etc. No normalization

How to Learn a Tree From Data

Training data for R&N example

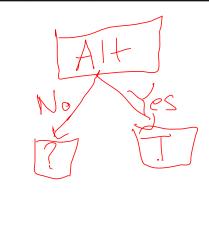
	1										
					At	tributes					Target
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	Wait?
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	F
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	Т
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	Т
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	F
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	T
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	F
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	T
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	F
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	F
X_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	F
X ₁₂	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	T

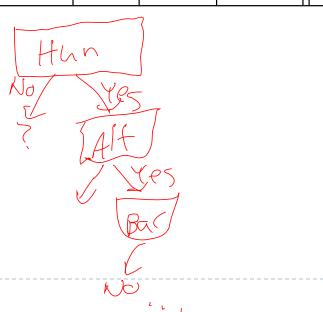
Exercise

Design an algorithm

- Input: single training example
- Output: decision tree that matches that example

	Attributes										
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	Wait?
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	T





Exercise (cont')

	Attributes										
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	Wait?
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	T

Exercise

Design a tree to match all examples

Hint: use previous exercise

					At	tributes					Target
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	Wait?
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	T
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	F
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	Т
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	Т
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	F
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	T
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	F
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	T
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	F
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	F
X_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	F
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	

A Correct Answer

What is wrong with this?

For each training example, create a path from root to leaf
 Use attributes in fixed order

Paves

> generalizes poorly

> training examples

What Is a Good Tree?

Find smallest tree that fits training data

min # internal nodes

- A very hard problem leaves
 - Number of trees on d binary attributes at least

$$2^{2^{a}}$$

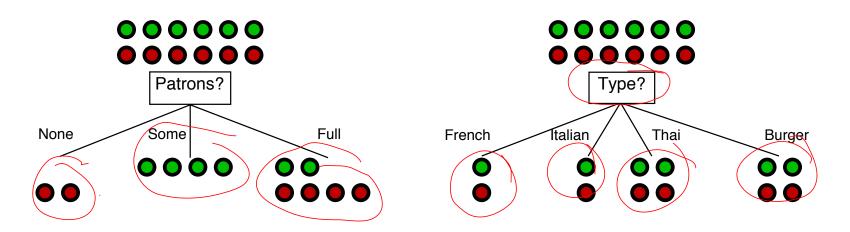
• E.g., with 6 attributes
$$2^{2^6} = 18,446,744,073,709,551,616$$

Effectively impossible to find best tree

Top-Down Greedy Heuristic

Idea:

- Find "best" attribute to test at root of tree
- Recursively apply algorithm to each branch



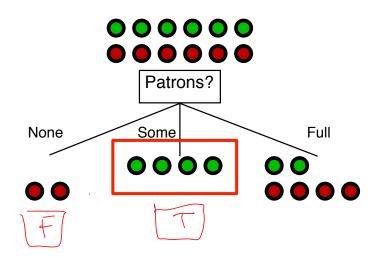
"Best" attribute?

Ideally, splits the examples into subsets that are "all positive" or "all negative"

Base Cases

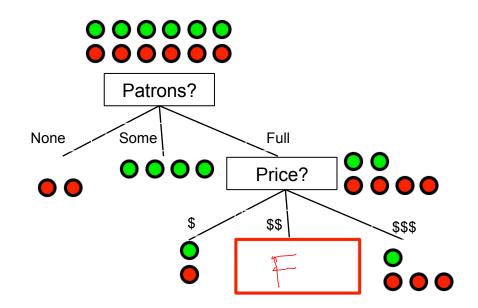
- Keep splitting until
 - > All examples have same label
 - Run out of examples
 - Run out of attributes

Base Case I



- All examples have same classification (e.g. true)
 - Return classification (e.g., true)

Base Case II

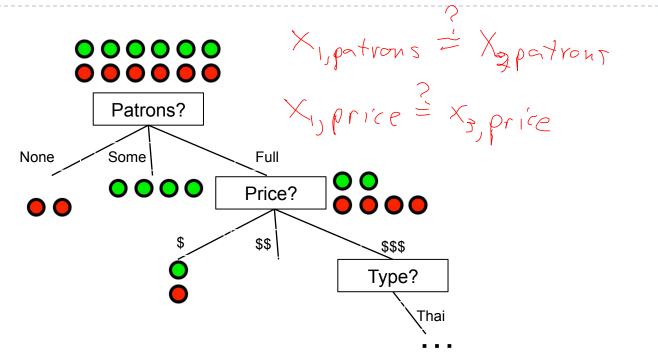


No more examples

Return majority class of parent (e.g., false)

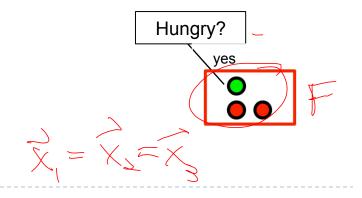
 $\vec{X}_1, \vec{X}_2, \vec{X}_3$

Base Case III



No more attributes

Return majority class (e.g., false)



