
Gradient Descent for Linear Regression

Dan Sheldon

November 18, 2014



Announcements

I Reading / slides posted

I HW0 due before fourth hour tomorrow

I HW1 posted tomorrow, due next Friday



Today

I Quick review

I Intuition about partial derivatives

I Gradient descent update rules for linear regression

I Linear algebra



Review: Supervised Learning

Observe list of training examples (x(i), y(i)), want to find a
function h such that y(i) ≈ h(x(i)) for all i

Variations:

I Type of x (real number, image, etc.)
I Type of y (real number, 0/1, {0, 1, . . . , k})
I Type of h



Cost function paradigm

Define parametric function hθ(x) with parameters θ0, . . . , θn.
E.g.:

hθ(x) = θ0 + θ1x

Define cost function J(θ0, . . . , θn) to measure quality (lower is
better) of different hypotheses. E.g.:

J(θ0, θ1) =

m∑
i=1

(
hθ(x

(i))− y(i)
)2

Use a numerical optimization algorithm to find θ0, . . . , θn to
minimize J(θ0, . . . , θn). E.g., gradient descent.



Gradient Descent

To minimize a function J(θ0, θ1) of two variables

I Intialize θ0, θ1 arbitrarily

I Repeat until convergence

θ0 := θ0 − α
∂

∂θ0
J(θ0, θ1)

θ1 := θ1 − α
∂

∂θ1
J(θ0, θ1)

I α = step-size or learning rate (not too big)



Partial derivative intuition

Interpretation of partial derivative: ∂
∂θj
J(θ0, θ1) is the rate of

change along the θj axis

Example: illustrate funciton with elliptical contours

I Sign of ∂
∂θ0

J(θ0, θ1)?

I Sign of ∂
∂θ1

J(θ0, θ1)?
I Which has larger absolute value?



Gradient descent intuition

θ0 := θ0 − α
∂

∂θ0
J(θ0, θ1)

θ1 := θ1 − α
∂

∂θ1
J(θ0, θ1)

I Why does this move in the direction of steepest descent?

I What would we do if we wanted to maximize J(θ0, θ1) instead?

Illustration: contours of linear functions, circle around current point



Gradient descent for linear regression

Algorithm

θj := θj − α
∂

∂θj
J(θ0, θ1) for j = 0, 1

Cost function

J(θ0, θ1) =

m∑
i=1

1

2

(
hθ(x

(i))− y(i)
)2

We need to calculate partial derivatives.



Linear regression partial derivatives

Let’s first do this with a single training example (x, y):

∂

∂θj
J(θ0, θ1) =

∂

∂θj

1

2

(
hθ(x)− y

)2

= 2 · 1
2
(hθ(x)− y) ·

∂

∂θj
(hθ(x)− y)

=
(
hθ(x)− y

)
· ∂
∂θj

(
θ0 + θ1x− y

)
So we get

∂

∂θ0
J(θ0, θ1) =

(
hθ(x)− y

)
∂

∂θ1
J(θ0, θ1) =

(
hθ(x)− y

)
x



Linear regression partial derivatives

Let’s first do this with a single training example (x, y):

∂

∂θj
J(θ0, θ1) =

∂

∂θj

1

2

(
hθ(x)− y

)2
= 2 · 1

2
(hθ(x)− y) ·

∂

∂θj
(hθ(x)− y)

=
(
hθ(x)− y

)
· ∂
∂θj

(
θ0 + θ1x− y

)
So we get

∂

∂θ0
J(θ0, θ1) =

(
hθ(x)− y

)
∂

∂θ1
J(θ0, θ1) =

(
hθ(x)− y

)
x



Linear regression partial derivatives

Let’s first do this with a single training example (x, y):

∂

∂θj
J(θ0, θ1) =

∂

∂θj

1

2

(
hθ(x)− y

)2
= 2 · 1

2
(hθ(x)− y) ·

∂

∂θj
(hθ(x)− y)

=
(
hθ(x)− y

)
· ∂
∂θj

(
θ0 + θ1x− y

)

So we get
∂

∂θ0
J(θ0, θ1) =

(
hθ(x)− y

)
∂

∂θ1
J(θ0, θ1) =

(
hθ(x)− y

)
x



Linear regression partial derivatives

Let’s first do this with a single training example (x, y):

∂

∂θj
J(θ0, θ1) =

∂

∂θj

1

2

(
hθ(x)− y

)2
= 2 · 1

2
(hθ(x)− y) ·

∂

∂θj
(hθ(x)− y)

=
(
hθ(x)− y

)
· ∂
∂θj

(
θ0 + θ1x− y

)
So we get

∂

∂θ0
J(θ0, θ1) =

(
hθ(x)− y

)
∂

∂θ1
J(θ0, θ1) =

(
hθ(x)− y

)
x



Linear regression partial derivatives

More generally, with many training examples (work this out):

∂

∂θ0
J(θ0, θ1) =

m∑
i=1

(
hθ(x

(i))− y(i)
)

∂

∂θ1
J(θ0, θ1) =

m∑
i=1

(
hθ(x

(i))− y(i)
)
x(i)

So the algorithm is:

θ0 := θ0 − α
m∑
i=1

(
hθ(x

(i))− y(i)
)

θ1 := θ1 − α
m∑
i=1

(
hθ(x

(i))− y(i)
)
x(i)



Linear regression partial derivatives

More generally, with many training examples (work this out):

∂

∂θ0
J(θ0, θ1) =

m∑
i=1

(
hθ(x

(i))− y(i)
)

∂

∂θ1
J(θ0, θ1) =

m∑
i=1

(
hθ(x

(i))− y(i)
)
x(i)

So the algorithm is:

θ0 := θ0 − α
m∑
i=1

(
hθ(x

(i))− y(i)
)

θ1 := θ1 − α
m∑
i=1

(
hθ(x

(i))− y(i)
)
x(i)



Demo: parameter space vs. hypotheses

Show MATLAB gradient descent demo



Gradient descent in higher dimensions

Straightforward generalization to minimize a function J(θ0, . . . , θn)
of many variables:

I Intialize θj arbitrarily for all j

I Repeat until convergence

θj = θj − α
∂

∂θ0
J(θ) for all j

(simultaneuous updates)


