
11/4/14	

1	

Neural	
 Nets	

Neural	
 Nets	

Building high-level features using large-scale unsupervised learning

spaced thresholds in between. The reported accuracy
is the best classification accuracy among 20 thresholds.

4.3. Recognition

Surprisingly, the best neuron in the network performs
very well in recognizing faces, despite the fact that no
supervisory signals were given during training. The
best neuron in the network achieves 81.7% accuracy in
detecting faces. There are 13,026 faces in the test set,
so guessing all negative only achieves 64.8%. The best
neuron in a one-layered network only achieves 71% ac-
curacy while best linear filter, selected among 100,000
filters sampled randomly from the training set, only
achieves 74%.

To understand their contribution, we removed the lo-
cal contrast normalization sublayers and trained the
network again. Results show that the accuracy of
best neuron drops to 78.5%. This agrees with pre-
vious study showing the importance of local contrast
normalization (Jarrett et al., 2009).

We visualize histograms of activation values for face
images and random images in Figure 2. It can be seen,
even with exclusively unlabeled data, the neuron learns
to di↵erentiate between faces and random distractors.
Specifically, when we give a face as an input image, the
neuron tends to output value larger than the threshold,
0. In contrast, if we give a random image as an input
image, the neuron tends to output value less than 0.

Figure 2. Histograms of faces (red) vs. no faces (blue).
The test set is subsampled such that the ratio between
faces and no faces is one.

4.4. Visualization

In this section, we will present two visualization tech-
niques to verify if the optimal stimulus of the neuron
is indeed a face. The first method is visualizing the
most responsive stimuli in the test set. Since the test
set is large, this method can reliably detect near opti-
mal stimuli of the tested neuron. The second approach
is to perform numerical optimization to find the opti-
mal stimulus (Berkes & Wiskott, 2005; Erhan et al.,
2009; Le et al., 2010). In particular, we find the norm-
bounded input x which maximizes the output f of the

tested neuron, by solving:

x⇤ = argmin
x

f(x;W,H), subject to ||x||2 = 1.

Here, f(x;W,H) is the output of the tested neuron
given learned parameters W,H and input x. In our
experiments, this constraint optimization problem is
solved by projected gradient descent with line search.

These visualization methods have complementary
strengths and weaknesses. For instance, visualizing
the most responsive stimuli may su↵er from fitting to
noise. On the other hand, the numerical optimization
approach can be susceptible to local minima. Results,
shown in Figure 3, confirm that the tested neuron in-
deed learns the concept of faces.

Figure 3. Top: Top 48 stimuli of the best neuron from the
test set. Bottom: The optimal stimulus according to nu-
merical constraint optimization.

4.5. Invariance properties

We would like to assess the robustness of the face de-
tector against common object transformations, e.g.,
translation, scaling and out-of-plane rotation. First,
we chose a set of 10 face images and perform distor-
tions to them, e.g., scaling and translating. For out-
of-plane rotation, we used 10 images of faces rotating
in 3D (“out-of-plane”) as the test set. To check the ro-
bustness of the neuron, we plot its averaged response
over the small test set with respect to changes in scale,
3D rotation (Figure 4), and translation (Figure 5).6

6Scaled, translated faces are generated by standard
cubic interpolation. For 3D rotated faces, we used 10 se-

h.p://www.npr.org/2012/06/26/155792609/a-­‐massive-­‐google-­‐network-­‐learns-­‐to-­‐idenBfy	

Building	
 High-­‐level	
 Features	
 Using	
 Large	
 Scale	
 Unsupervised	
 Learning	

Quoc	
 V.	
 Le,	
 Marc’Aurelio	
 Ranzato,	
 Rajat	
 Monga,	
 Ma.hieu	
 Devin,	
 Kai	
 Chen,	
 Greg	
 S.	
 Corrado,	

Jeffrey	
 Dean,	
 and	
 Andrew	
 Y.	
 Ng	
 	

	

ML	
 watches	
 YouTube	
 for	
 three	
 straight	
 days!	

(and	
 learns	
 to	
 recognize	
 cats)	

	
 	

State-­‐of-­‐the-­‐Art	
 Image	
 ClassificaBon	

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto

kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto

ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto

hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved quite well with datasets of this size,
especially if they are augmented with label-preserving transformations. For example, the current-
best error rate on the MNIST digit-recognition task (<0.3%) approaches human performance [4].
But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
much fewer connections and parameters and so they are easier to train, while their theoretically-best
performance is likely to be only slightly worse.

