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Support Vector Machines (SVMs) Overview

I Linear classifier, non-linear with “kernel trick”

I Among the best out-of-box classifiers

I Geometric principles: separating hyperplanes, margins

Alert: Notation Change

I Input: x ∈ Rn
I Output: y ∈ {−1,+1}
I Hypothesis: hw,b(x) = wTx+ b

“Bias term” b treated explicitly (don’t add 1 to feature vector)

“Weights” w

Separating Hyperplanes

Recall linear classifier:

wTx+ b < 0 ⇒ predict − 1

wTx+ b ≥ 0 ⇒ predict + 1

Assume for now training data is “linearly separable” → there is
some w, b that separates positive training examples from negative
training examples

wTx(i) + b < 0 for y(i) = −1
wTx(i) + b ≥ 0 for y(i) = +1

Picture of training data / separating hyperplane

Margin

Of all separating hyperplanes, which one will lead to best
generalization performance?

Intution/illustration about margins

Margin = distance from hyperplane to closest training example

Choose hyperplane (w, b) to maximize the margin

SVM Optimization Problem

“Find w, b to minimize. . . .”

min
w,b

1

2
||w||2

subject to wTx(i) + b ≤ −1 if y(i) = −1
wTx(i) + b ≥ +1 if y(i) = +1

Write on board for discussion

(Note: not yet obvious how this maximizes margin. . . )



Aside: Constrained Optimization

I Constrained optimization

I Objective function, constraints
I Assume black-box solver for now

Geometric Interpretation of SVM

MATLAB demo

Good/bad contour plots

Geometric Interpretation Recap

Rewrite problem using functional margin y(i)(wTx(i) + b)

min
w,b

1

2
||w||2

subject to y(i)(wTx(i) + b) ≥ 1 for all i

I All examples have functional margin at least one: correctly
classified “and more”

I On correct side, and at least one contour from decision boundary

Minimize slope/complexity subject to functional margin constraint

Why does this maximize the margin?

Sketch argument on board. First 1D, then 2D

Argument recap

Let x(i) be training example that is closest to margin. Assume that
y(i) = 1.

Claim: wTx(i) + b = 1
Proof sketch: We know wTx(i) + b is at least 1. If it is bigger,
shrink w (multiply by some α < 1) until it is exactly 1.

Let γ be the margin, which is the length of the line segment
between x(i) and the closest point on the decision boundary. By
our claim, the change in function value along the line segment is
one. Thus, the slope along the line segment is

rise

run
=

1

γ

Argument recap

Because the segment connects x(i) to the closest point on the
decision boundary, it follows the steepest descent direction and has
slope ||w|| (the gradient/slope of the function wTx+ b).

So we have two expressions for the slope:

||w|| = 1

γ

Hence, by minimizing ||w|| (subject to the constraints), we are
maximizing the margin γ.



Soft-Margin SVMs

What if training data is not linearly separable?

“Soft margin”: allow functional margins that are not big enough,
but add a penalty for this in the objective function

min
w,b,ξ

1

2
||w||2 + C

m∑

i=1

ξi

subject to y(i)(wTx(i) + b) ≥ 1− ξi for all i

ξi ≥ 0, i = 1, . . . ,m

1D picture on board. Revisit MATLAB demo

Summary / What’s next

Summary

I Linearly separable data and margins
I “Hard-margin” SVM

I Constrained optimization
I Functional margins
I Why it maximizes the (geometric) margin

I Soft-margin SVMs

What’s next

I “Kernel trick” → non-linearity
I Connection to logistic regression


