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Plan for Today

» MATLAB & HW 2
» Review

» Normal equations by matrix calculus
» Gradient descent
» Feature normalization

» Logistic regression



Aside: Matrix Calculus

Succinct (and

cool!) way to solve for normal equations:

= L xwoy)T(Xw—y)

dw

20Xw—y) ' X
= X'(Xw-y)
= X'y

(XTX)" ' X"y



Review of Gradient Descent

Algorithm:
1. Initialize wg, w1, ..., wq arbitrarily

2. Repeat until convergence

0

wj =w; —a—J(w), j=0,...

8wj

In matrix-vector notation:



Feature Normalization

» Features may have very different numeric ranges

Width  Thickness Height + Pages Hardcover | Weight
8 1.8 10 1152 1 4.4
8 0.9 9 584 1 2.7
7 1.8 9.2 738 1 3.9
6.4 1.5 9.5 512 1 1.8

» Advice: normalize your features!

» Subtract mean (center)
» Divide by standard deviation (scale)



Feature Normalization

For each feature j, compute

N
1 2 1 2
Hj = N;x“’ 9G=N Z(%j — 15)

Then, subtract p; and divide by o;:

T (@i — pj)/oj



Feature Normalization

Example: cost function contours before and after normalization

10=

10




Main Topic: Logistic Regression

Classification
Model
Cost function

Gradient descent

vV v v v Y

Linear classifiers and decision boundaries



Classification

Input: x € R?
Output: y € {0,1}
Model (hypothesis class): ?

vV v v Y

Cost function: ?



Classification as regression?



The Model

Exercise: fix the linear regression model
hw(x) = g(w!x), g:R—10,1].

What should g look like?



Logistic Function
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» This is called the logistic or sigmoid function

g(z) = logistic(z) = sigmoid(z)



The Model

Put it together
1

Nuance:
» Output is in [0,1], not {0,1}.
» Interpret as probability



Hypothesis vs. Prediction Rule
Hypothesis (use during learning)
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Prediction Rule
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Cost Function

Can we used squared error?

J(w) = (hw(xi) — i)

7

R&N does this. But we want to do better.

Let's define cost for a single example. E.g., for squared error:

J(w) = Z cost(hw (Xi), yi)



Cost Function
Suppose y = 1. Squared error looks like this

1

squared error
© o o
S [o2] ©

o
)

o

0 0.2 0. 6 0.8 1

4 0.
h(x)

If we undo the logistic transform, it looks like this

[

squared error
o
[$))

-10 10

Ny
B
—o |

20



Cost Function

Exercise: fix these
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Log Loss (y = 1)

cost(h(x),1) = —log h(x)
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Log Loss

log loss
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Equivalent Expression for Log-Loss

— log h(x) y=1
~log(1 ~ h(x)) y=0

cost(h(x),y) = {

cost(h(x),y) = —ylogh(x) — (1 — y)log(1 - h(x))



Review so far

» Input: x € R?
» Output: y € {0,1}
Model (hypothesis class)

v

- 1
hw(x) = |Og|St|C(WTX) = m

v

Cost function (log loss):

N

Jw) =3 (= pilog hw(xi) = (1= yi) log(1 = hw(x,))

=1



Gradient Descent for Logistic Regression

1. Initialize wg, w1, ..., wq arbitrarily

2. Repeat until convergence

0 ,
wj = w; — aa—w]J( W), j=0,...,d.

Partial derivatives for logistic regression:

ij —22 yz T 4

ow;

(Same as linear regression! But hy (x) is different )



Decision Boundaries

Example from R&N (Fig. 18.15).
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Figure: Earthquakes (white circles) vs. nuclear explosions (black circles)
by body wave magnitude (x1) and surface wave magnitude (x2)



Decision Boundaries
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E.g., suppose hypothesis is
h(z1,x2) = logistic(1.7x; — xo — 4.9)

Predict nuclear explosion if:
1.71’1 — T2 — 4.9 Z 0
To < 1.701 — 4.9



Linear Classifiers

Predict

_Jo ifwTx <o,
V= 1 ifwlx>0.

Many other learning algorithms use linear classification rules
» Perceptron
» Support vector machines (SVMs)

» Linear discriminants



Nonlinear Decision Boundaries by Feature Expansion

Example (Ng)

(1'1,1’2) = (1a Z1, $2a$%7$%?$1x2)a

w=[-100 11 0"

Exercise: what does decision boundary look like in (x1,x2) plane?



