Support Vector Machines (SVMs) Overview
 Linear classifier, non-linear with "kernel trick" Among the best out-of-box classifiers Geometric principles: separating hyperplanes, margins
Separating Hyperplanes
Recall linear classifier: $\mathbf{w}^T \mathbf{x} + b < 0 \Rightarrow \text{predict} -1$ $\mathbf{w}^T \mathbf{x} + b \ge 0 \Rightarrow \text{predict} +1$ Assume for now training data is "linearly separable" \rightarrow there is some \mathbf{w}, b that separates positive training examples from negative training examples $\mathbf{w}^T \mathbf{x}^{(i)} + b < 0 \text{for} y^{(i)} = -1$ $\mathbf{w}^T \mathbf{x}^{(i)} + b \ge 0 \text{for} y^{(i)} = +1$ Picture of training data / separating hyperplane
SVM Optimization Problem
"Find w, b to minimize" $ \begin{array}{l} \min_{\mathbf{w},b} \frac{1}{2} \mathbf{w} ^2 \\ \text{subject to} \mathbf{w}^T \mathbf{x}^{(i)} + b \leq -1 \text{if } y^{(i)} = -1 \\ \mathbf{w}^T \mathbf{x}^{(i)} + b \geq +1 \text{if } y^{(i)} = +1 \end{array} $ Write on board for discussion (Note: not yet obvious how this maximizes margin)

Aside: Constrained Optimization	Geometric Interpretation of SVM
 Constrained optimization Objective function, constraints Assume black-box solver for now 	MATLAB demo Good/bad contour plots
Geometric Interpretation Recap	Why does this maximize the margin?
Rewrite problem using functional margin $y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b)$ $\begin{array}{c} \min_{w,b} \ \frac{1}{2} \mathbf{w} ^2 \\ \text{subject to} \ y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 \text{for all } i \end{array}$ • All examples have functional margin at least one: correctly classified "and more" • On correct side, and at least one contour from decision boundary Minimize slope/complexity subject to functional margin constraint	Sketch argument on board. First 1D, then 2D
Argument recap Let $\mathbf{x}^{(i)}$ be training example that is closest to margin. Assume that $y^{(i)} = 1$. Claim: $\mathbf{w}^T \mathbf{x}^{(i)} + b = 1$ Proof sketch: We know $\mathbf{w}^T \mathbf{x}^{(i)} + b$ is at least 1. If it is bigger, shrink \mathbf{w} (multiply by some $\alpha < 1$) until it is exactly 1. Let γ be the margin, which is the length of the line segment between $\mathbf{x}^{(i)}$ and the closest point on the decision boundary. By our claim, the change in function value along the line segment is one. Thus, the slope along the line segment is $\frac{\text{rise}}{\text{run}} = \frac{1}{\gamma}$	Argument recap Because the segment connects $\mathbf{x}^{(i)}$ to the <i>closest</i> point on the decision boundary, it follows the steepest descent direction and has slope $ w $ (the gradient/slope of the function $\mathbf{w}^T \mathbf{x} + b$). So we have two expressions for the slope: $ w = \frac{1}{\gamma}$ Hence, by minimizing $ \mathbf{w} $ (subject to the constraints), we are maximizing the margin γ .

Soft-Margin SVMs

What if training data is not linearly separable?

"Soft margin": allow functional margins that are not big enough, but add a penalty for this in the objective function $% \left({{{\rm{D}}_{{\rm{B}}}} \right)$

$$\begin{split} \min_{w,b,\xi} & \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^m \xi_i \\ \text{subject to} & y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \geq 1 - \xi_i \quad \text{for all } i \\ & \xi_i \geq 0, \ i = 1, \dots, m \end{split}$$

1D picture on board. Revisit MATLAB demo

Summary / What's next

Summary

- Linearly separable data and margins
- "Hard-margin" SVM
 - Constrained optimization
 - Functional margins
 - Why it maximizes the (geometric) margin
- ► Soft-margin SVMs

What's next

- $\blacktriangleright \ ``Kernel \ trick'' \ \rightarrow \ non-linearity$
- Connection to logistic regression