1

State-­‐of-­‐the-­‐art	
 Image	
 ClassificaBon	

Lyle H Ungar, University of Pennsylvania

Validation classification

Digit	
 RecogniBon	

Handwritten digit recognition

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error

Current best (kernel machines, vision algorithms) ≈ 0.6% error

Chapter 20, Section 5 20

What	
 is	
 a	
 Neural	
 Network?	

•  Biological	
 view:	
 models	
 neurons	
 in	
 the	
 brain	

	

•  MathemaBcal	
 view	

–  Flexible	
 parametric	
 class	
 of	
 non-­‐linear	
 funcBons	

–  Compose	
 many	
 linear/logisBc	
 regression	
 models	

–  Easy	
 to	
 compute	
 	

•  h(x):	
 “feed-­‐forward”	

•  ParBal	
 derivaBves:	
 “backward	
 propagaBon”	

•  Develop	
 on	
 board	

11/4/14	

2	

Hypothesis	
 Class	

Single-layer perceptrons

Input
Units Units

OutputWj,i

-4 -2 0 2 4x1
-4 -2 0 2 4

x2
0

0.2
0.4
0.6
0.8

1
Perceptron output

Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

Chapter 20, Section 5 9

Hypothesis	
 Class	

Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

-4 -2 0 2 4x1
-4 -2 0 2 4

x2
0

0.2
0.4
0.6
0.8

1
hW(x1, x2)

-4 -2 0 2 4x1
-4 -2 0 2 4

x2
0

0.2
0.4
0.6
0.8

1
hW(x1, x2)

Combine two opposite-facing threshold functions to make a ridge

Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)

Chapter 20, Section 5 14

2	
 layers	
 3	
 layers	

Learning	
 in	
 Neural	
 Networks	

•  “Backprop”	
 +	
 “StochasBc	
 Gradient	
 Descent”	

Neural	
 net	
 specific	
 Generally	
 useful!	

StochasBc	
 Gradient	
 Descent	

•  Like	
 gradient	
 descent,	
 but	
 training	
 examples	

treated	
 one-­‐by-­‐one	

•  Develop	
 on	
 board	

SGD	
 Discussion	

•  Simple	

•  Memory	
 efficient	

– Applies	
 to	
 huge	
 data	
 sets	

•  Online	

– Trivial	
 to	
 add	
 new	
 examples,	
 or	
 get	
 rid	
 of	
 old	
 ones	

•  Can	
 solve	
 huge	
 fracBon	
 of	
 ML	
 problems	

Pillar	
 of	
 large-­‐scale	
 machine	
 learning	

Backprop	

•  Backprop	
 =	
 chain	
 rule	
 for	
 parBal	
 derivaBves	

– Works	
 out	
 nicely	
 for	
 “feed-­‐forward”	
 neural	
 nets	

– Compute	
 funcBon:	
 forward	
 pass	
 through	
 network	

– Compute	
 derivaBves:	
 backward	
 pass	

•  Develop	
 on	
 board	

11/4/14	

3	

Architectures	

Local	
 connecBvity	
 Shared	
 weights	

h.p://www.deeplearning.net/tutorial/	

404 Neural Networks

FIGURE 11.9. Examples of training cases from ZIP code data. Each image is
a 16× 16 8-bit grayscale representation of a handwritten digit.

decay parameter, and hence cross-validation of this parameter would be
preferred.

11.7 Example: ZIP Code Data

This example is a character recognition task: classification of handwritten
numerals. This problem captured the attention of the machine learning and
neural network community for many years, and has remained a benchmark
problem in the field. Figure 11.9 shows some examples of normalized hand-
written digits, automatically scanned from envelopes by the U.S. Postal
Service. The original scanned digits are binary and of different sizes and
orientations; the images shown here have been deslanted and size normal-
ized, resulting in 16× 16 grayscale images (Le Cun et al., 1990). These 256
pixel values are used as inputs to the neural network classifier.

A black box neural network is not ideally suited to this pattern recogni-
tion task, partly because the pixel representation of the images lack certain
invariances (such as small rotations of the image). Consequently early at-
tempts with neural networks yielded misclassification rates around 4.5%
on various examples of the problem. In this section we show some of the
pioneering efforts to handcraft the neural network to overcome some these
deficiencies (Le Cun, 1989), which ultimately led to the state of the art in
neural network performance(Le Cun et al., 1998)1.

