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What	
  is	
  Machine	
  Learning?	
  



What	
  is	
  Machine	
  Learning?	
  

•  How	
  do	
  you	
  program	
  a	
  computer	
  to	
  
– Recognize	
  faces?	
  
– Recommend	
  movies?	
  
– Decide	
  which	
  web	
  pages	
  are	
  relevant	
  to	
  a	
  Google	
  
search	
  query?	
  



A	
  Simple	
  Task:	
  Recognize	
  Obama	
  



A	
  Simple	
  Task:	
  Recognize	
  Obama	
  

•  Input:	
  picture	
  
•  Output:	
  yes/no	
  
	
  
•  Can	
  you	
  program	
  this?	
  
– Probably	
  not…	
  
– But	
  you	
  can	
  show	
  a	
  computer	
  
how	
  to	
  solve	
  this	
  task	
  



Examples	
  

No	
   Yes	
  



Learning	
  from	
  Examples	
  

yes	
  

Learning	
  
Algorithm	
  

Classifier	
  

Labeled	
  Examples	
  

?	
  

no	
  

yes	
  

no	
  

yes	
  

no	
   yes	
  



Discussion	
  

•  Is	
  it	
  easier	
  to	
  devise	
  a	
  learning	
  algorithm	
  than	
  
it	
  is	
  to	
  program	
  an	
  Obama	
  recognizer?	
  

	
  
•  Is	
  it	
  more	
  useful	
  to	
  have	
  a	
  learning	
  algorithm,	
  
or	
  an	
  Obama	
  recognizer?	
  



What	
  is	
  Machine	
  Learning?	
  

	
  
•  Machine	
  learning	
  is	
  the	
  prac1ce	
  of	
  
programming	
  a	
  computer	
  to	
  learn	
  to	
  solve	
  a	
  
task	
  through	
  experience,	
  rather	
  than	
  directly	
  
programming	
  it	
  to	
  solve	
  the	
  task.	
  



Why	
  should	
  I	
  care	
  about	
  ML?	
  



You	
  tell	
  me…	
  

•  What	
  are	
  some	
  examples	
  of	
  ML	
  in	
  your	
  day-­‐
to-­‐day	
  life?	
  



ML	
  makes	
  the	
  world	
  go	
  round.	
  	
  



ML	
  Achievements	
  
Applications: Deep question answering
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ML	
  wins	
  Jeopardy!	
  



ML	
  Achievements	
  

Building high-level features using large-scale unsupervised learning

spaced thresholds in between. The reported accuracy
is the best classification accuracy among 20 thresholds.

4.3. Recognition

Surprisingly, the best neuron in the network performs
very well in recognizing faces, despite the fact that no
supervisory signals were given during training. The
best neuron in the network achieves 81.7% accuracy in
detecting faces. There are 13,026 faces in the test set,
so guessing all negative only achieves 64.8%. The best
neuron in a one-layered network only achieves 71% ac-
curacy while best linear filter, selected among 100,000
filters sampled randomly from the training set, only
achieves 74%.

To understand their contribution, we removed the lo-
cal contrast normalization sublayers and trained the
network again. Results show that the accuracy of
best neuron drops to 78.5%. This agrees with pre-
vious study showing the importance of local contrast
normalization (Jarrett et al., 2009).

We visualize histograms of activation values for face
images and random images in Figure 2. It can be seen,
even with exclusively unlabeled data, the neuron learns
to di↵erentiate between faces and random distractors.
Specifically, when we give a face as an input image, the
neuron tends to output value larger than the threshold,
0. In contrast, if we give a random image as an input
image, the neuron tends to output value less than 0.

Figure 2. Histograms of faces (red) vs. no faces (blue).
The test set is subsampled such that the ratio between
faces and no faces is one.

4.4. Visualization

In this section, we will present two visualization tech-
niques to verify if the optimal stimulus of the neuron
is indeed a face. The first method is visualizing the
most responsive stimuli in the test set. Since the test
set is large, this method can reliably detect near opti-
mal stimuli of the tested neuron. The second approach
is to perform numerical optimization to find the opti-
mal stimulus (Berkes & Wiskott, 2005; Erhan et al.,
2009; Le et al., 2010). In particular, we find the norm-
bounded input x which maximizes the output f of the

tested neuron, by solving:

x⇤ = argmin
x

f(x;W,H), subject to ||x||2 = 1.

Here, f(x;W,H) is the output of the tested neuron
given learned parameters W,H and input x. In our
experiments, this constraint optimization problem is
solved by projected gradient descent with line search.

