

Example	Calculation
 One fair and one biased coin (0.75 probability heads) Select coin at random and flip many times Problem: compute probability selected coin is biased Exercise: MATLAB demo + guess posterior 	Observe HHTHT. What is probability coin is biased? $P(\text{fair}) = P(\text{biased}) = \frac{1}{2}$ $P(\text{HHTHT} \text{fair}) = (\frac{1}{2})^{5}$ $P(\text{HHTHT} \text{biased}) = (\frac{3}{4})^{3}(\frac{1}{4})^{2}$ $P(\text{biased} \text{HHTHT}) =$ $\frac{P(\text{biased})P(\text{HHTHT} \text{biased})}{P(\text{biased})P(\text{HHTHT} \text{biased}) + P(\text{fair})P(\text{HHTHT} \text{fair})}$ $= \frac{\frac{1}{2} \cdot (\frac{3}{4})^{3}(\frac{1}{4})^{2}}{\frac{1}{2} \cdot (\frac{3}{4})^{3}(\frac{1}{4})^{2} + \frac{1}{2} \cdot (\frac{1}{2})^{5}}$
Bayesian Classifiers	Census Example
Observe vector of features ${\bf x}$ Predict class $y\in\{0,1,\ldots,C\}$ with highest probability given features $y_{\rm pred}={\rm argmax}_yp(y {\bf x})$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Aside: Random Variables	Aside: Joint Distribution Joint distribution of a set of random variables: table of probabilities for all possible settings of those RVs
Discrete random variable (RV): mapping from outcome $\omega \in \Omega$ to finite set of values $\begin{aligned} X_1(\omega) \in \{< 30, \ge 30\} \\ X_2(\omega) \in \{\text{no, yes}\} \\ Y(\omega) \in \{\text{no, yes}\} \end{aligned}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Notation	Bayesian Classifiers
Write RV as X instead of $X(\omega)$ when it is understood that X maps from outcomes to values Shorthand for joint distributions $p(x_1, x_2, y) := P(X_1 = x_1, X_2 = x_2, Y = y)$ $p(y x) := P(Y = y X = x)$ $p(\mathbf{x}) := P(X_1 = x_1, \dots, X_n = x_n)$ And so on (notation sometimes problematic, but we won't worry about this)	$\begin{split} y_{pred} &= \operatorname{argmax}_y p(y \mathbf{x}) \\ &= \operatorname{argmax}_y \frac{p(y)p(\mathbf{x} y)}{p(\mathbf{x})} & Bayes rule \\ &= \operatorname{argmax}_y p(y)p(\mathbf{x} y) & drop denominator \end{split}$ Need to know $p(y)$, $p(\mathbf{x} y)$ for each class Example. Discuss training
Problem	Naive Bayes
 p(x y) may be too big to represent or estimate Example: text classification x = (x₁,,x₅₀₀₀) x_j: does word j appear in document? 2⁵⁰⁰⁰ table entries to store p(x₁,,x₅₀₀₀ y = 1) Similarly impossible to estimate 	Assume features are independent given class: $p(x_1, \dots, x_n y) = p(x_1 y) p(x_2 y) \dots p(x_n y)$ $= \prod_{i=1}^n p(x_i y)$ Predict: $y_{pred} = \operatorname{argmax}_y p(y) \prod_{j=1}^n p(x_j y)$
Training Given: training examples $(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})$, need to estimate	Training: Class Prior
 Class priors: p(y = 0), p(y = 1),, p(y = C) Class-conditional distribution of feature x_j p(x_j = 0 y = c) p(x_j = 1 y = c) p(x_j = 2 y = c) p(x_j = k y = c) (C = # classes; k = # values of x_j) 	Class priors: $p(y=c) = \frac{\sum_{i=1}^m 1\{y^{(i)}=c\}}{m}$ (fraction of training examples with class c) Example

Training: Class-conditional Distribution

Laplace Smoothing

Conditional probability that $x_j = v$ given class c:

$$p(x_j = v \mid y = c) = \frac{\sum_{i=1}^m \mathbf{1}\{x_j^{(i)} = v, y^{(i)} = c\}}{\sum_{i=1}^m \mathbf{1}\{y^{(i)} = c\}}$$

(Fraction of examples with $x_j = v$ among those in class c) Example

Additional Topics

- Discretization of continuous features
- Variations of Naive Bayes for text

Conditional probability that $x_j = v$ given class c:

$$p(x_j = v | y = c) = \frac{1 + \sum_{i=1}^m \mathbf{1}\{x_j^{(i)} = v, y^{(i)} = c\}}{k + \sum_{i=1}^m \mathbf{1}\{y^{(i)} = c\}}$$

(Avoid zero probabilities: pretend there is an extra training example of each type) $% \left({{\left({{{\rm{s}}_{\rm{e}}} \right)}_{\rm{e}}}} \right)$

Example