Although current digit datasets have tens of thousands of training and
test examples, the sample size here is deliberately modest in order to em-

1The figures and tables in this example were recreated from Le Cun (1989).

Digits	
 Example	

11.7 Example: ZIP Code Data 405

16x16

8x8x2

16x16

10

4x4

4x4

8x8x2

10

Shared Weights Net-5Net-4

Net-1

4x4x4

Local Connectivity

10
10

10

Net-3Net-2

8x812

16x1616x1616x16

FIGURE 11.10. Architecture of the five networks used in the ZIP code example.

phasize the effects. The examples were obtained by scanning some actual
hand-drawn digits, and then generating additional images by random hor-
izontal shifts. Details may be found in Le Cun (1989). There are 320 digits
in the training set, and 160 in the test set.

Five different networks were fit to the data:

Net-1: No hidden layer, equivalent to multinomial logistic regression.

Net-2: One hidden layer, 12 hidden units fully connected.

Net-3: Two hidden layers locally connected.

Net-4: Two hidden layers, locally connected with weight sharing.

Net-5: Two hidden layers, locally connected, two levels of weight sharing.

These are depicted in Figure 11.10. Net-1 for example has 256 inputs, one
each for the 16×16 input pixels, and ten output units for each of the digits
0–9. The predicted value f̂k(x) represents the estimated probability that
an image x has digit class k, for k = 0, 1, 2, . . . , 9.

256	
 inputs,	
 10	
 outputs:	

mulBclass	
 logisBc	
 regression	

From	
 [HasBe,	
 Tibshirani,	
 Friedman]	
 	

Digits	
 Example:	
 Net	
 2	
 11.7 Example: ZIP Code Data 405

16x16

8x8x2

16x16

10

4x4

4x4

8x8x2

10

Shared Weights Net-5Net-4

Net-1

4x4x4

Local Connectivity

10
10

10

Net-3Net-2

8x812

16x1616x1616x16

FIGURE 11.10. Architecture of the five networks used in the ZIP code example.

phasize the effects. The examples were obtained by scanning some actual
hand-drawn digits, and then generating additional images by random hor-
izontal shifts. Details may be found in Le Cun (1989). There are 320 digits
in the training set, and 160 in the test set.

Five different networks were fit to the data:

Net-1: No hidden layer, equivalent to multinomial logistic regression.

Net-2: One hidden layer, 12 hidden units fully connected.

Net-3: Two hidden layers locally connected.

Net-4: Two hidden layers, locally connected with weight sharing.

Net-5: Two hidden layers, locally connected, two levels of weight sharing.

These are depicted in Figure 11.10. Net-1 for example has 256 inputs, one
each for the 16×16 input pixels, and ten output units for each of the digits
0–9. The predicted value f̂k(x) represents the estimated probability that
an image x has digit class k, for k = 0, 1, 2, . . . , 9.

Add	
 hidden	
 layer	
 with	
 12	
 units	

Digits	
 Example:	
 Net	
 3	
 11.7 Example: ZIP Code Data 405

16x16

8x8x2

16x16

10

4x4

4x4

8x8x2

10

Shared Weights Net-5Net-4

Net-1

4x4x4

Local Connectivity

10
10

10

Net-3Net-2

8x812

16x1616x1616x16

FIGURE 11.10. Architecture of the five networks used in the ZIP code example.

phasize the effects. The examples were obtained by scanning some actual
hand-drawn digits, and then generating additional images by random hor-
izontal shifts. Details may be found in Le Cun (1989). There are 320 digits
in the training set, and 160 in the test set.
Five different networks were fit to the data:

Net-1: No hidden layer, equivalent to multinomial logistic regression.

Net-2: One hidden layer, 12 hidden units fully connected.

Net-3: Two hidden layers locally connected.

Net-4: Two hidden layers, locally connected with weight sharing.

Net-5: Two hidden layers, locally connected, two levels of weight sharing.

These are depicted in Figure 11.10. Net-1 for example has 256 inputs, one
each for the 16×16 input pixels, and ten output units for each of the digits
0–9. The predicted value f̂k(x) represents the estimated probability that
an image x has digit class k, for k = 0, 1, 2, . . . , 9.