These visualization methods have complementary
strengths and weaknesses. For instance, visualizing
the most responsive stimuli may su↵er from fitting to
noise. On the other hand, the numerical optimization
approach can be susceptible to local minima. Results,
shown in Figure 3, confirm that the tested neuron in-
deed learns the concept of faces.

Figure 3. Top: Top 48 stimuli of the best neuron from the
test set. Bottom: The optimal stimulus according to nu-
merical constraint optimization.

4.5. Invariance properties

We would like to assess the robustness of the face de-
tector against common object transformations, e.g.,
translation, scaling and out-of-plane rotation. First,
we chose a set of 10 face images and perform distor-
tions to them, e.g., scaling and translating. For out-
of-plane rotation, we used 10 images of faces rotating
in 3D (“out-of-plane”) as the test set. To check the ro-
bustness of the neuron, we plot its averaged response
over the small test set with respect to changes in scale,
3D rotation (Figure 4), and translation (Figure 5).6

6Scaled, translated faces are generated by standard
cubic interpolation. For 3D rotated faces, we used 10 se-

h^p://www.npr.org/2012/06/26/155792609/a-­‐massive-­‐google-­‐network-­‐learns-­‐to-­‐idenbfy	
  
Building	
  High-­‐level	
  Features	
  Using	
  Large	
  Scale	
  Unsupervised	
  Learning	
  
Quoc	
  V.	
  Le,	
  Marc’Aurelio	
  Ranzato,	
  Rajat	
  Monga,	
  Ma^hieu	
  Devin,	
  Kai	
  Chen,	
  Greg	
  S.	
  Corrado,	
  
Jeffrey	
  Dean,	
  and	
  Andrew	
  Y.	
  Ng	
  	
  
	
  

ML	
  watches	
  YouTube	
  for	
  three	
  straight	
  days!	
  
(and	
  learns	
  to	
  recognize	
  cats)	
  

	
  	
  



ML	
  plays	
  quiz	
  bowl	
  

QUESTION:	
  
He	
  lel	
  unfinished	
  a	
  novel	
  whose	
  btle	
  character	
  forges	
  his	
  father's	
  signature	
  
to	
  get	
  out	
  of	
  school	
  and	
  avoids	
  the	
  dral	
  by	
  feigning	
  desire	
  to	
  join.	
  A	
  more	
  
famous	
  work	
  by	
  this	
  author	
  tells	
  of	
  the	
  rise	
  and	
  fall	
  of	
  the	
  composer	
  Adrian	
  
Leverkühn.	
  Another	
  of	
  his	
  novels	
  features	
  the	
  jesuit	
  Naptha	
  and	
  his	
  opponent	
  
Se^embrini,	
  while	
  his	
  most	
  famous	
  work	
  depicts	
  the	
  aging	
  writer	
  Gustav	
  von	
  
Aschenbach.	
  Name	
  this	
  German	
  author	
  of	
  The	
  Magic	
  Mountain	
  and	
  Death	
  in	
  
Venice.	
  
	
  
ANSWER:	
  	
  
Thomas	
  Mann	
  	
  



ML	
  in	
  Science	
  

•  Bioinformabcs	
  
– Gene	
  predicbon	
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ABSTRACT
Phylogenetic hidden Markov models (phylo-HMMs) have re-
cently been proposed as a means for addressing a multi-
species version of the ab initio gene prediction problem.
These models allow sequence divergence, a phylogeny, pat-
terns of substitution, and base composition all to be consid-
ered simultaneously, in a single unified probabilistic model.
Here, we apply phylo-HMMs to a restricted version of the
gene prediction problem in which individual exons are sought
that are evolutionarily conserved across a diverse set of spec-
ies. We discuss two new methods for improving prediction
performance: (1) the use of context-dependent phylogenetic
models, which capture phenomena such as a strong CpG ef-
fect in noncoding regions and a preference for synonymous
rather than nonsynonymous substitutions in coding regions;
and (2) a novel strategy for incorporating insertions and
deletion (indels) into the state-transition structure of the
model, which captures the different characteristic patterns
of alignment gaps in coding and noncoding regions. We also
discuss the technique, previously used in pairwise gene pre-
dictors, of explicitly modeling conserved noncoding sequence
to help reduce false positive predictions. These methods
have been incorporated into an exon prediction program
called ExoniPhy, and tested with two large data sets. Ex-
perimental results indicate that all three methods produce
significant improvements in prediction performance. In com-
bination, they lead to prediction accuracy comparable to
that of some of the best available gene predictors, despite
several limitations of our current models.

