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Neural Nets

ML watches YouTube for three straight days!
(and learns to recognize cats)

http://www.npr.org/2012/06/26/155792609/a-massive-google-network-learns-to-identify
Building High-level Features Using Large Scale Unsupervised Learning
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leffrey Dean, and Andrew Y. Ng
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Digit Recognition

[ Handwritten digit recognition I
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3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error
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What is a Neural Network?
* Biological view: models neurons in the brain

* Mathematical view
— Flexible parametric class of non-linear functions
— Compose many linear/logistic regression models
— Easy to compute
* h(x): “feed-forward”
* Partial derivatives: “backward propagation”

* Develop on board
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Hypothesis Class

( Expressiveness of MLPs |

All continuous functions w/ 2 layers, all functions w/ 3 layers
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Learning in Neural Networks

* “Backprop” + “Stochastic Gradient Descent”

Neural net specific Generally useful!

Stochastic Gradient Descent

* Like gradient descent, but training examples
treated one-by-one

* Develop on board

SGD Discussion

* Simple
* Memory efficient
— Applies to huge data sets
* Online
— Trivial to add new examples, or get rid of old ones
* Can solve huge fraction of ML problems

Pillar of large-scale machine learning

Backprop

* Backprop = chain rule for partial derivatives
— Works out nicely for “feed-forward” neural nets
— Compute function: forward pass through network
— Compute derivatives: backward pass

* Develop on board
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http://www.deeplearning.net/tutorial/
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Digits Example
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From [Hastie, Tibshirani, Friedman] Net-1

256 inputs, 10 outputs:
multiclass logistic regression

Digits Example: Net 2
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Net-2

Add hidden layer with 12 units

Digits Example: Net 3
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Net-3
Local Connectivity

Two hidden layers, each hidden unit summarizes a small
square patch of input image

Same weights
applied to each
square patch in
original input
image
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Shared Weights

Digits Example: Net 5
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Even fancier shared weights
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Training Epochs

320 train / 120 test
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