Lecture 7 - Overfitting and Regularization

Dan Sheldon

September 26, 2012

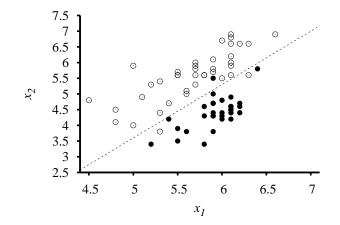
- What is Overfitting?
- How to Diagnose Overfitting
- Regularization

What is Overfitting?

Demo: polynomials

What is Overfitting?

Complex decision boundaries



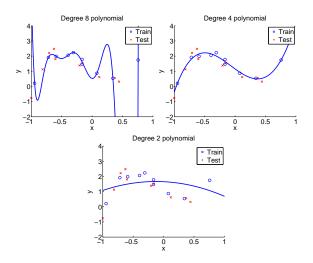
Overfitting is learning a model that fits the training data very well, but does not *generalize* well.

(Generalize well = predict accurately for new examples.)

How to Diagnose Overfitting?

Exercise

Reserve some data to test whether hypothesis generalizes well



Train Data vs. Test Data

Very important (and simple) methodology

Start with N training examples

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \ldots, (\mathbf{x}_N, y_N)$$

- Split randomly into train and test sets
- To fit the model, minimize cost on train data only

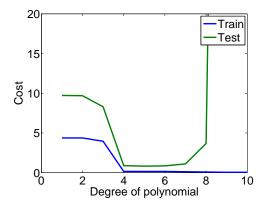
$$J_{\mathsf{train}}(\mathbf{w}) = \sum_{i \in \mathsf{train}} \mathsf{cost}(h(\mathbf{x}_i), y_i)$$

To evaluate the fit, measure cost on test set

$$J_{\mathsf{test}}(\mathbf{w}) = \sum_{i \in \mathsf{test}} \mathsf{cost}(h(\mathbf{x}_i), y_i)$$

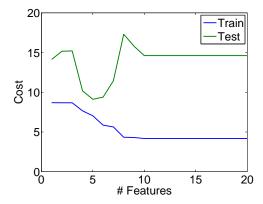
How to Diagnose Overfitting?

Example: cost function vs. degree of polynomial



How to Diagnose Overfitting?

Example: cost function vs. number of features in book data



Cost vs. Complexity

General phenomenon: training/test cost vs. model "complexity"

What Makes a Model Complex?

- Polynomial: higher degree
- Book data: more features
- Linear functions $(h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x})$: large weights

Large Weights

Example

Width	Thickness	Height	Weight
8	1.8	10	4.4
8	0.9	9	2.7

. . .

Which is more complex?

$$y = -3.94 + 0.18x_1 + .34x_2$$

VS.

$$y = 2842 - 957x_1 + 300x_2$$

Regularization (Linear Regression)

Intuition: large weights \rightarrow high complexity

So, modify the cost function to penalize large weights. For linear regression, the new cost function is:

$$J(\mathbf{w}) = \lambda \sum_{j=0}^{d} w_j^2 + \sum_{i=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_i) - y_i)^2$$

 λ controls trade-off between model complexity and fit

Discussion

Regularization is really important!!! Why?

Normal Equations with Regularization

$$\mathbf{w} = (X^T X + \lambda I)^{-1} X^T y$$

Derivation (review on your own)

$$J(\mathbf{w}) = \sum_{i=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{j=0}^{d} w_j^2$$
$$= (X\mathbf{w} - \mathbf{y})^T (X\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}.$$

Set derivative to zero

$$0 = \frac{d}{d\mathbf{w}}J(\mathbf{w})$$

$$0 = 2(X\mathbf{w} - \mathbf{y})^T X + 2\lambda \mathbf{w}^T$$

$$0 = X^T(X\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}$$

$$X^T X \mathbf{w} + \lambda \mathbf{w} = X^T \mathbf{y}$$

$$(X^T X + \lambda I) \mathbf{w} = X^T \mathbf{y}$$

$$\mathbf{w} = (X^T X + \lambda I)^{-1} X^T \mathbf{y}$$

Regularized Gradient Descent for Linear Regression

$$J(\mathbf{w}) = \lambda \sum_{j=0}^{d} w_j^2 + \sum_{i=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_i) - y_i)^2$$

Repeat until convergence

$$w_j \leftarrow w_j - \alpha \frac{\partial}{\partial w_j} J(\mathbf{w}), \qquad j = 0, \dots, d.$$

$$w_j \leftarrow w_j - \alpha \Big(2\lambda w_j + 2\sum_{i=1}^N (h_{\mathbf{w}}(\mathbf{x}_i) - y_i) x_{i,j} \Big)$$

$$w_j \leftarrow w_j(1-2\lambda\alpha) - 2\alpha \sum_{i=1}^N (h_{\mathbf{w}}(\mathbf{x}_i) - y_i) x_{i,j}$$

Regularized Gradient Descent for Logistic Regression

$$J(\mathbf{w}) = \lambda \sum_{j=0}^{d} w_j^2 + \sum_{i=1}^{N} (h_{\mathbf{w}}(\mathbf{x}_i) - y_i)^2$$

Repeat until convergence. For $j = 0, \ldots, d$:

$$w_j = w_j(1 - 2\lambda\alpha) - 2\alpha \sum_{i=1}^N (h_{\mathbf{w}}(\mathbf{x}_i) - y_i) x_{i,j}.$$

What You Need To Know

- Concept of overfitting
- Diagnosis: train/test sets
- Regularized cost function (penalize weights)
- Regularized gradient descent
- See it work