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0 Errata

• Section 4, Equation (2): y2
N should be x2

N . Fixed 9/17/12

• Section 5.3, Example 3: should read w0 = 0, w1 = −1. Fixed 9/17/12.

1 Review: Linear Regression Setup

• Training data (x1, y1), (x2, y2), . . . , (xN , yN ), where xi, yi ∈ R (i.e., real numbers: 0.3, 1.56, π, etc. )

• Hypothesis hw(x) = w0 + w1x (linear function)

• Parameters w0, w1: each different value of parameters gives a different hypothesis

• Goal: find hypothesis hw that is “best” fit to training data

• Cost function (aka loss function)

– Numerical measure of fit between hypothesis and training data

– Higher cost ⇒ worse fit

– Squared error cost function (Gauss)

cost(hw) =
N∑

i=1

(hw(xi)− yi)2

– Substitute form of linear hypothesis hw(x) = w1x+ w0 into cost function:

J(w0, w1) =
N∑

i=1

(w0 + w1xi − yi)2

– Simplification (for now): assume w0 = 0 ⇒ hw(x) = w1x. New cost function is

J(w1) =
N∑

i=1

(w1xi − yi)2

– For any given training set, the cost function is a function of parameters only.
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Example 1 (Assuming w0 = 0 ). Consider the following training set

x y
1 2
2 3

The cost function is

J(w1) = (w1x1 − y1)2 + (w1x2 − y2)2

= (w1 − 2)2 + (2w1 − 2)2

= 5w2
1 − 16w1 + 13

This is a quadratic function of w1, so we can find the minimum by optimization.

2 Illustration: Hypothesis vs. Cost Function

• Each hypothesis equated with numerical parameters

• Parameter space - set of all possible parameters

• To find best hypothesis: minimze cost function over parameter space.

3 Derivatives: What You Need To Know

• For a function f(x), denote the derivative of f by d
dxf(x) (sometimes f ′(x))

• Derivative = slope of the tangent line to f at x

• Derivative is equal to zero at a minimum of f(x)
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• Illustration: minima, maxima, local minima, convex function (bowl-shaped)

4 Minimizing J(w1)

One way to find a minimum (which works for linear regression, but not every problem) is to find the
derivative, set it equal to zero, and solve the resulting equation.

Example 2 (Continuation of Example 1). To minimize J(w1) = 5w2
1 − 16w1 + 13, set the derivative equal

to zero and solve for w1:

0 =
d

dw1
J(w1) = 10w1 − 16

10w1 = 16

w1 =
8
5

= 1.6.

General Case: For the general problem, we can solve for w1 in terms of (x1, y1), (x2, y2), . . . (xN , yN ). We
need the following fact (which you can verify if you know calculus):

d

dw1
J(w1) =

d

dw1

N∑
i=1

(w1xi − yi)2 = 2
N∑

i=1

(w1xi − yi)xi = 2
N∑

i=1

(w1x
2
i − xiyi). (1)

Then, we can set the derivative to zero and solve, to get

0 = 2[(w1x
2
1 − x1y1) + . . .+ (w1x

2
N − xNyN )]

w1(x2
1 + . . .+ x2

N ) = (x1y1 + . . .+ xNyN )

w1 =
x1y1 + . . .+ xNyN

x2
1 + . . .+ x2

1

(2)

We can apply this formula for w1 to any training set to get the best fit line. It is our first ML algorithm!

5 Gradient Descent

• But we want to minimize J(w0, w1), not J(w1). For general ML problems, not always possible to
minimize cost function by setting derivatives to zero (In this case it is possible, but laborious. See
Equation (18.3) on p. 719 of R&N for the answer).

