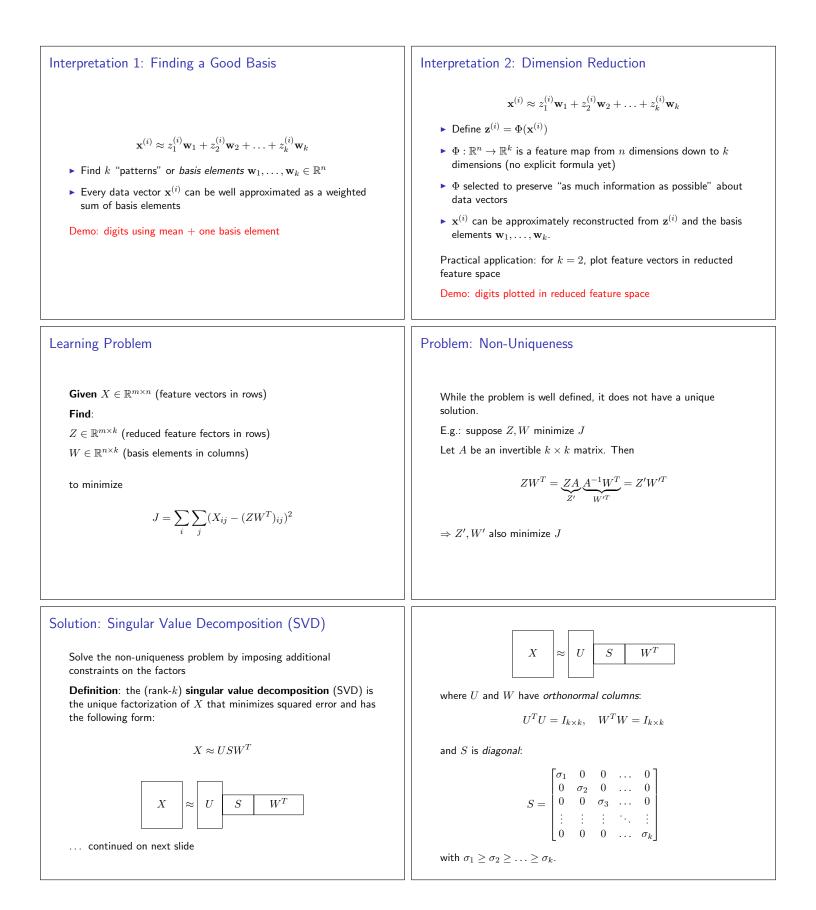
	Matrix Factorization
CS 335: Matrix Factorization and Principal Components Analysis Dan Sheldon November 19, 2014	Movies: $R \approx UV^T$ • R : only some entries observed • UV^T : lets you fill in missing entries
Unsupservised learning	Matrix Factorization for Unsupervised Learning
Data: $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)} \in \mathbb{R}^n$ Feature vectors, but no labels Goal : find patterns in data	Given: $X \in \mathbb{R}^{m \times n}$ (data matrix, rows are feature vectors) Find: $Z \in \mathbb{R}^{m \times k}$, $W \in \mathbb{R}^{n \times k}$ such that $X \approx ZW^T$ $X \approx ZW^T$ $\mathbf{x} \approx \mathbf{z}_1^{(i)} \mathbf{w}_1 + z_2^{(i)} \mathbf{w}_2 + \ldots + z_k^{(i)} \mathbf{w}_k$ Parse on board: $\mathbf{x}^{(i)}, \mathbf{z}^{(i)}, \mathbf{w}_j$
Interpretation 1: Finding a Good Basis	Practical Tip: "Center" the Data
$\mathbf{x}^{(i)} \approx z_1^{(i)} \mathbf{w}_1 + z_2^{(i)} \mathbf{w}_2 + \ldots + z_k^{(i)} \mathbf{w}_k$ Find k "patterns" or basis elements $\mathbf{w}_1, \ldots, \mathbf{w}_k \in \mathbb{R}^n$ Every data vector $\mathbf{x}^{(i)}$ can be well approximated as a weighted sum of basis elements	In practice, the data is usually "centered" by subtracting the mean: $\begin{split} \mu &= \frac{1}{m} \sum_{i=1}^m \mathbf{x}^{(i)} \\ \mathbf{x}^{(i)} \leftarrow \mathbf{x}^{(i)} - \mu \\ \text{In MATLAB:} \\ \text{mu = mean(X);} \\ \text{X = X - repmat(mu, m, 1);} \end{split}$



SVD Properties Summary: Principal Components Analysis Principal Components Analysis (PCA) is a well-known technique • Uniquely defines U, S, Vfor dimensinality reduction that boils down to the following: \blacktriangleright Closely related to eigenvalue decomposition of X^TX ► Step 1: center data ▶ Efficient to compute. E.g., in MATLAB \blacktriangleright Step 2: perform SVD to get $X\approx USW^T$ [U,S,W] = svds(X, k);▶ Step 3: Let Z = US, so we have $X \approx ZW^T$ **Note**: does not work when entries of X are missing (i.e., for movie The rows of Z are the reduced feature vectors, and the columns of recommendations!) \boldsymbol{W} are the basis elements or "principal components" Discusssion

- Briefly discuss alternate view of PCA on board
 - Linear feature map
 - MATLAB demo
- Uses of PCA
 - Data exploration
 - Run prior to supervised learning