General Terms
Algorithms, Experimentation, Performance

Categories and Subject Descriptors
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Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RECOMB’04,March 27–31, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-755-9/04/0003 ...$5.00.

Keywords
Gene prediction, phylogenetic hidden Markov model

1. INTRODUCTION
With three mammalian genomes now sequenced and as-

sembled, more on the way, and the database of known genes
steadily growing more accurate and more complete, the rules
of the game are changing in mammalian gene prediction.
In round numbers, some 70–90% of human protein-coding
genes are probably now known—depending on how many
genes exist and how many currently “known” are actually
pseudogenes [40, 31]—and the situation is similar with other
species. The challenge now is to reveal the intransigent genes
laid bare by the genome sequencing projects, yet still hid-
den. Thus, it is no longer enough to do fairly well on average
at predicting average genes, in newly sequenced regions of
a genome. The next generation of gene-finding programs
must be able to find new, possibly unusual, genes in well-
studied regions, and with low enough false positive rates
that predictions can be tested in the laboratory efficiently
and economically (see [16]).

The missing genes most likely belong to several different
classes, and a variety of computational approaches (some
possibly quite specialized) will be required to identify them.
One broad distinction that can be drawn is between ancient
genes shared by most species, and newer, lineage-specific
genes, e.g., resulting from recent gene duplications. In this
paper, we are concerned with genes of the first type. Be-
cause they are present in most species, these “core” genes
should be particularly amenable to comparative gene predic-
tion, and they are a natural starting point for a multi-species
method. We choose to approach these genes at the level of
individual (coding) exons, which are more likely than com-
plete genes to be conserved through evolutionary history. (If
desired, predicted exons can be combined into complete or
partial transcripts in post-processing.) A large percentage
of exons appear to be well conserved across diverse sets of
species—by our estimates, probably more than 80% for the
placental mammals.

Our goal is to predict conserved exons using only the se-
quences of the genomes in question, so that genes can be
found without cDNA evidence or homologous proteins. This
problem is a multi-species version of the standard ab initio
gene prediction problem addressed by programs such as Ge-
nie [21] and Genscan [6], and of the pairwise ab initio gene
prediction problem addressed by programs such as Twin-

scan [20], SGP2 [29], SLAM [1], and Doublescan [26]. In
our case, we assume that a multiple alignment of ortholo-
gous sequences is available, and that the phylogeny of the
species is known. Several new genomic-scale aligners help to
make the first assumption possible [5, 4, 2] (but see Discus-
sion), and an emerging consensus on mammalian phylogeny
[28, 38] allows for the second assumption.

In addressing this problem, we make use of a type of prob-
abilistic model called a phylogenetic hidden Markov model,
or “phylo-HMM,” which combines a hidden Markov model
and a set of phylogenetic models [12, 43, 15, 30, 35, 25,
34]. Phylo-HMMs model molecular evolution as a Markov
process in two dimensions: a substitution process over time
at each site in a genome, which is guided by a phylogenetic
tree, and a process by which the “mode” of evolution (as de-
scribed by a phylogenetic model—see below) changes from
one site to the next. Recently, phylo-HMMs have been ap-
plied to gene prediction with encouraging results [30, 25],
but so far their performance has been evaluated only with
simulated data or in small-scale experiments with real bi-
ological data. In one case [25], a phylo-HMM was used in
the context of “phylogenetic shadowing” [3], which is based
on a somewhat different set of goals from the ones we have
stated (see Discussion).

We consider three ways of improving the performance of
phylo-HMMs in exon prediction: the use of context-dep-
endent phylogenetic models, explicit modeling of conserved
noncoding sequences, and modeling of insertions and dele-
tions (indels). These methods have been implemented in a
computer program, called ExoniPhy1, which predicts evo-
lutionarily conserved exons from a multiple alignment, given
a definition of a phylo-HMM. Using ExoniPhy, we have con-
ducted the first large-scale experiments with real biological
data in phylo-HMM-based exon/gene prediction. Compar-
isons of alternative versions of the program indicate that
all three of the methods considered produce substantial im-
provements in prediction performance. When they are used
in combination, ExoniPhy achieves a level of performance
that is competitive with some of the best available gene pre-
dictors, despite the limitations of considering each exon sep-
arately and the fact that the program still lacks some of the
basic features of current gene predictors—e.g, it does not
allow for non-geometric length distributions of exons or use
the best available methods for splice-site detection. Our re-
sults suggest that it may be possible, using a strategy based
on phylo-HMMs, to predict conserved exons with very good
sensitivity and near perfect specificity.