• Gradient descent: simple and very broadly applicable algorithm to minimize any function of J(w0, w1, . . . , wd)
of multiple variables. Requirement: be able to compute partial derivatives ∂

∂wj
J(w1, . . . , wd)

• Mathemetical definition of algorithm (d = 2):

1. Initialize w0, w1 arbitrarily (e.g. w0 = 0, w1 = 0)

2. Repeat until convergence

w0 = w0 − α
∂

∂w0
J(w0, w1)

w1 = w1 − α
∂

∂w1
J(w0, w1)

• Implementation note: make updates simultaneously
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1. Initialize w0, w1 arbitrarily

2. Repeat until convergence

∆0 ←
∂

∂w0
J(w0, w1)

∆1 ←
∂

∂w1
J(w0, w1)

w1 ← w1 − α∆0

w2 ← w2 − α∆1

5.1 Illustration In One Dimension

Repeat: w1 ← w1 − α
d

dw1
J(w1)

.

5.2 Illustration In Two Dimensions
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5.3 Gradient Descent for Linear Regression

To solve the linear regression problem using gradient descent, the only thing we need to know are the partial
derivatives for our cost function:

∂

∂wj
J(w0, w1) =

∂

∂wj

N∑
i=1

(hw(xi)− yi)2 =
∂

∂wj

N∑
i=1

(w1xi + w0 − yi)2, j = 1, 2.

Here they are:

∂

∂w0
J(w0, w1) = 2

N∑
i=1

(hw(xi)− yi)

∂

∂w1
J(w0, w1) = 2

N∑
i=1

(hw(xi)− yi) · xi

• Note that we can drop the constant 2 and absorb it into the learning rate α

• Work these out on your own if you are comfortable with partial derivatives.

Example 3 (Continuation of Example 1). Recall the training set:

x y
1 2
2 3

Initialize w0 = 0, w1 = −1, and take one step of gradient descent. (Drop the factor of 2 in the partial
derivatives).

First, compute
hw(x1) = −1, hw(x2) = −2.

Then,

∂

∂w0
J(w0, w1) = (−1− 2) + (−2− 3) = −8

∂

∂w0
J(w0, w1) = (−1− 2) · 1 + (−2− 3) · 2 = −13.

So the new values (w′0, w
′
1) are

w′0 = 0− (0.1)(−8) = 0.1
w′1 = −1− (0.1)(−13) = 0.3
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A Derivatives: Optional Background

For common functions (polynomials, exponentials, log, etc.) there are rules to find their derivatives. Here
are a few of the most important rules.

• Linear
d

dx
x = 1.

• Quadratic (important!):
d

dx
x2 = 2x.

• General polynomial:
d

dx
xk = kxk−1.

• Linearity:
d

dx
(af(x) + bg(x)) = a

d

dx
f(x) + b

d

dx
g(x).

• Chain rule:
d

dx
f(g(x)) = f ′(g(x))

d

dx
g(x)

Examples:

1. d
dx3x = 3

2. d
dx (3x+ 4) = 3

3. d
dx3x2 = 6x

4. d
dx (3x− 4)2 = 2(3x− 4) d

dx (3x− 4) = 2 · (3x− 4) · 3 = 18x− 24

5. (another way) d
dx (3x− 4)2 = d

dx (9x2 − 24x+ 16) = 18x− 24

A.1 Partial Derivatives

For a function f(x, y) of two variables, the partial derivative with respect to x is denoted ∂
∂xf(x, y). It is

calculated by following the same rules, except y is treated as a constant. Example:

∂

∂x
3x2y =

∂

∂x
(3y)x2 = 6yx.

Similarly, the partial derivative with respect to y, denoted ∂
∂yf(x, y) is computed by treating x as a constant

and differentiating with respect to y. Example:

∂

∂x
3x2y =

∂

∂x
(3x2)y = 3x2.

For a function f(x1, x2, . . . , xd) of many variables, the partial derivative with respect to xi, denoted ∂
∂xi

f(x1, x2, . . . , xd),
is computed by treating all variables expect xi as constants, and computing the derivative with respect to
xi.
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