Clustering & Projects

Today

- Projects
 - A taste of unsupervised learning
 - Hierarchical clustering of documents
 - What is a good project?
 - Project discussion

Unsupervised Learning

- Inputs
 - Examples $x_1, x_2, x_3, ..., x_N$
 - No labels!
- Most common situation in data analysis
 - We are drowning in data:
 - Web documents, gene expression data, medical records, consumer data
 - But few human judgments
 - They are expensive!
- Goal: learn about the data
 - Organization → find subgroups, hierarchies
 - Patterns → if A and B, then C

Product Recommendations

Frequently Bought Together

Price For All Three: \$270.50

Add all three to Wish List

Show availability and shipping details

- ☑ This item: Artificial Intelligence: A Modern Approach (3rd Edition) by Stuart Russell Hardcover
- ✓ Introduction to Algorithms by Thomas H. Cormen Hardcover \$77.28
- ☑ Computer Organization and Design, Revised Fourth Edition, Fourth Edition: The Hardware/S
 Computer Architecture and Design) by David A. Patterson Paperback \$65.72

Customers Who Bought This Item Also Bought

Introduction to Algorithms

Thomas H. Cormen

★★★☆ (57) Hardcover

\$77.28

Pattern Recognition and Machine Learning ...

Christopher M. Bishop

★★★☆ (65) Hardcover

\$65.59

THE MIND'S I

The Mind's I: Fantasies and Reflections on Self ...

Douglas R. Hofstadter

Paperback

\$13.62

Document Clustering

Clustering

- Examples/instances $x_{1, x_{2, x_{3, \dots, x_{N}}}$
- Partition into groups (clusters) so that
 - Instances in same cluster are similar
 - Instances in different clusters are different

- Similarity / distance
 - "Hard to define, know it when we see it" (Eamon Keogh, UCR)
 - Many mathematical definitions, e.g.

$$dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$$

MATLAB clustering demo

Hierarchical Agglomerative Clustering (HAC)

- Initialize: every instance is a cluster
- Repeat
 - Find *most similar* clusters c_i and c_j
 - Replace them by $c_i \cup c_j$
- Similarity between two clusters?
 - Single-link: max. similarity between members
- Demo

Dendrogram

- Upon completion, have a single cluster
- Dendrogram = tree representation of hierarchical clustering
- Cut at any level to get clusters (connected components)

Document Clustering

How can we cluster documents?

Input: text documents 1,...,N

 Need feature representation to compute distance/ similarity

Bag of Words

Row, row, row, your boat, gently down the stream

Document 1

In the great green room, there was a telephone, and a red balloon

Document 2

	row	your	boat	•••	great	green	telephone	red
Doc 1	3	1	1		0	0	0	0
Doc 2	0	0	0		1	1	1	1

Document-Term Matrix

	row	your	boat	great	green	telephone	red
x_1	3	1	1	0	0	0	0
x_2	0	0	0	1	1	1	1
x_N	1	0	0	1	0	0	1

- Rows are feature vectors
 - TF vectors ("term-frequency")
- Simple but extremely powerful representation
 - Clustering
 - Classification
 - Dimensionality reduction

Projects

What Is a Project?

- Two main options
 - Apply a method we learned to a data set of your choosing
 - Explore an ML topic we haven't covered
 - (Or both)

Scope and Purpose

- Scope / effort
 - Similar to ~4–5 homework assignments
 - Multiplier: # of people in group
 - Don't forget time to:
 - Define problem
 - Gather data
 - Decide on questions
 - Design experiments
 - Interpret results...
 - It does not need to be complicated, but...
- It should have *clear purpose* and be *executed* well
 - Have a reason for applying method X to data set Y
 - Execute a project that fulfills that purpose

- Hand-written digit classification using MNIST dataset
- Purpose: practice careful empirical ML methodology on previouslydefined problem (e.g. you are designing a system for your company)
 - Goal: achieve 95% accuracy
 - Start with baseline method
 - Methodically try different things to improve performance
 - More complex hypothesis space
 - Better fitting algorithms
 - More training data
 - Clever feature design
 - Quantify the improvement due to each

- Text classification with 20 newsgroups data
- Purpose: learn basic principles of text classification
 - Do background reading
 - Motivate problem: what is text classification used for? Why are you interested in this?
 - Get hands-on experience
 - Data preparation
 - Feature design
 - Which algorithms work well for text?
 - How are text classification methods evaluated?
 - How can you visualize/interpret the results to learn something about the domain problem?
 - Run an experiment that tests a hypothesis

- Error-correcting output codes for multi-class classification
- **Purpose**: vicarious research
 - Summarize prior work (one-vs-one, one-vs-all)
 - Motivate "new" method
 - Explain it
 - Prove that it works
 - Replicate experiments
 - Design your own
 - Discussion
 - Extensions?
 - Critique?
- **Note**: other "methods" explorations would look very similar. Talk to me for more ideas.

- ML on your own data set
 - Hobby, academic interest, predict Mountain Day
- **Purpose**: learn science/art of applying machine learning to new problems
 - Why is this problem interesting?
 - What do we care about?
 - Good predictions?
 - Interpretability?
 - Or both?
 - How to formulate problem?
 - Data gathering, labeling, feature design
 - Which algorithms work well?
 - Design a meaningful experiment
 - Outcome is unknown
 - You learn something afterwards

Methods / concepts

- Linear regression
- Logistic regression
- Decision trees
 - classification/regression
- SVMs
- Kernels
 - Linear regression
 - SVMs
- Clustering
 - Agglomerative
 - K-means

- Methodology
 - Feature design
 - Diagnosing and controlling overfitting
 - Regularization
 - Performance measures
 - Cross-validation

Resources

- Data
 - UCI machine learning repository
- Software
 - MATLAB
 - Implementations of common ML algorithms
 - I can probably help find one or guide you
 - Weka
 - Popular ML toolkit in Java
 - Standalone UI
 - Lots of algorithms
 - Warning: I don't know Weka, proceed at your own risk

(I'll post some links)

Logistics

Groups of up to 3 students

Components

 Proposal 	(10%)
------------------------------	-------

- Mid-project review (25%)
- Final presentation (25%)
- Final report (40%)

Wed Oct 31

Mon Nov. 19/26

Mon. Dec. 10

Tues. Dec 11

2.5/3.5 weeks

3/2 weeks

Proposal

- 2 pages max: describe project at a high level
- Include following information
 - Title
 - Purpose
 - Motivation
 - Logistics
 - Data set (preparation?)
 - Code / software
 - Group members (who will work on what)
 - Milestones / timeline
 - What do you plan to complete by mid-project review?

Etc.

- Mid-project review
 - Two page report & meet with me as a group
 - Graded based on milestones you set forth in proposal
 - Evidence of consistent work to execute your plan
 - If something goes wrong, you will not be penalized
- Final presentation
 - ~15–20 minutes
- Final report
 - 8 pages

Discussion

• Split into groups of 2–3, (not with your project partner) and discuss project ideas

Come back and talk as a group