The Algorithm

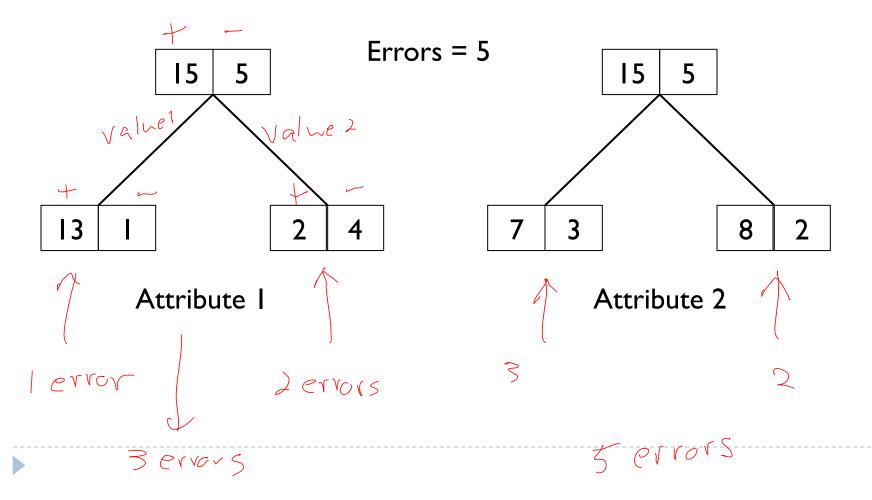
Put it (almost) all together

```
function DTL(examples, attributes, default) returns a decision tree
  (if examples is empty then return default
   else if all examples have the same classification then return the classification
   else if attributes is empty then return MODE(examples)
   else
        best CHOOSE-ATTRIBUTE(attributes, examples)
        tree \leftarrow a new decision tree with root test best
       for each value v_i of best do
            examples_i \leftarrow \{ elements of examples with best = v_i \}
           subtree \leftarrow DTL(examples_i, attributes - best, MODE(examples))
            add a branch to tree with label v_i and subtree subtree
       return tree
```

Splitting Criteria

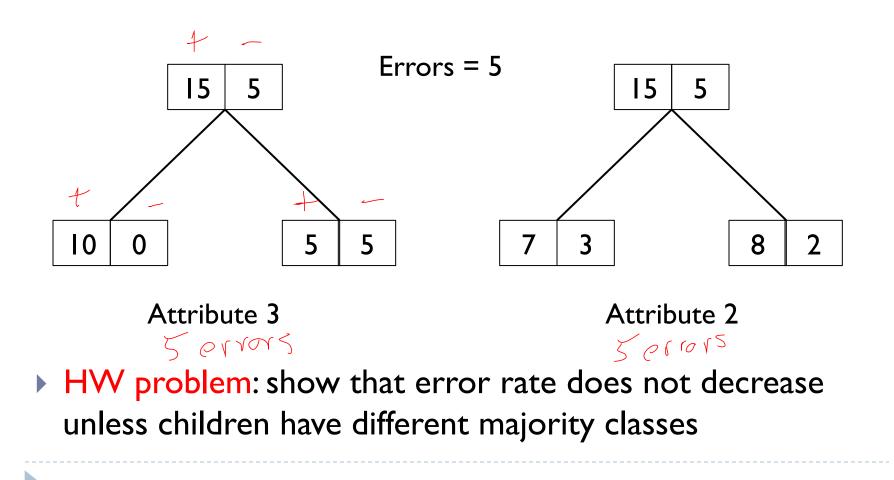
An obvious idea is error rate

Total # of errors we would make if we stopped training now



Splitting Criteria

Problem: error rate fails to differentiate these two splits



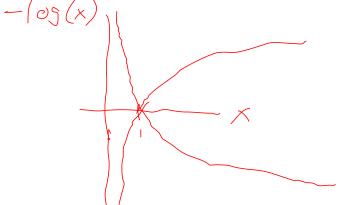
Word > rodeword

Entropy

- Measure of uncertainty from field of Information Theory
 - Claude Shannon (1948)
- Consider a biased random coin
 - $Pr(X = heads) = q \quad \underline{ 75}$
 - $\Pr(X = \text{tails}) = 1 q \quad \square \bigcirc, 25$
- Define surprise of a random variable as
 - $S(X = x) = -\log_2 \Pr(X = x)$

	(1)	~	9(4)	-log2(5	$) = - o_{2}(2^{-1}) $
		q = 0	q=1/4	q=1/2	
	S(X = heads)	infinite	> 2	I	
	S(X = tails)	0	<u> </u>	I	
, +61-15	t needed -p	represent	-log(3) -log(4) - Silven	word	

