CS 335: Kernel SVMs

Dan Sheldon

November 18, 2014

First, a quick review

Hard-margin SVM
1 2
min —||lw
in 5w
subject to y@(wix® +b) > 1 forall i
Functional margin at least one for all training examples

1D Exercise: which examples have functional margin = 1?7 > 17

Support Vectors

Definition: in a hard-margin SVM, a support vector is a training
example with functional margin exactly equal to one.

Visualization

MATLAB demo: hard-margin SVM (1)

Another interpretation of functional margin constraint:
yO(wix® +5) > 1

All training examples at least one contour from decision boundary

MATLAB demo: hard-margin SVM w/ outlier (2)

Soft-Margin SVM

) 1 9 m
min 5|w] +C;&
subject to y(® (wa(i) +b)>1-¢& foralli
&>0,i=1,...,m

1D exercise

MATLAB demo (3). Exercise: is C increasing or decreasing?

Support Vectors

Definition: a support vector is a training example with functional
margin less than or equal to one.

(i.e., it falls on the wrong side of the 1-contour)

(definition works for hard or soft margin SVM)

Kernel SVM Motivation

» But what we really want is a flexible non-linear classifer
MATLAB demo (4)

» How can we get this with SVMs?

» Kernel trick!

Kernel Trick Starting Point: Dual Optimization

Original SVM problem (hard-margin)

1
min =||w][?
whb 2

st y@wix@ +p)>1 foralli

. but this is not the version we usually solve.

Kernel Trick Starting Point: Dual Optimization

After some fancy tricks, we instead solve this problem (the
Lagrangian dual):

nia.xz% -5 Z yDyDaga; (xD)Tx0)
i=1 i,7=1
st. «; >0, foralli,

m

> iy =0
i=1

Then recover b (not shown) and w from the « variables:

m

w=Y ayal)
i=1

Aside: Support Vectors

Interpret this:
m X .
— Z oy Dz ®
i=1

Fact: «; > 0 only if x(is a support vector.

= w is a linear combination of support vectors

Dot Products

Observation: learning problem and prediction rule only depend on
training examples through dot products

Learning problem:

Ui 1 &N . T (4

mgxzai -5 Z y(’)ymaiaj(x())1 x (@)
i=1 i,5=1

st. a; >0, foralli,

i ail/(i) =0
i=1

Dot Products

Observation: learning problem and prediction rule only depend on

training examples through dot products

Prediction for new x:

m
hwp(x) =b+wix=0b+ Z oy (x) 'k
i=1

Kernel Trick

Suppose you have a black box K(-,-) to compute the dot product
for any two feature vectors x and z:

K(x,z) :=x"z

Thought experiment: | hold feature vectors in a box. You can ask
me only for dot products.

Can you still solve the learning problem? Make predictions?

Kernel Trick

m m
1 Lo L
m(fxzm -5 Z y(l)y(J)aia]-[((x“XXU))
i=1 ij=1
st. a; >0, foralli,

i Oz,-y(i) =0
i=1

hwp(x) =b+wix=0b+ Z iy DK (x9, x)
i=1

Kernel Trick

This doesn’t seem that special. . .

Real trick: fancy non-linear feature expansions in a
computationally efficient way

Feature Mapping

Let ¢ be a feature mapping from original features to expanded
features.

Eg., ¢:R" - R

T1T1
T1T2 .
o(x) = o (products of two original features)
271

T2T2

Kernel

Given any feature mapping ¢, the kernel corresponding to ¢ is

K(x,2) = ¢(x)" ¢(z)

(map to higher dimensional space, then take dot product)

Example: Polynomial Kernel

Important trick: we can often compute kernel without actually
doing the expansion

K(x,2) = (x72)?

11
Tr1T9
XTI
To2To

Claim: this is the kernel corresponding to ¢(x) =

Exercise: verify this on board

More Polynomial Kernels

Claim: these two are equivalent

1
V21
V29
d(x) = | z11y
1T
o1
ToTo

K(x,2) = (xTz + 1)

» Complexity of computing ¢(x)” ¢(z)?

» Complexity of computing (x”z 4 1)?

Polynomial Kernel: Significance

» Compute é(x)"é(z): O(n?)
» Compute (x7z 4 1)%: O(n)

Implement a non-linear feature expansion with no extra
computational cost

» Compute x7z: O(n)

Even More Polynomial Kernels

K(x,2) = (xTz +1)¢

Corresponds to ¢ that takes all products of up to d original features

O(n) time to compute kernel instead of O(n?)

Gaussian Kernel

K(x,2) = exp(—/|x —z|*)

» Highly flexible, non-linear kernel

» Corresponds to infinite dimensional ¢ (cannot implement feature
mapping, but can still use kernel)

Gaussian Kernel Interpretation

K(x,2) = exp(—/||x —z|*)

> Intepretation: similarity of x to z

» Picture on board
» ~ controls how close x and z need to be to be similar

* MATLAB demo

