Lecture 6 - Logistic Regression

Dan Sheldon

September 26, 2012

Plan for Today

- ► MATLAB & HW 2
- Review
 - Normal equations by matrix calculus
 - ► Gradient descent
 - ► Feature normalization
- ▶ Logistic regression

Aside: Matrix Calculus

Succinct (and cool!) way to solve for normal equations:

$$0 = \frac{d}{d\mathbf{w}}(X\mathbf{w} - \mathbf{y})^T (X\mathbf{w} - \mathbf{y})$$

$$0 = 2(X\mathbf{w} - \mathbf{y})^T X$$

$$0 = X^T (X\mathbf{w} - \mathbf{y})$$

$$X^T X \mathbf{w} = X^T \mathbf{y}$$

$$\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$$

Review of Gradient Descent

Algorithm:

- 1. Initialize w_0, w_1, \ldots, w_d arbitrarily
- 2. Repeat until convergence

$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\mathbf{w}), \qquad j = 0, \dots, d.$$

In matrix-vector notation:

Feature Normalization

▶ Features may have very different numeric ranges

Width	Thickness	Height	# Pages	Hardcover	Weight
8	1.8	10	1152	1	4.4
8	0.9	9	584	1	2.7
7	1.8	9.2	738	1	3.9
6.4	1.5	9.5	512	1	1.8

- ► Advice: normalize your features!
 - Subtract mean (center)
 - Divide by standard deviation (scale)

Feature Normalization

For each feature j, compute

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}, \qquad \sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$

Then, subtract μ_j and divide by σ_j :

$$x_{i,j} \leftarrow (x_{i,j} - \mu_j)/\sigma_j$$

Feature Normalization

Example: cost function contours before and after normalization

Main Topic: Logistic Regression

- Classification
- ► Model
- Cost function
- Gradient descent
- Linear classifiers and decision boundaries

Classification

- ▶ Input: $\mathbf{x} \in \mathbb{R}^d$
- ▶ Output: $y \in \{0, 1\}$
- ► Model (hypothesis class): ?
- ► Cost function: ?

The Model

Exercise: fix the linear regression model

$$h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x}), \qquad g: \mathbb{R} \to [0, 1].$$

What should g look like?

Logistic Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

▶ This is called the *logistic* or *sigmoid* function

$$g(z) = \operatorname{logistic}(z) = \operatorname{sigmoid}(z)$$

The Model

Put it together

$$h_{\mathbf{w}}(\mathbf{x}) = \text{logistic}(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Nuance:

- ▶ Output is in [0,1], not $\{0,1\}$.
- Interpret as probability

Hypothesis vs. Prediction Rule

Hypothesis (use during learning)

Prediction rule (for predictions!)

Prediction Rule

$$y = \begin{cases} 0 & h_{\mathbf{w}}(\mathbf{x}) < 1/2 & (\mathbf{w}^T \mathbf{x} < 0) \\ 1 & h_{\mathbf{w}}(\mathbf{x}) \ge 1/2 & (\mathbf{w}^T \mathbf{x} \ge 0). \end{cases}$$

Cost Function

Can we used squared error?

$$J(\mathbf{w}) = \sum_{i} (h_{\mathbf{w}}(\mathbf{x}_i) - y_i)^2$$

R&N does this. But we want to do better.

Let's define cost for a single example. E.g., for squared error:

$$J(\mathbf{w}) = \sum_{i} \cot(h_{\mathbf{w}}(\mathbf{x}_{i}), y_{i})$$
$$\cot(h_{\mathbf{w}}(\mathbf{x}), y) = (h_{\mathbf{w}}(\mathbf{x}) - y)^{2}$$

Cost Function

Suppose y = 1. Squared error looks like this

If we undo the logistic transform, it looks like this

Cost Function

Exercise: fix these

$\mathsf{Log}\;\mathsf{Loss}\;(y=1)$

Log Loss

$$cost(h(\mathbf{x}), y) = \begin{cases} -\log h(\mathbf{x}) & y = 1\\ -\log(1 - h(\mathbf{x})) & y = 0 \end{cases}$$

Equivalent Expression for Log-Loss

$$\mathsf{cost}(h(\mathbf{x}), y) = \begin{cases} -\log h(\mathbf{x}) & y = 1\\ -\log(1 - h(\mathbf{x})) & y = 0 \end{cases}$$

$$cost(h(\mathbf{x}), y) = -y \log h(\mathbf{x}) - (1 - y) \log(1 - h(\mathbf{x}))$$

Review so far

- ▶ Input: $\mathbf{x} \in \mathbb{R}^d$
- ▶ Output: $y \in \{0,1\}$
- ► Model (hypothesis class)

$$h_{\mathbf{w}}(\mathbf{x}) = \mathsf{logistic}(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Cost function (log loss):

$$J(\mathbf{w}) = \sum_{i=1}^{N} \left(-y_i \log h_{\mathbf{w}}(\mathbf{x}_i) - (1 - y_i) \log(1 - h_{\mathbf{w}}(\mathbf{x}_i)) \right)$$

Gradient Descent for Logistic Regression

- 1. Initialize w_0, w_1, \ldots, w_d arbitrarily
- 2. Repeat until convergence

$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\mathbf{w}), \qquad j = 0, \dots, d.$$

Partial derivatives for logistic regression:

$$\frac{\partial}{\partial w_j} J(\mathbf{w}) = 2 \sum_{i=1}^N (h_{\mathbf{w}}(\mathbf{x}_i) - y_i) x_{i,j}$$

(Same as linear regression! But $h_{\mathbf{w}}(\mathbf{x})$ is different)

Decision Boundaries

Example from R&N (Fig. 18.15).

Figure: Earthquakes (white circles) vs. nuclear explosions (black circles) by body wave magnitude (x1) and surface wave magnitude (x2)

Decision Boundaries

E.g., suppose hypothesis is

$$h(x_1, x_2) = \text{logistic}(1.7x_1 - x_2 - 4.9)$$

Predict nuclear explosion if:

$$1.7x_1 - x_2 - 4.9 \ge 0$$
$$x_2 \le 1.7x_1 - 4.9$$

Linear Classifiers

Predict

$$y = \begin{cases} 0 & \text{if } \mathbf{w}^T \mathbf{x} < 0, \\ 1 & \text{if } \mathbf{w}^T \mathbf{x} \ge 0. \end{cases}$$

Many other learning algorithms use linear classification rules

- Perceptron
- Support vector machines (SVMs)
- Linear discriminants

Nonlinear Decision Boundaries by Feature Expansion

Example (Ng)

$$(x_1, x_2) \mapsto (1, x_1, x_2, x_1^2, x_2^2, x_1 x_2),$$

 $\mathbf{w} = \begin{bmatrix} -1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}^T$

Exercise: what does decision boundary look like in (x_1, x_2) plane?