Lecture 3 – Linear Algebra Background

Dan Sheldon

September 17, 2012

Motivation

Preview of next class:

$$y^{(1)} \approx w_0 + w_1 x_1^{(1)} + w_2 x_2^{(1)} + \ldots + w_d x_d^{(1)}$$

$$y^{(2)} \approx w_0 + w_1 x_1^{(2)} + w_2 x_2^{(2)} + \ldots + w_d x_d^{(2)}$$

$$\ldots$$

$$y^{(N)} \approx w_0 + w_1 x_1^{(N)} + w_2 x_2^{(N)} + \ldots + w_d x_d^{(N)}$$

After linear algebra

$$\mathbf{y} \approx X\mathbf{w}$$

Linear Algebra in ML

Linear Algebra

- Succinct notation for models and algorithms
- Numerical tools (save coding!)

$$\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$$

Inspiration for new models and problems: Netflix

Netflix Movie Recommendations

	Gladiator	Silence of the Lambs	WALL-E	Toy Story
Alice	5	4	1	
Bob		5		2
Carol				5
David			5	5
Eve	5	4		

Matrix completion problem, matrix factorization

Today's Topics

- Matrices
- Vectors
- Matrix-Matrix multiplication (and special cases)
- ► Tranpose
- Inverse

Matrices

A matrix is an rectangular array of numbers

$$A = \left[\begin{array}{rrr} 101 & 10\\ 54 & 13\\ 10 & 47 \end{array} \right]$$

▶ When A has m rows and n columns, we say that:

- A is an $m \times n$ matrix
- $\blacktriangleright \ A \in \mathbb{R}^{m \times n}$

• The entry in row i and column j is denoted A_{ij}

Matrices

Example

$$A = \left[\begin{array}{rrr} 101 & 10\\ 54 & 13\\ 10 & 47 \end{array} \right]$$

- $\blacktriangleright \ A \in \mathbb{R}^{3 \times 2}$
- $A_{11} = 101$
- ► $A_{32} =$
- $A_{22} =$
- $A_{23} =$

Vectors

• A vector is an $n \times 1$ matrix:

$$\mathbf{x} = \begin{bmatrix} 8\\ 2.4\\ 1\\ -10 \end{bmatrix}$$

• We write $\mathbf{x} \in \mathbb{R}^n$ (instead of $\mathbf{x} \in \mathbb{R}^{n imes 1}$)

• The *i*th entry is x_i

Vectors

Example

$$\mathbf{x} = \begin{bmatrix} 8\\ 2.4\\ 1\\ -10 \end{bmatrix}$$

- $\blacktriangleright x_1 =$
- ▶ $x_4 =$

Addition

If two matrices have the same size, we can add them by adding corresponding elements

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 3 & 5 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ 2 & 4 \end{bmatrix}$$

- Subtraction is similar
- Matrices of different sizes cannot be added or subtracted

Scalar Multiplication

A scalar $x \in \mathbb{R}$ is a real number (i.e., not a vector) e.g., 2, 3, π , $\sqrt{2}$, 1.843, ...

Scalar times matrix:

$$2 \cdot \begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ -4 & 0 \end{bmatrix}$$

(multiply each entry by the scalar)

Matrix-Matrix Multiplication

Can multiply two matrices if their inner dimensions match

 $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$

$$C = AB \quad \in \mathbb{R}^{m \times p}$$

The product has entries

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Matrix-Matrix Multiplication

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Move along *i*th row of A and *j*th row of B. Multiply corresponding entries, then add.

$$\begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \\ c_{41} & c_{42} & c_{43} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

 $c_{32} = a_{31}b_{12} + a_{32}b_{22}$

Matrix-Matrix Multiplication

Example

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ -3 & 0 \end{bmatrix}$$

Multiplication Properties

Associative

$$(AB)C = A(BC)$$

Distributive

$$A(B+C) = AB + AC$$
$$(B+C)D = BD + CD$$

Not commutative

 $AB \neq BA$

Matrix-Vector Multiplication

A (worthy) special case of matrix-matrix multiplication:

$$A \in \mathbb{R}^{m \times n}, \quad \mathbf{x} \in \mathbb{R}^n$$

 $\mathbf{y} = A\mathbf{x} \in \mathbb{R}^m$

Definition

$$y_i = \sum_{j=1}^n A_{ij} x_j$$

Matrix-Vector Multiplication

$$y_i = \sum_{j=1}^n A_{ij} x_j$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$y_3 = a_{31}x_1 + a_{32}x_2$$

Matrix-Vector Multiplication

Example

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \mathbf{z} = \begin{bmatrix} 8 \\ 1.5 \end{bmatrix}$$
$$\blacktriangleright A\mathbf{x} = \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
$$\blacktriangleright A\mathbf{z} = \begin{bmatrix} 6.5 \\ 4.5 \end{bmatrix}$$

Transpose

Transposition of a matrix swaps the rows and columns

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix}.$$

Definition:

• Let
$$A \in \mathbb{R}^{m \times n}$$

• The transpose $A^T \in \mathbb{R}^{n \times m}$ has entries

$$(A^T)_{ij} = A_{ji}.$$

Transpose

Example

$$A = \begin{bmatrix} 3 & 2 \\ -1 & 0 \\ 1 & 4 \end{bmatrix} \qquad A^T = \begin{bmatrix} 3 & -1 & 1 \\ 2 & 0 & 4 \end{bmatrix}$$

Example

$$\mathbf{x} = \begin{bmatrix} 1\\ -3\\ 2 \end{bmatrix} \qquad \mathbf{x}^T = \begin{bmatrix} 1 & -3 & 2 \end{bmatrix}$$

Dot product

- A special special-case of matrix-matrix multiplication
- Let \mathbf{x}, \mathbf{y} be vectors of same size $(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n)$.
- Their dot product is

$$\mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$$
$$= \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Vector Norm

$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$
$$= \sqrt{\mathbf{x}^T \mathbf{x}}$$

Geometric interpretation: length of the vector

Transpose Properties

Transpose of transpose

$$(A^T)^T = A$$

Transpose of sum

$$(A+B)^T = A^T + B^T$$

Transpose of product

$$(AB)^T = B^T A^T$$

Identity

• The identity matrix $I \in \mathbb{R}^{n \times n}$ has entries

$$I_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases},$$

$$I_{1\times 1} = [1], \qquad I_{2\times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad I_{3\times 3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

• For any A, B of appropriate dimensions

$$IA = A$$
$$BI = B$$

Inverse

▶ The inverse $A^{-1} \in \mathbb{R}^{n \times n}$ of a square matrix $A \in \mathbb{R}^{n \times n}$ satisfies

$$AA^{-1} = I = A^{-1}A$$

Compare to division of scalars

$$xx^{-1} = 1 = x^{-1}x$$

-

-

Not all matrices are invertible

• E.g., A not square,
$$A = \begin{bmatrix} 0 \end{bmatrix}$$
, $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, many more

Inverse

Example

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$

Is ${\cal B}$ the inverse of ${\cal A}?$

Example

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 1 & \frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$$

Verify on your own.

Inverse Properties

Inverse of inverse

$$(A^{-1})^{-1} = A$$

Inverse of product

$$(AB)^{-1} = B^{-1}A^{-1}$$

Inverse of transpose

$$(A^{-1})^T = (A^T)^{-1} := A^{-T}$$

What You Should Know

- Definitions of matrices and vectors
- Meaning of matrix multiplication
 - \blacktriangleright Systems of equations \longrightarrow matrix-vector equations
- Properties of multiplication
- Properties of inverse, transpose
 - Get familiar with these as course goes on