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Supervised Learning

I Revisit Obama example from Lecture 1



Supervised Learning

I Your data:

Knee Height Height

17 63
19 65
20.5 66
. . . . . .
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How can we predict height of a bedridden patient from knee
height?



Supervised Learning

I Observe m “training examples” of form (x(i), y(i))

I x(i): features / input / what we observe / knee height
I y(i): target / output / what we want to predict / height

I Training set {(x(1), y(1)), . . . , (x(m), y(m))}



Supervised Learning

I Goal: find function h such that h(x) is a good predictor of
output value

I y(i) ≈ h(x(i)) for training data
I Generalize well to new x values

I Illustration on board: supervised learning

I Variations: type of x, y, h



Linear Regression in One Variable

I Let’s consider our first example of supervised learning by
assuming the hypothesis is a linear function:

hθ(x) = θ0 + θ1x

I θ0, θ1: “parameters” or “weights”
I θ0: intercept, θ1: slope

I How to find “best” θ0, θ1?

I Illustration: hypotheses



A Puzzle For You

I Let’s assume θ0 = 0, so we only need to find θ1

I Tool: you can minimize a function J(θ) of one variable by the
following optimization algorithm from calculus:

I Set d
dxJ(θ) = 0 and solve for θ

I Illustration

I Can you devise an algorithm to find the “best” θ1 using this
tool?



Puzzle Answer: cost function

Use a cost function to measure the quality of a hypothesis (line)
with slope θ1. The “squared error” cost function is:

J(θ1) =

m∑
i=1

(
hθ(x

(i))− y(i)
)2

I E.g., θ1 = 3:

x y (3x− y)2
17 63 (51− 63)2 = 144
19 65 (57− 65)2 = 64

20.5 66 (61.5− 65)2 = 12.25

J(3) = 144 + 64 + 12.25 = 220.25
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Our First Algorithm

Find the hypothesis of minimum cost by setting the cost function
derivative to zero and solving for θ1. For this example:

J(θ1) = (17 · θ1 − 63)2 + (19 · θ1 − 65)2 + (20.5 · θ1 − 66)2

= 1070.25 · θ21 − 7318 · θ1 + 12550

0 =
d

dθ1
J(θ1) = 2140.5 · θ1 − 7318

θ1 =
7318

2140.5
= 3.4188

(See http://www.wolframalpha.com)

http://www.wolframalpha.com
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Our First Algorithm In Action
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The General Algorithm

Instead of plugging numbers into J(θ1) and then finding the
minimum, we can find the minimum in terms of x(i) and y(i)

The general problem: find θ1 to minimize

J(θ1) =

m∑
i=1

(θ1x
(i) − y(i))2

You will solve this in HW1.



Two Problems Remain

I Problem one: we only fit the slope. What if θ0 6= 0?

I Problem two: we will need a better optimization algorithm than
“Set d

dθJ(θ) = 0 and solve for θ.”

I Wiggly functions
I Equation(s) may be non-linear, hard to solve

Exercise: ideas for problem one?



Solution to Problem One

Design a cost function that takes two parameters:

J(θ0, θ1) =

m∑
i=1

(
hθ(x

(i))− y(i)
)2

=

m∑
i=1

(
θ0 + θ1x

(i) − y(i)
)2

Find θ0, θ1 to minimize J(θ0, θ1)



Functions of multiple variables

Here is an example cost function:

J(θ0, θ1) = (θ0 + 17 · θ1 − 63)2 + (θ0 + 19 · θ1 − 65)2

+ (θ0 + 20.5 · θ1 − 66)2 + (θ0 + 18.9 · θ1 − 62.9)2 + . . .

Gain intuition on http://www.wolframalpha.com

I Surface plot
I Contour plot

http://www.wolframalpha.com


Solution to Problem Two: Gradient Descent

I Gradient descent is a general purpose optimization algorithm

I Idea: repeatedly take steps in steepest downhill direction, with
step length proportional to “slope”

I Illustration: contour plot and pictorial definition of gradient
descent



Gradient Descent

I Intialize θ0, θ1 arbitrarily

I Repeat until convergence

θ0 = θ0 − α
∂

∂θ0
J(θ0, θ1)

θ1 = θ1 − α
∂

∂θ1
J(θ0, θ1)

I α = step-size (not too big)



Partial derivatives!

I The partial derivative with respect to θj is denoted
∂
∂θj
J(θ0, θ1)

I Treat all other variables as constants, then take derivative

I Example

∂

∂u
5u2v3 = (5v3)u2

= 5v3 · 2u
= 10v3u

∂

∂v
5u2v3 =??
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Partial derivative intuition

I ∂
∂θj
J(θ0, θ1) is the rate of change along the θj axis

I Example: elliptical contours

I Sign of ∂
∂θ0

J(θ0, θ1)?

I Sign of ∂
∂θ1

J(θ0, θ1)?

I Which has larger absolute value?



Gradient Descent

I Repeat until convergence

θ0 = θ0 − α
∂

∂θ0
J(θ0, θ1)

θ1 = θ1 − α
∂

∂θ1
J(θ0, θ1)

I Issues (explore in HW1)

I How to set step-size α?
I How to diagnose convergence?



The Result in Our Problem

16 18 20 22 24
50

60

70

80

Knee height (in.)

H
e

ig
h

t 
(i
n

.)

hθ(x) = 39.75 + 1.25x



General gradient descent (for future topics)

I To minimize a function J(θ) := J(θ0, θ1, . . . , θn) of many
variables:

I Intialize θj arbitrarily for all j

I Repeat until convergence

θj = θj − α
∂

∂θ0
J(θ) for all j

(simultaneuous updates)



Summary

I What to know

I Supervised learning setup
I Cost function

I Convert a learning problem to an optimization problem
I Squared error

I Gradient descent

I Next time

I More on gradient descent
I Linear algebra review


