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First story

I USPS uses a classifier to distinguish 4 from 9

I Pays $1 for every mistake

I How much money should it budget for 2015?

I Model assessment (validation): estimate prediction error on
future unseen data (generalization)



Second story

I USPS uses regularized logistic regression to prevent overfitting
in its classifier

I What value of λ will lead to the model with the least prediction
error?

I Model comparison (selection): estimate prediction error for
purpose of selecting the best model



Two goals

Model assessment: estimate prediction error on future unseen
data (generalization)

Model comparison: estimate prediction error for purpose of
selecting the best model

Can’t do either of these with data used to train the model
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Data-Generating Mechanism

I Assumption: training data representative of future unseen data

I Formally, training examples and future test examples drawn
independently from same probability distribtuion P

(x(i), y(i)) ∼ P
(x, y) ∼ P

I How to think of this

I huge bag of input-output pairs (x, y) (“nature”)
I m training examples pulled out randomly
I future data drawn also pulled out randomly
I (picture on board)



In an Ideal World

If we are “data rich”, this is what we would do:

222 7. Model Assessment and Selection

The “−2” in the definition makes the log-likelihood loss for the Gaussian
distribution match squared-error loss.

For ease of exposition, for the remainder of this chapter we will use Y and
f(X) to represent all of the above situations, since we focus mainly on the
quantitative response (squared-error loss) setting. For the other situations,
the appropriate translations are obvious.

In this chapter we describe a number of methods for estimating the
expected test error for a model. Typically our model will have a tuning
parameter or parameters α and so we can write our predictions as f̂α(x).
The tuning parameter varies the complexity of our model, and we wish to
find the value of α that minimizes error, that is, produces the minimum of
the average test error curve in Figure 7.1. Having said this, for brevity we
will often suppress the dependence of f̂(x) on α.

It is important to note that there are in fact two separate goals that we
might have in mind:

Model selection: estimating the performance of different models in order
to choose the best one.

Model assessment: having chosen a final model, estimating its predic-
tion error (generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is
to randomly divide the dataset into three parts: a training set, a validation
set, and a test set. The training set is used to fit the models; the validation
set is used to estimate prediction error for model selection; the test set is
used for assessment of the generalization error of the final chosen model.
Ideally, the test set should be kept in a “vault,” and be brought out only
at the end of the data analysis. Suppose instead that we use the test-set
repeatedly, choosing the model with smallest test-set error. Then the test
set error of the final chosen model will underestimate the true test error,
sometimes substantially.

It is difficult to give a general rule on how to choose the number of
observations in each of the three parts, as this depends on the signal-to-
noise ratio in the data and the training sample size. A typical split might
be 50% for training, and 25% each for validation and testing:

TestTrain Validation TestTrain Validation TestValidationTrain Validation TestTrain

The methods in this chapter are designed for situations where there is
insufficient data to split it into three parts. Again it is too difficult to give
a general rule on how much training data is enough; among other things,
this depends on the signal-to-noise ratio of the underlying function, and
the complexity of the models being fit to the data.

I Validation set: labeled data reserved to compare models

I Test set: labeled data reserved to assess future performance

E.g., 50/25/25 split

Warning: Terminology of validation/test not always consistently
used
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The Dilemma: Train vs. Test Size

What if you only have 100 training examples? 50? 10?

The dilemma

I More training data → more accurate classifier
I More test data → better estimate of generalization accuracy



Cross-Validation

(Assume assessment for now. . . how much will USPS pay?)

Beautiful and simple solution to train/test size dilemma:

I Split data in k equal-sized “folds” (usually 2, 5, 10)

I For each fold, test on that fold while training on all others:
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ValidationTrain

1 2 3 4 5

Train Train Train

For the kth part (third above), we fit the model to the other K−1 parts
of the data, and calculate the prediction error of the fitted model when
predicting the kth part of the data. We do this for k = 1, 2, . . . , K and
combine the K estimates of prediction error.

Here are more details. Let κ : {1, . . . , N} "→ {1, . . . , K} be an indexing
function that indicates the partition to which observation i is allocated by
the randomization. Denote by f̂−k(x) the fitted function, computed with
the kth part of the data removed. Then the cross-validation estimate of
prediction error is

CV(f̂) =
1

N

N∑

i=1

L(yi, f̂
−κ(i)(xi)). (7.48)

Typical choices of K are 5 or 10 (see below). The case K = N is known
as leave-one-out cross-validation. In this case κ(i) = i, and for the ith
observation the fit is computed using all the data except the ith.

Given a set of models f(x, α) indexed by a tuning parameter α, denote

by f̂−k(x, α) the αth model fit with the kth part of the data removed. Then
for this set of models we define

CV(f̂ , α) =
1

N

N∑

i=1

L(yi, f̂
−κ(i)(xi, α)). (7.49)

The function CV(f̂ , α) provides an estimate of the test error curve, and we
find the tuning parameter α̂ that minimizes it. Our final chosen model is
f(x, α̂), which we then fit to all the data.

It is interesting to wonder about what quantity K-fold cross-validation
estimates. With K = 5 or 10, we might guess that it estimates the ex-
pected error Err, since the training sets in each fold are quite different
from the original training set. On the other hand, if K = N we might
guess that cross-validation estimates the conditional error ErrT . It turns
out that cross-validation only estimates effectively the average error Err,
as discussed in Section 7.12.

What value should we choose for K? With K = N , the cross-validation
estimator is approximately unbiased for the true (expected) prediction er-
ror, but can have high variance because the N “training sets” are so similar
to one another. The computational burden is also considerable, requiring
N applications of the learning method. In certain special problems, this
computation can be done quickly—see Exercises 7.3 and 5.13.

I Estimate accuracy by averaging over all folds



Example

5-fold cross-validation

Train folds Test folds Accuracy

12345 2,3,4,5 1 85%
12345 1,3,4,5 2 83%
12345 1,2,4,5 3 91%
12345 1,2,3,5 4 88%
12345 1,2,3,4 5 84%

Average accuracy = 88.2%



Discussion

What if you need to do both model comparison and assessment?

Fancier methods:

I One fold for validation (e.g. train/valid/test = 3/1/1)
I Nested cross-validation
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