-109 (2)



Entropy q = 0 q = 1/2q = 1/4/4× 2 S(X = heads)infinite ³∕⊋×.4150 S(X = tails)0 $(onvention \rightarrow Oxtlog() + 1x(-logi) - \frac{1}{4}\log(\frac{1}{4}) - \frac{3}{4}\log(\frac{3}{4})$ ~ 81 O + OEntropy = average surprise

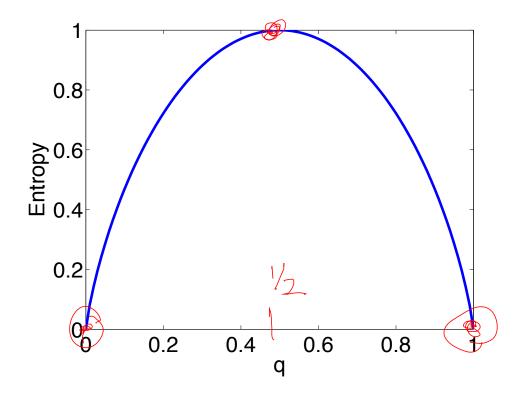
$$H(X) = -\sum_{\text{values } x} \Pr(X = x) \left(\log \Pr(X = x) \right)$$

For the biased coin heads tails $B(q) \coloneqq H(X) = -q \log q - (1-q) \log(1-q)$

Entropy

D

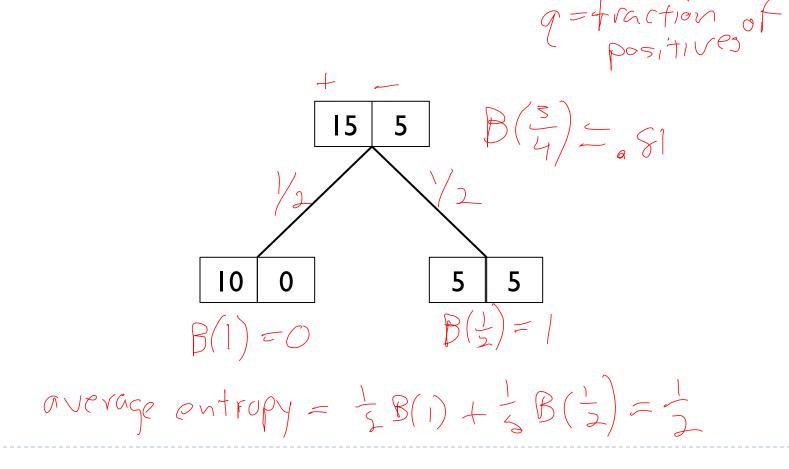
Entropy of a biased coin



Entropy as Attribute Test

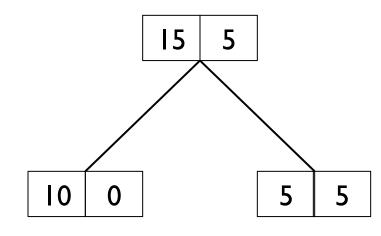
Look for split with biggest reduction in entropy

Information gain = entropy – (average entropy of children)

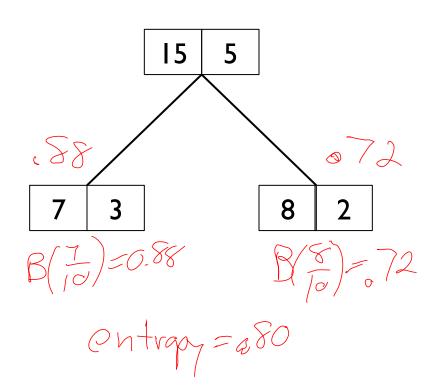


Entropy as Attribute Test

Back to our previous example

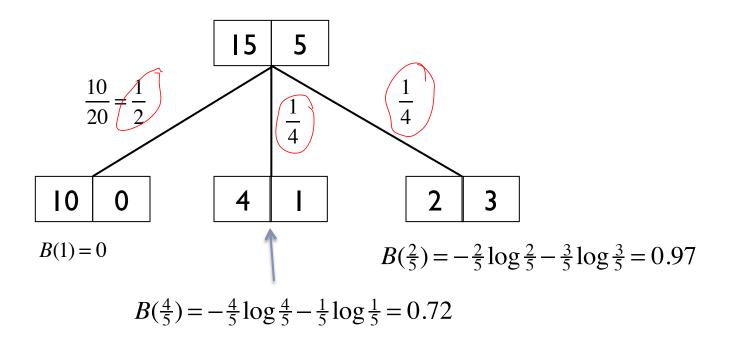


entropy = 1



A More General Example
$$4B(\frac{2}{5}) + \frac{1}{4}B(\frac{2}{5})$$

$$B(\frac{3}{4}) = -\frac{3}{4}\log\frac{3}{4} - \frac{1}{4}\log\frac{1}{4} = 0.88$$