2. METHODS

2.1 Phylo-HMMs for exon prediction
A phylo-HMM is a hidden Markov model that has a phylo-

genetic model associated with each of its states (Figure 1A).
It can be thought of as a probabilistic machine that gener-
ates a multiple alignment by randomly transitioning from
one state to another, in discrete time steps, and at each step
emitting an alignment column that is drawn from a distribu-
tion associated with the current state. These distributions
of alignment columns are defined by probabilistic phyloge-
netic models, and reflect the topology and branch lengths
of a phylogenetic tree, as well as a continuous-time Markov

1Pronounced “ex-ON-if-I,” like personify.
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Figure 1: A state-transition diagram (A) and graphical
model representation (B) of a simple phylo-HMM with
three coding states (s1, s2, and s3), corresponding to the
three codon positions, and a noncoding state (s4). In
(B), the shaded nodes, collectively labeled Xi−1,Xi, and
Xi+1, represent observed random variables, defined by a
given multiple alignment. The unshaded nodes represent
latent variables for ancestral nodes in the tree (Yi−1, Yi,
Yi+1) and states in the path (φi−1, φi, φi+1).

model of nucleotide substitution. A phylo-HMM can be used
for prediction with a multiple alignment, much the way an
ordinary HMM is used with a single sequence. Phylo-HMMs
can be represented naturally as graphical models (Figure
1B) [25, 34].

More formally, a phylo-HMM θ = (S,ψ, A,b) is a four-
tuple consisting of a set of M states, S = {s1, . . . , sM}, a
set of associated phylogenetic models, ψ = {ψ1, . . . ,ψM},
a matrix of state-transition probabilities, A = {aj,k} (1 ≤
j, k ≤ M), and a vector of initial-state probabilities, b =
(b1, . . . , bM ). Model ψj is associated with state sj (1 ≤ j ≤
M), aj,k (1 ≤ j, k ≤ M) is the probability of visiting state
k at an alignment column i given that state j is visited
at column i − 1, and bj (1 ≤ j ≤ M) is the probability
that state j is visited first (thus,

P
k aj,k = 1 for all j, andP

j bj = 1; note that the Markov chain for state transitions
is assumed to be first-order and homogeneous). Let X be
the given alignment, consisting of L columns (sites) and n
rows (one for each species), with the ith column denoted Xi

(1 ≤ i ≤ L). The probability that a column Xi is emitted by
state sj is P (Xi|ψj), a quantity that can be computed with
Felsenstein’s “pruning” algorithm [11]. A “path” through
the phylo-HMM is a sequence of states, φ = (φ1, . . . , φL),
such that 1 ≤ φi ≤ M for 1 ≤ i ≤ L. The joint probability
of a path and an alignment is

P (φ,X|θ) = bφ1P (X1|ψφ1
)

LY

i=2

aφi−1,φiP (Xi|ψφi
). (1)

Hidden	
  Markov	
  model	
  



Species Distribution Modeling 

 



Big	
  Data	
  Revolubon	
  

•  “Analyzing	
  large	
  data	
  sets—so	
  called	
  big	
  data—will	
  
become	
  a	
  key	
  basis	
  of	
  compebbon,	
  underpinning	
  new	
  
waves	
  of	
  producbvity	
  growth,	
  innovabon,	
  and	
  
consumer	
  surplus…”	
  

•  US	
  shortage	
  of	
  	
  
–  140,000	
  to	
  190,000	
  people	
  with	
  analybcal	
  experbse	
  	
  
–  1.5	
  million	
  managers	
  and	
  analysts	
  with	
  skills	
  to	
  understand	
  
and	
  make	
  decisions	
  based	
  on	
  the	
  analysis	
  of	
  big	
  data	
  

Source:	
  Big	
  data:	
  The	
  next	
  fronber	
  for	
  innovabon,	
  
compebbon,	
  and	
  producbvity,	
  McKinsey	
  &	
  Company,	
  2011	
  	
  



Data	
  Science	
  

Extracbng	
  insight	
  and	
  knowledge	
  from	
  (big)	
  data	
  

h^p://drewconway.com	
  



Data	
  Science	
  

By	
  Hilary	
  Mason,	
  bitly	
  
From	
  forbes.com	
  



Source:	
  Big	
  data:	
  The	
  next	
  fronber	
  for	
  innovabon,	
  
compebbon,	
  and	
  producbvity,	
  McKinsey	
  &	
  Company,	
  2011	
  	
  



OK,	
  but	
  what	
  are	
  we	
  actually	
  
going	
  to	
  do	
  in	
  this	
  class?	
  



