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Matrix Factorization

Movies: R~ UVT

> R: only some entries observed
» UVT: lets you fill in missing entries

Unsupservised learning

Data: x) x®@ . x(m ¢ R»
Feature vectors, but no labels

Goal: find patterns in data

Matrix Factorization for Unsupervised Learning

Given: X € R™*" (data matrix, rows are feature vectors)

Find: Z € R™*k W € R™** such that

X~ 2ZWT

x(i) ~ zy)wl -+ zéi)wz +...+ z,(:)wk

Parse on board: x(®,z() w;

Interpretation 1: Finding a Good Basis

(@)

x@ ~ 2

w1 + zéi)WQ +...+ z(i)wk

» Find k “patterns” or basis elements wy,...,wy € R"

» Every data vector x® can be well approximated as a weighted
sum of basis elements

Practical Tip: “Center” the Data

In practice, the data is usually “centered” by subtracting the mean:
1 m
— (@)
= X

x0 o x0) _
In MATLAB:

mu = mean(X);
X = X - repmat(mu, m, 1);




Interpretation 1: Finding a Good Basis

x® ~ z§i>W1 + Zéi)WZ +.o..t ZIE:i)Wk

» Find k “patterns” or basis elements wy,...,wy € R"

» Every data vector x® can be well approximated as a weighted
sum of basis elements

Demo: digits using mean + one basis element

Interpretation 2: Dimension Reduction

x(i) =~ zy)wl -+ Z;i)WQ +...+ z,(:)wk

v

Define z() = ®(x(®)

» & :R" — R¥ is a feature map from n dimensions down to k
dimensions (no explicit formula yet)

v

d selected to preserve “as much information as possible” about
data vectors

» x( can be approximately reconstructed from z(® and the basis
elements wy, ..., Wg.

Practical application: for k = 2, plot feature vectors in reducted
feature space

Demo: digits plotted in reduced feature space

Learning Problem

Given X € R™*" (feature vectors in rows)
Find:
Z € R™*F (reduced feature fectors in rows)

W € R™* (basis elements in columns)

to minimize

J=3 3 (Xij— (ZwWT)y)?

i

Problem: Non-Uniqueness

While the problem is well defined, it does not have a unique
solution.

E.g.: suppose Z, W minimize J

Let A be an invertible k x k matrix. Then

Wt =zA AW = Zw'"
! w'T

= Z', W' also minimize J

Solution: Singular Value Decomposition (SVD)

Solve the non-uniqueness problem by imposing additional
constraints on the factors

Definition: the (rank-k) singular value decomposition (SVD) is
the unique factorization of X that minimizes squared error and has
the following form:

X ~USWT

. continued on next slide

X |~ U S

where U and W have orthonormal columns:

UTU = Iix, WIW = Iy,

and S is diagonal:

o 0 0 0
0 o2 O 0
S = 0 0 o3 0
0O 0 0 [

with o1 > 09 > ... > 0}.




SVD Properties

> Uniquely defines U, S, V'
> Closely related to eigenvalue decomposition of X7 X
» Efficient to compute. E.g., in MATLAB

[U,s,W] = svds(X, k);

Note: does not work when entries of X are missing (i.e., for movie
recommendations!)

Summary: Principal Components Analysis

Principal Components Analysis (PCA) is a well-known technique
for dimensinality reduction that boils down to the following:

» Step 1: center data
» Step 2: perform SVD to get X ~ USWT
> Step 3: Let Z = US, so we have X ~ ZW7T

The rows of Z are the reduced feature vectors, and the columns of
W are the basis elements or “principal components”

Discusssion

» Briefly discuss alternate view of PCA on board

> Linear feature map
» MATLAB demo
> Uses of PCA

» Data exploration

» Run prior to supervised learning