Average entropy of children $\frac{1}{2} \cdot 0 + \frac{1}{4} \cdot 0.72 + \frac{1}{4} \cdot 0.97 = 0.42$ Reduction0.88 - 0.42 = 0.46

Pruning

• It is still possible to grow very large trees \rightarrow overfitting

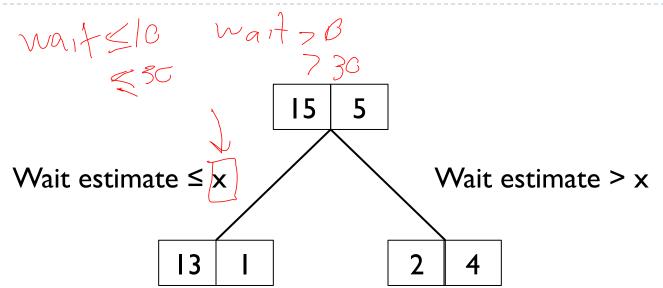
Pruning

- First grow a full tree
- Then remove some nodes
- Why not just stop growing the tree earlier?)

Different pruning criteria

- R&N: Chi-squared. How "different' are the children from the parents?
- An easier possibility: use a test set to see if removing the node hurts generalization

Continuous Attributes



Split on any threshold value x

Select attribute/threshold combination with best reduction in entropy

Miscellaneous

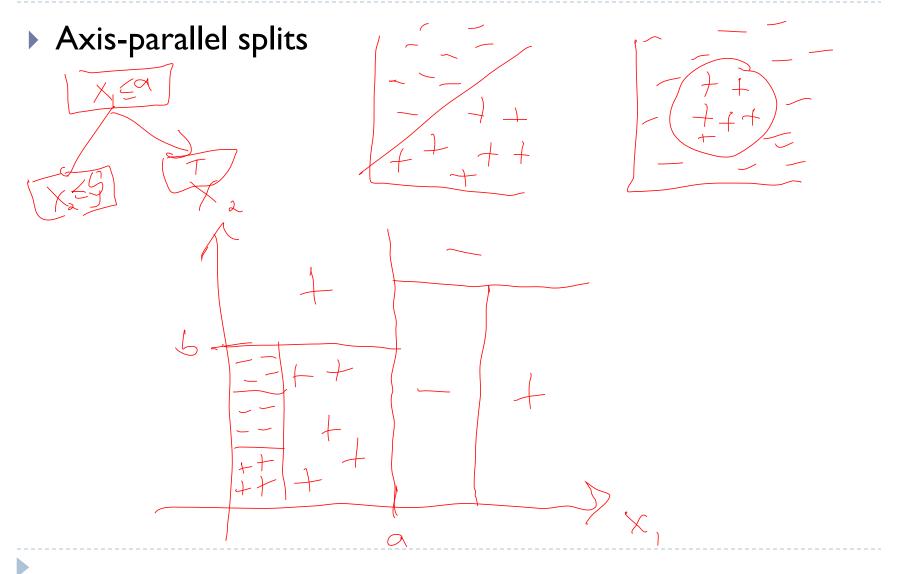
Issues to think/read about on your own

- Entropy criteria tends to favor multi-valued attributes over binary attributes
 - Why?
 - Various fixes proposed in literature. Can you think of one?

Missing attributes

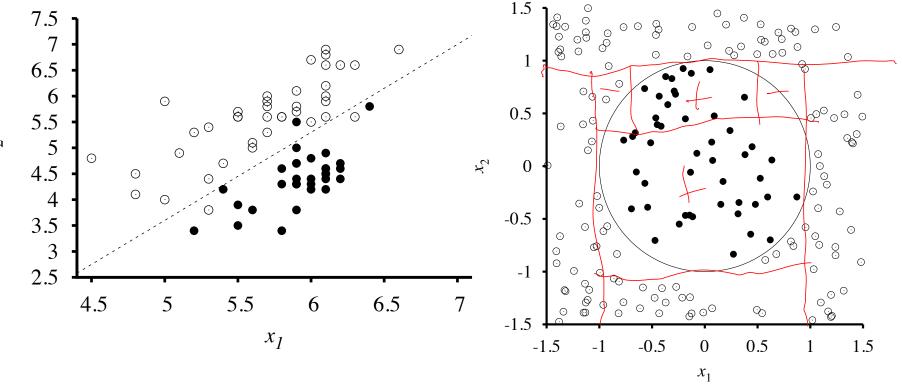
- E.g., medical testing
- How to handle these during prediction?
- During training?

Geometric Interpretation



Geometric Interpretation

Can learn simple and complex boundaries



 x_2

D

- Top-down greedy learning for decision trees
- Entropy splitting criteria
- Continuous attributes