
CS 335: Kernel SVMs

Dan Sheldon

November 18, 2014

First, a quick review

Hard-margin SVM

min
w,b

1

2
||w||2

subject to y(i)(wTx(i) + b) ≥ 1 for all i

Functional margin at least one for all training examples

1D Exercise: which examples have functional margin = 1? > 1?

Support Vectors

Definition: in a hard-margin SVM, a support vector is a training
example with functional margin exactly equal to one.

Visualization

MATLAB demo: hard-margin SVM (1)

Another interpretation of functional margin constraint:

y(i)(wTx(i) + b) ≥ 1

All training examples at least one contour from decision boundary

MATLAB demo: hard-margin SVM w/ outlier (2)

Soft-Margin SVM

min
w,b,ξ

1

2
||w||2 + C

m∑

i=1

ξi

subject to y(i)(wTx(i) + b) ≥ 1− ξi for all i

ξi ≥ 0, i = 1, . . . ,m

1D exercise

MATLAB demo (3). Exercise: is C increasing or decreasing?

Support Vectors

Definition: a support vector is a training example with functional
margin less than or equal to one.

(i.e., it falls on the wrong side of the 1-contour)

(definition works for hard or soft margin SVM)

Kernel SVM Motivation

I But what we really want is a flexible non-linear classifer
MATLAB demo (4)

I How can we get this with SVMs?

I Kernel trick!

Kernel Trick Starting Point: Dual Optimization

Original SVM problem (hard-margin)

min
w,b

1

2
||w||2

s.t. y(i)(wTx(i) + b) ≥ 1 for all i

. . . but this is not the version we usually solve.

Kernel Trick Starting Point: Dual Optimization

After some fancy tricks, we instead solve this problem (the
Lagrangian dual):

max
α

m∑

i=1

αi −
1

2

m∑

i,j=1

y(i)y(j)αiαj(x
(i))Tx(j)

s.t. αi ≥ 0, for all i,
m∑

i=1

αiy
(i) = 0

Then recover b (not shown) and w from the α variables:

w =

m∑

i=1

αiy
(i)x(i)

Aside: Support Vectors

Interpret this:

w =

m∑

i=1

αiy
(i)x(i)

Fact: αi > 0 only if x(i) is a support vector.

⇒ w is a linear combination of support vectors

Dot Products

Observation: learning problem and prediction rule only depend on
training examples through dot products

Learning problem:

max
α

m∑

i=1

αi −
1

2

m∑

i,j=1

y(i)y(j)αiαj(x
(i))Tx(j)

s.t. αi ≥ 0, for all i,
m∑

i=1

αiy
(i) = 0

Dot Products

Observation: learning problem and prediction rule only depend on
training examples through dot products

Prediction for new x:

hw,b(x) = b+wTx = b+

m∑

i=1

αiy
(i)(x(i))Tx

Kernel Trick

Suppose you have a black box K(·, ·) to compute the dot product
for any two feature vectors x and z:

K(x, z) := xT z

Thought experiment: I hold feature vectors in a box. You can ask
me only for dot products.

Can you still solve the learning problem? Make predictions?

Kernel Trick

max
α

m∑

i=1

αi −
1

2

m∑

i,j=1

y(i)y(j)αiαjK(x(i),x(j))

s.t. αi ≥ 0, for all i,
m∑

i=1

αiy
(i) = 0

hw,b(x) = b+wTx = b+

m∑

i=1

αiy
(i)K(x(i),x)

Kernel Trick

This doesn’t seem that special. . .

Real trick: fancy non-linear feature expansions in a
computationally efficient way

Feature Mapping

Let φ be a feature mapping from original features to expanded
features.

E.g., φ : Rn → Rn2
:

φ(x) =




x1x1
x1x2
x2x1
x2x2


 (products of two original features)

Kernel

Given any feature mapping φ, the kernel corresponding to φ is

K(x, z) = φ(x)Tφ(z)

(map to higher dimensional space, then take dot product)

Example: Polynomial Kernel

Important trick: we can often compute kernel without actually
doing the expansion

K(x, z) = (xT z)2

Claim: this is the kernel corresponding to φ(x) =




x1x1
x1x2
x2x1
x2x2




Exercise: verify this on board

More Polynomial Kernels

Claim: these two are equivalent

φ(x) =




1√
2x1√
2x2

x1x1
x1x2
x2x1
x2x2




K(x, z) = (xT z+ 1)2

I Complexity of computing φ(x)Tφ(z)?

I Complexity of computing (xT z+ 1)2?

Polynomial Kernel: Significance

I Compute φ(x)Tφ(z): O(n2)

I Compute (xT z+ 1)2: O(n)

Implement a non-linear feature expansion with no extra
computational cost

I Compute xT z: O(n)

Even More Polynomial Kernels

K(x, z) = (xT z+ 1)d

Corresponds to φ that takes all products of up to d original features

O(n) time to compute kernel instead of O(nd)

Gaussian Kernel

K(x, z) = exp(−γ||x− z||2)

I Highly flexible, non-linear kernel

I Corresponds to infinite dimensional φ (cannot implement feature
mapping, but can still use kernel)

Gaussian Kernel Interpretation

K(x, z) = exp(−γ||x− z||2)

I Intepretation: similarity of x to z

I Picture on board
I γ controls how close x and z need to be to be similar

* MATLAB demo