Two	
 hidden	
 layers,	
 	
 each	
 hidden	
 unit	
 summarizes	
 a	
 small	

square	
 patch	
 of	
 input	
 image	

Digits	
 Example:	
 Net	
 4	

11.7 Example: ZIP Code Data 405

16x16

8x8x2

16x16

10

4x4

4x4

8x8x2

10

Shared Weights Net-5Net-4

Net-1

4x4x4

Local Connectivity

10
10

10

Net-3Net-2

8x812

16x1616x1616x16

FIGURE 11.10. Architecture of the five networks used in the ZIP code example.

phasize the effects. The examples were obtained by scanning some actual
hand-drawn digits, and then generating additional images by random hor-
izontal shifts. Details may be found in Le Cun (1989). There are 320 digits
in the training set, and 160 in the test set.
Five different networks were fit to the data:

Net-1: No hidden layer, equivalent to multinomial logistic regression.

Net-2: One hidden layer, 12 hidden units fully connected.

Net-3: Two hidden layers locally connected.

Net-4: Two hidden layers, locally connected with weight sharing.

Net-5: Two hidden layers, locally connected, two levels of weight sharing.

These are depicted in Figure 11.10. Net-1 for example has 256 inputs, one
each for the 16×16 input pixels, and ten output units for each of the digits
0–9. The predicted value f̂k(x) represents the estimated probability that
an image x has digit class k, for k = 0, 1, 2, . . . , 9.

Same	
 weights	

applied	
 to	
 each	

square	
 patch	
 in	

original	
 input	

image	

Digits	
 Example:	
 Net	
 5	

11.7 Example: ZIP Code Data 405

16x16

8x8x2

16x16

10

4x4

4x4

8x8x2

10

Shared Weights Net-5Net-4

Net-1

4x4x4

Local Connectivity

10
10

10

Net-3Net-2

8x812

16x1616x1616x16

FIGURE 11.10. Architecture of the five networks used in the ZIP code example.

phasize the effects. The examples were obtained by scanning some actual
hand-drawn digits, and then generating additional images by random hor-
izontal shifts. Details may be found in Le Cun (1989). There are 320 digits
in the training set, and 160 in the test set.

Five different networks were fit to the data:

Net-1: No hidden layer, equivalent to multinomial logistic regression.

Net-2: One hidden layer, 12 hidden units fully connected.

Net-3: Two hidden layers locally connected.

Net-4: Two hidden layers, locally connected with weight sharing.

Net-5: Two hidden layers, locally connected, two levels of weight sharing.

These are depicted in Figure 11.10. Net-1 for example has 256 inputs, one
each for the 16×16 input pixels, and ten output units for each of the digits
0–9. The predicted value f̂k(x) represents the estimated probability that
an image x has digit class k, for k = 0, 1, 2, . . . , 9.

Even	
 fancier	
 shared	
 weights	

11/4/14	

4	

Digits	
 Example	

406 Neural Networks

Training Epochs

%
 C

or
re

ct
 o

n
Te

st
 D

at
a

0 5 10 15 20 25 30

60

70

80

90

100

Net-1

Net-2

Net-3

Net-4
Net-5

FIGURE 11.11. Test performance curves, as a function of the number of train-
ing epochs, for the five networks of Table 11.1 applied to the ZIP code data.
(Le Cun, 1989)

The networks all have sigmoidal output units, and were all fit with the
sum-of-squares error function. The first network has no hidden layer, and
hence is nearly equivalent to a linear multinomial regression model (Exer-
cise 11.4). Net-2 is a single hidden layer network with 12 hidden units, of
the kind described above.

The training set error for all of the networks was 0%, since in all cases
there are more parameters than training observations. The evolution of the
test error during the training epochs is shown in Figure 11.11. The linear
network (Net-1) starts to overfit fairly quickly, while test performance of
the others level off at successively superior values.

The other three networks have additional features which demonstrate
the power and flexibility of the neural network paradigm. They introduce
constraints on the network, natural for the problem at hand, which allow
for more complex connectivity but fewer parameters.

Net-3 uses local connectivity: this means that each hidden unit is con-
nected to only a small patch of units in the layer below. In the first hidden
layer (an 8×8 array), each unit takes inputs from a 3×3 patch of the input
layer; for units in the first hidden layer that are one unit apart, their recep-
tive fields overlap by one row or column, and hence are two pixels apart.
In the second hidden layer, inputs are from a 5× 5 patch, and again units
that are one unit apart have receptive fields that are two units apart. The
weights for all other connections are set to zero. Local connectivity makes
each unit responsible for extracting local features from the layer below, and

320	
 train	
 /	
 120	
 test	

