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» What is Overfitting?
» How to Diagnose Overfitting

» Regularization



What is Overfitting?

Demo: polynomials



What is Overfitting?

Complex decision boundaries
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What is Overfitting?

Overfitting is learning a model that fits the training data very well,
but does not generalize well.

(Generalize = predict accurately for new examples.)



How to Diagnose Overfitting?

Exercise



How to Diagnose Overfitting?

Exercise
Reserve some data to test whether hypothesis generalizes well

Degree 8 polynomial Degree 4 polynomial




Train Data vs. Test Data

Very simple but important methodology!!

» Start with m training examples
(xM,y M), (x®,y@), .. (x(M, ym™)

» Split into train and test sets (usually random)
» Training data: use to fit model

» Test data: use to evaluate fit

Details/illustration on board



How to Diagnose Overfitting?

Example: cost function vs. degree of polynomial



How to Diagnose Overfitting?

Example: cost function vs. degree of polynomial
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How to Diagnose Overfitting?

Example: feature expansion for book data

Width  Thickness Height \ Weight

T T2 T3 Y
8 1.8 10 44
8 0.9 9 2.7
Suppose you add “quadratic” features:
2 2
(X1, .y Ty ) = ((T1,. ., Ty X, T1T2, T1T3, ..., Tp_1Tn, T))
original features products of two original features

Do more features help?



How to Diagnose Overfitting?

Example: cost function vs. number of features in book data
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Cost vs. Complexity

General phenomenon: training/test cost vs. model “complexity”



What Makes a Model Complex?

> Polynomial: higher degree
» Book data: more features

» Linear functions (hg(x) = 87x): large weights (steep
hyperplanes)



Large Weights

Example

Width  Thickness Height \ Weight

r1 T2 3 Yy
8 1.8 10 4.4
8 0.9 9 2.7

Which is more complex?
y = —3.94+4 0.18z1 + .34x5 + 0.4x3

VS.

y = 2842 — 957x1 + 30022 + 6971223



Solution to Overfitting: Regularization

Intuition: large weights — high complexity

Modify the cost function to penalize large weights =
“regularization”

For squared error, we get:

m

A — 1 ; ;
J(0) = 5 20? t3 Z(ho(x( )y —y )2
j=1

i=1

A controls trade-off between model complexity and fit



Notes

Penalty / regularization term:

» Best practice not to regularize 6y. Why?

» Often written as %HBH2 (Need to be careful to specify
whether 6 include 6y or not!).



Discussion

Regularization is really important!!!

Why?



Learning with Regularization

Let's see how to solve two learning problems with regularized cost
functions:

> Linear regression

> Logistic regression



Linear Regression: Normal Equations with Regularization

Find 6 to minimize regularized J(6)

0= (XTX +AI)1XxTy



Linear Regression: Normal Equations with Regularization

Find 6 to minimize regularized J(6)

0= (XTX + )1 XTy

00 0 0
01 0 0
i—10 01 0
0 0 0 1

(Identity matrix with top left entry replaced by 0)



Normal Equations Derivation: Vectorized Cost Function



Normal Equations Derivation: Vectorized Cost Function

1 ; ; A
J(G)—§Z(ho(x())—y“)2+529?
=1 7=1
= %(XG -yT(x0-y)+ %@)T@).
0]
01
6= |02 =]6




Normal Equations Derivation

00

Do | >

J(0) = (X0 y)" (X0 —y) +

Set derivative to zero and solve (review on your own)

d .
0=25J0) = (X0-y)"X+ A0
0 = XT(X0—y)+ 6
XTx0+ M0 = XTy
(XTX + Ao = XTy
0 = (XTX+)'XxTy



Linear Regression: Regularized Gradient Descent

Repeat until convergence



Linear Regression: Regularized Gradient Descent

Repeat until convergence

O < 0 — > (he(x")) — )
=1

m
0;  0; — a(wj + 3 (ho(x D) =y Da), =1,

=1



Linear Regression: Regularized Gradient Descent

Update rule for 6; after simplification:

0« 0;(1—ar)—a > (he(x®D) —yal?  j=1,...n
N —’

shrink N

old gradient

Interpretation: first “shrink” weights, then take gradient step for
unregularized cost function



Logistic Regression: Regularized Gradient Descent

)\ n m

J(6) =3 D (—y@ log hg(x®)—(1—y) log (1_h9(x<i>)))

j=1 i=1

Algorithm:

Repeat until convergence
O 00— Y (he(x?)) — )
i=1

0; + 0;(1—aX) —a > (he(x?) —y@)z =1, n
=1

(Again: same as linear regression, but different hg(x))



What You Need To Know

v

Concept of overfitting

v

Diagnosis: train/test sets

v

Regularized cost function (penalize weights)

v

Regularized gradient descent (“weight shrinking”)

v

See it work: polynomial regularization demo



