Machine Learning Methodology

Dan Sheldon

November 12, 2012

Dan Sheldon Machine Learning Methodology

Some different reasons for ML experiments

- Evaluation
 - How accurate is your classifier?
- Model selection
 - E.g., find best C, γ for Gaussian-kernel SVM
- Algorithm comparison
 - SVMs are better than logistic regression for hand-written digit classification.

Simplest question: how accurate is my classifier?

Nuances:

- Accuracy on training set?
- Accuracy on test set?

Real goal: estimate accuracy on *unseen* future data.

• Test set is a proxy for this, sometimes imperfect

Data-generating mechanism

- Assumption: training data is representative of test data
- Distinction
 - Test data = unseen future data
 - Test set = subset of training data, proxy for test data
- Formally, training examples and test examples drawn independently from same probability distribution \mathcal{P}

$$(\mathbf{x}_i, y_i) \sim \mathcal{P}$$

 $(\mathbf{x}, y) \sim \mathcal{P}$

- How to think of this
 - Huge bag of input-output pairs (\mathbf{x},y)
 - ${\ensuremath{\, \bullet }}$ N training examples drawn randomly from bag
 - Future data drawn randomly from same bag
- Example: hand-written digits

Example: hand-written digits

Discussion: can you describe a scenario where this assumption is violated?

Back to question: how to evaluate accuracy of a classifier?

Need to split N examples into train/test sets (Examples)

Dilemma

- $\bullet\,$ More training data $\to\,$ more accurate classifier
- $\bullet\,$ More test data $\rightarrow\,$ better estimate of accuracy on future data

What should we do?

Cross-Validation

Split data into k equally sized folds

For i=1 to k

- \bullet Test on fold i
- Train on all other folds

Average performance over the \boldsymbol{k} trials

Example					
	Train folds	Test folds	Accuracy		
1 2345	2,3,4,5	1	85%		
1 <mark>2</mark> 345	1,3,4,5	2	83%		
12 <mark>3</mark> 45	1,2,4,5	3	91%		
123 <mark>4</mark> 5	1,2,3,5	4	88%		
1234 <mark>5</mark>	1,2,3,4	5	84%		
		•	·		

Average accuracy = 88.2% Practical tips

- Use cross-validation
- Choose $k \in \{10,5,2\}$ depending on how much running time you can afford
- For deployment, retrain model on entire labeled set

What is wrong with this example?

Example

Run two cross-validation experiments

- Model 1: SVM with $C = 1 \rightarrow 93\%$ accuracy
- Model 2: SVM with $C = 10 \rightarrow 94\%$ accuracy

Therefore, by selecting Model 2, I can predict with 94% accuracy on future data!

Selecting the best model on test data \rightarrow optimistic estimate of performance.

Example: select (C,γ) for Gaussian SVM

• Approach: run grid search on parameters

	$\gamma = 10^{-2}$	$\gamma = 10^{-1}$	$\gamma = 10^0$
$C = 10^{-1}$			
$C = 10^{0}$			
$C = 10^1$			

- Select combination with best performance on test set
- Use simple train/test split
- Or cross-validation

To do model selection *and* estimate future performance, need separate test data.

- Validation set—tune parameters (model selection)
- Test set—estimate performance

Various setups

- Simple train/validation/test split
- Nested cross-validation

Accuracy is not always the best performance measure.

Other choices

- Precision
- Recall

Confusion Matrix

Many measures based on confusion matrix

- TP: true positive
- FP: false positive
- TN: true negative
- FN: false negative

Example: Spam classification

Precision-Recall Curves

- In practice, may want to favor precision over recall, or vice versa
- E.g., spam classification: precision is important (don't want to miss real emails)
- Most classifiers have a threshold you can tune to trade off precision vs. recall
- Test all possible thresholds \rightarrow precision-recall curve

Example on board