Lecture 10 – Multi-Class Classification

Dan Sheldon

October 15, 2012

Today

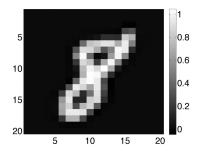
- Decision-trees odds and ends
 - Pruning
 - Why entropy works

(ロ)、(型)、(E)、(E)、 E) の(の)

Multi-class classification

A Real Classification Problem

Classify handwritten digits.



 $y \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

We don't know how to solve this yet

Hand-written digit classification

Input: 20×20 grayscale image

Unroll the image into a vector

x_1	x_{21}		x_{381}
x_2	x_{22}		x_{382}
		:	
x_{20}	x_{40}	•	T 100
L^{x20}	x_{40}	•••	x_{400}

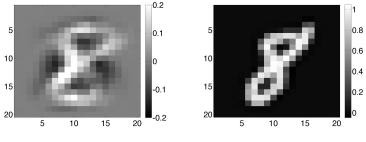
Feature vector $\mathbf{x} \in \mathbb{R}^{400}$

 $\mathbf{x} = (x_1, \dots, x_{400})^T$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Multi-class Classification

```
Input: \mathbf{x} \in \mathbb{R}^d (continuous or discrete)
Labels: y \in \{1, \dots, K\}
```


Group 1: Decision Trees

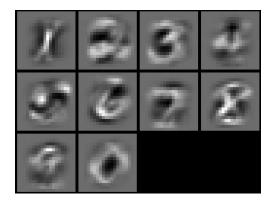
```
Group 2: Logistic regression
(Use one or more binary (y \in \{0,1\}) classifiers)
```

Hint: think about prediction first, then training.

Visualization

Format weight vector as an image:

 \mathbf{W}_8


 \mathbf{x}

Recall that

$$\mathsf{Prediction} \ = \begin{cases} 1 & \mathbf{w}^T \mathbf{x} \ge 0 \\ 0 & \mathbf{w}^T \mathbf{x} < 0 \end{cases}$$

Dot product = multiply together corresponding pixels and add

Visualization: One vs. All

くしゃ (中)・(中)・(中)・(日)

Visualization: One vs. One

