
CS 335: Matrix Factorization and Principal
Components Analysis

Dan Sheldon

November 19, 2014

Matrix Factorization

Movies: R ≈ UV T

I R: only some entries observed
I UV T : lets you fill in missing entries

Unsupservised learning

Data: x(1),x(2), . . . ,x(m) ∈ Rn

Feature vectors, but no labels

Goal: find patterns in data

Matrix Factorization for Unsupervised Learning

Given: X ∈ Rm×n (data matrix, rows are feature vectors)

Find: Z ∈ Rm×k, W ∈ Rn×k such that

X ≈ ZW T

X ≈ Z W T

x(i) ≈ z(i)1 w1 + z
(i)
2 w2 + . . .+ z

(i)
k wk

Parse on board: x(i), z(i),wj

Interpretation 1: Finding a Good Basis

x(i) ≈ z(i)1 w1 + z
(i)
2 w2 + . . .+ z

(i)
k wk

I Find k “patterns” or basis elements w1, . . . ,wk ∈ Rn

I Every data vector x(i) can be well approximated as a weighted
sum of basis elements

Practical Tip: “Center” the Data

In practice, the data is usually “centered” by subtracting the mean:

µ =
1

m

m∑

i=1

x(i)

x(i) ← x(i) − µ

In MATLAB:

mu = mean(X);

X = X - repmat(mu, m, 1);



Interpretation 1: Finding a Good Basis

x(i) ≈ z(i)1 w1 + z
(i)
2 w2 + . . .+ z

(i)
k wk

I Find k “patterns” or basis elements w1, . . . ,wk ∈ Rn

I Every data vector x(i) can be well approximated as a weighted
sum of basis elements

Demo: digits using mean + one basis element

Interpretation 2: Dimension Reduction

x(i) ≈ z(i)1 w1 + z
(i)
2 w2 + . . .+ z

(i)
k wk

I Define z(i) = Φ(x(i))

I Φ : Rn → Rk is a feature map from n dimensions down to k
dimensions (no explicit formula yet)

I Φ selected to preserve “as much information as possible” about
data vectors

I x(i) can be approximately reconstructed from z(i) and the basis
elements w1, . . . ,wk.

Practical application: for k = 2, plot feature vectors in reducted
feature space

Demo: digits plotted in reduced feature space

Learning Problem

Given X ∈ Rm×n (feature vectors in rows)

Find:

Z ∈ Rm×k (reduced feature fectors in rows)

W ∈ Rn×k (basis elements in columns)

to minimize

J =
∑

i

∑

j

(Xij − (ZW T )ij)
2

Problem: Non-Uniqueness

While the problem is well defined, it does not have a unique
solution.

E.g.: suppose Z,W minimize J

Let A be an invertible k × k matrix. Then

ZW T = ZA︸︷︷︸
Z′

A−1W T
︸ ︷︷ ︸

W ′T

= Z ′W ′T

⇒ Z ′,W ′ also minimize J

Solution: Singular Value Decomposition (SVD)

Solve the non-uniqueness problem by imposing additional
constraints on the factors

Definition: the (rank-k) singular value decomposition (SVD) is
the unique factorization of X that minimizes squared error and has
the following form:

X ≈ USW T

X ≈ U S W T

. . . continued on next slide

X ≈ U S W T

where U and W have orthonormal columns:

UTU = Ik×k, W TW = Ik×k

and S is diagonal:

S =




σ1 0 0 . . . 0
0 σ2 0 . . . 0
0 0 σ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . σk




with σ1 ≥ σ2 ≥ . . . ≥ σk.



SVD Properties

I Uniquely defines U , S, V

I Closely related to eigenvalue decomposition of XTX

I Efficient to compute. E.g., in MATLAB

[U,S,W] = svds(X, k);

Note: does not work when entries of X are missing (i.e., for movie
recommendations!)

Summary: Principal Components Analysis

Principal Components Analysis (PCA) is a well-known technique
for dimensinality reduction that boils down to the following:

I Step 1: center data

I Step 2: perform SVD to get X ≈ USW T

I Step 3: Let Z = US, so we have X ≈ ZW T

The rows of Z are the reduced feature vectors, and the columns of
W are the basis elements or “principal components”

Discusssion

I Briefly discuss alternate view of PCA on board

I Linear feature map

I MATLAB demo

I Uses of PCA

I Data exploration

I Run prior to supervised learning


