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Plan

I What is Overfitting?

I How to Diagnose Overfitting

I Regularization



What is Overfitting?

Demo: polynomials



What is Overfitting?

Complex decision boundaries
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What is Overfitting?

Overfitting is learning a model that fits the training data very well,
but does not generalize well.

(Generalize well = predict accurately for new examples.)



How to Diagnose Overfitting?

Exercise

Reserve some data to test whether hypothesis generalizes well
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Train Data vs. Test Data

Very important (and simple) methodology

I Start with N training examples

(x1, y1), (x2, y2), . . . , (xN , yN )

I Split randomly into train and test sets

I To fit the model, minimize cost on train data only

Jtrain(w) =
∑

i∈train

cost(h(xi), yi)

I To evaluate the fit, measure cost on test set

Jtest(w) =
∑

i∈test

cost(h(xi), yi)



How to Diagnose Overfitting?

Example: cost function vs. degree of polynomial
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How to Diagnose Overfitting?

Example: cost function vs. number of features in book data
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Cost vs. Complexity

General phenomenon: training/test cost vs. model “complexity”
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What Makes a Model Complex?

I Polynomial: higher degree

I Book data: more features

I Linear functions (hw(x) = wTx): large weights
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Large Weights

Example

Width Thickness Height Weight

8 1.8 10 4.4
8 0.9 9 2.7

. . .

Which is more complex?

y = −3.94 + 0.18x1 + .34x2

vs.
y = 2842− 957x1 + 300x2
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Regularization (Linear Regression)

Intuition: large weights → high complexity

So, modify the cost function to penalize large weights. For linear
regression, the new cost function is:

J(w) = λ

d∑
j=0

w2
j +

N∑
i=1

(hw(xi)− yi)2

λ controls trade-off between model complexity and fit
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Discussion

Regularization is really important!!!
Why?
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Normal Equations with Regularization

w = (XTX + λI)−1XT y
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Derivation (review on your own)

J(w) =
N∑

i=1

(hw(xi)− yi)2 + λ

d∑
j=0

w2
j

= (Xw − y)T (Xw − y) + λwTw.

Set derivative to zero

0 =
d

dw
J(w)

0 = 2(Xw − y)TX + 2λwT

0 = XT (Xw − y) + λw

XTXw + λw = XTy

(XTX + λI)w = XTy

w = (XTX + λI)−1XTy



Regularized Gradient Descent for Linear Regression

J(w) = λ

d∑
j=0

w2
j +

N∑
i=1

(hw(xi)− yi)2

Repeat until convergence

wj ← wj − α
∂

∂wj
J(w), j = 0, . . . , d.

wj ← wj − α
(
2λwj + 2

N∑
i=1

(hw(xi)− yi)xi,j

)

wj ← wj(1− 2λα)− 2α
N∑

i=1

(hw(xi)− yi)xi,j
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Regularized Gradient Descent for Linear Regression
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Regularized Gradient Descent for Logistic Regression

J(w) = λ

d∑
j=0

w2
j +

N∑
i=1

(hw(xi)− yi)2

Repeat until convergence. For j = 0, . . . , d:

wj = wj(1− 2λα)− 2α
N∑

i=1

(hw(xi)− yi)xi,j .
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What You Need To Know

I Concept of overfitting

I Diagnosis: train/test sets

I Regularized cost function (penalize weights)

I Regularized gradient descent

I See it work