Course	
  Goals	
  

•  Learn	
  basic	
  building	
  blocks	
  and	
  general	
  principles	
  of	
  
designing	
  ML	
  algorithms	
  

•  Learn	
  specific,	
  widely	
  used	
  ML	
  algorithms	
  

•  Learn	
  methodology	
  and	
  tools	
  to	
  apply	
  ML	
  algorithms	
  
to	
  real	
  data	
  and	
  evaluate	
  their	
  performance	
  

•  Course	
  is	
  organized	
  as	
  a	
  sequence	
  of	
  problems	
  and	
  
algorithms	
  



Course	
  Outline	
  

•  Supervised	
  learning	
  
–  Learn	
  from	
  examples	
  

•  Unsupervised	
  learning	
  
–  Find	
  pa^erns	
  in	
  data	
  

	
  
•  Probabilisbc	
  learning	
  
–  Quanbfy	
  uncertainty	
  

“20%	
  chance	
  of	
  rain”	
  
“80%	
  chance	
  of	
  survival”	
  

“90%	
  sure	
  it	
  is	
  President	
  Obama”	
  



Logisbcs	
  



Course	
  Webpage	
  

•  Entry	
  point	
  for	
  all	
  course	
  informabon	
  
–  Course	
  policies	
  (review)	
  
–  Schedule	
  
–  Slides	
  
–  Homework	
  

•  Office	
  hours:	
  	
  
Tue	
  4-­‐5pm,	
  Thu	
  3:30-­‐4:30	
  pm,	
  Clapp	
  222B	
  

h^p://people.cs.umass.edu/~sheldon/teaching/cs335/index.html	
  



Math	
  
•  Warning:	
  there	
  is	
  math	
  in	
  this	
  course	
  

•  What	
  you	
  should	
  know	
  
–  Calculus	
  

•  Derivabves	
  
•  (Parbal	
  derivabves)	
  

–  Probability	
  
•  Sample	
  space,	
  events,	
  condibonal	
  probability,	
  discrete	
  
random	
  variables,	
  expected	
  value	
  

•  Review	
  later	
  in	
  semester	
  
–  Linear	
  algebra	
  

•  Nothing	
  (but	
  hopefully	
  seen	
  matrices	
  and	
  vectors)	
  

•  Self-­‐assessment	
  in	
  HW0	
  



MATLAB	
  

•  All	
  programming	
  in	
  this	
  course	
  done	
  in	
  
MATLAB	
  
–  Installed	
  in	
  Clapp	
  202	
  

•  MATLAB	
  session:	
  Fourth	
  hour	
  next	
  Friday	
  9/12	
  
– Required	
  	
  



What’s	
  Next?	
  

•  Homework	
  0	
  posted	
  
– By	
  Tuesday:	
  
•  Math	
  self-­‐assessment	
  
•  Read	
  course	
  policies	
  
•  Post	
  on	
  Piazza	
  
•  Help	
  collect	
  data	
  (anonymous)	
  

–  Height,	
  knee	
  height,	
  arm	
  span	
  
–  List	
  5	
  movies	
  

– By	
  next	
  Friday:	
  
•  Get	
  started	
  with	
  MATLAB	
  exercise	
  

For next lecture

• A small exercise for you to do 
• Please take some measurements (all in cms) of 

yourself and send me the results by tomorrow
– Your height 
– The knee height

– The arm-span (spreading your arms out, and 
measure the length from finger tip to finger tip)

22



What’s	
  Next?	
  

•  Fourth	
  Hour	
  tomorrow	
  (Opbonal)	
  
– 10:00–10:50	
  in	
  Clapp	
  218	
  
– Calculus	
  brush-­‐up	
  
•  Derivabves	
  
•  Intuibon	
  and	
  rules	
  



(If	
  bme)	
  First	
  MATLAB	
  Session	
  

•  Open	
  MATLAB	
  
•  Change	
  directories	
  
•  Edit	
  file	
  
•  Run	
  script	
  



(If	
  bme)	
  A	
  First	
  Example	
  

•  Polynomial	
  fixng	
  (on	
  board)	
  


