CS 335: Machine Learning
Homework 4

Dan Sheldon
October 25, 2014

Instructions
Due Friday 10/31 by midnight
e Write your name on your submission
e Write the name of all students with whom you collaborated

e Cite any sources you used other than the textbook, course notes, or Coursera

Files

The zip archive hwd-files.zip contains the files needed for this assignment. When unzipped, it will expand
into a directory hw4-files. These are the files you will have to edit as instructed in the assignment:

e problem_1.m
e one_vs_all.m
e predict_one_vs_all.m
e problem 2.m
e problem 3.m
These are the ones you won’t have to change:
e fit logistic_regression.m
e regularized_cost_function.m
e logistic.m
e fmincg.m
e display data.m
e resize.m
e digits.mat

e digits2.mat

What to Submit

Here is what to submit:

e hwid-files-<yourlastname>.zip. A single zip file containing the directory with all of the code files,
including those you edited as well as those you did not edit. (Please preserve the original filenames of
all files.)

e report.pdf. A single pdf file containing the plots and answers to questions you are asked below about
the experiments. Please submit your report in pdf format instead of docx, etc.

There are no written problems on this assignment.

Hand-Written Digit Classification

In this assignment you will implement multi-class classification for hand-written digits and run a few exper-
iments. The file digits.mat is a MATLAB data file containing the data set, which is split into a training
set with 4000 examples, and a test set with 1000 examples. You can import the data into your MATLAB
workspace by typing:

>> load digits.mat
This will create the following four variables:
e X _train - size 4000 x 400
e y_train - size 4000 x 1
e X_test - size 1000 x 400
e y_test - size 1000 x 1
Recall that the X matrices are arranged so that each row is a training example, i.e.,
— (xIHT —
2\ T
oo |
_ (x(r;t))T _
and the vector x(¥) € R*%0 is a vector containing all of the pixel values of the 20 x 20 grayscale image from
the ¢th training example.
Because this is a multi-class classification problem, the y_test and y_train vectors have entries from 1
to 10, where the labels from 1 to 9 represent the digits from 1 to 9, and the label 10 represents the digit 0.

You can visualize the data using the display_data.m function provided with the assignment. For example,
to display the first 25 training examples, type the following

>> display_data(X_train(1:25,:));

You will see the following

You can check that the labels for the first two rows are indeed correct:

>> y_train(1:10)°
ans =

8 6 5 4 5 4 9 7 10 2

Problem 1: One-vs-All Logistic Regression (10 points)

In this problem you will implement one vs. all multi-class classification using logistic regression. Recall the
method presented in class. Suppose we are solving a K class problem given training examples in the data
matrix X € R™*™ and label vector y € R™ (the entries of y can be from 1 to K).

For each class ¢ = 1,..., K, fit a logistic regression model to distinguish class ¢ from the others using

the labels
©)0 otherwise.

This training procedure will result in a weight vector 8. that can be used to predict the probability that a
new example x belongs to class c:

logistic(0” x) = probability that x belongs to class c.

The overall training procedure will yield one weight vector for each class. To make the final prediction for a
new example, select the class with highest predicted probability:

predicted class = the value of ¢ that maximizes logistic(6” x).

Open the script problem_1.m. It will load the data and call the procedure one_vs_all() to train a multi-
class logistic regression model on the training set, and then call predict_one_vs_all.m to make predictions
on the test set. It will then print some statistics and display the learned weight vectors as images. However,
it will not work properly until you implement the functions as instructed below.

Training

Complete the code in one_vs_all.m to train the binary classifiers using the procedure outline above. You
should return the weight vectors all together in one matrix, so that weight vectors(:,c) gives the fitted
weight vector for class c¢. I have included an optimized routine called fit_logistic_regression() to fit a
regularized logistic regression model, which you can invoke as follows:

theta = fit_logistic_regression(X, y, lambda, theta_init);

Look inside the file for more documentation. You need to call this function with the appropriate input
arguments. The input parameter lambda (A) controls how much we penalize large weights in the regularized
cost function. You will experiment with different values of A in the next problem.

Hint: You may find the expression y == c¢ useful, where y is a vector and c is a scalar. This compares
each entry of y to ¢, and produces the vector of 0/1 values that result from the individual comparisons.

Checking that training is working properly When you have correctly implemented the training pro-
cedure, you should see the following number of the training accuracy:

Training Set Accuracy: 92.775000

(If you are within one or two percent of this but do not get the exact number, you are probably doing OK,
but it might be worth checking with me—say, by posting on Piazzal)

The code will also display the weight vectors as images. You should also be able to recognize the digits,
but they may not be perfect looking specimens of the digits.

Prediction

Now complete the code in the file predict_one vs_all.m to make predictions using the learned weight
vectors. Once you have implmemented both training and prediction correctly, you should now see the
following number for test set accuracy:

Test Set Accuracy: 91.000000

Problem 2: Regularization (15 points)

In this problem, you will experiment with different values of the regularization parameter A to control
overfitting.

The file problem_2.m is currently a stub that load the data and sets a few variables. Write code in this
file to measure the training and test accuracy for values of A that are powers of 10 ranging from 107 to 10°.
For each value of A, save an image of the weight vectors to file (see comments in the file for instructions).

When you are done, plot the training and test accuracy vs. A. To plot two different vectors on the
vertical axis versus one set of values on the horizontal axis, you can use the plot() command as follows:

plot(lambda_vals, [train_acc test_accl);
Then, provide a legend and set the horizontal axis to be log-scale so the A values appear evenly spaced:

legend(‘train’, ‘test’);
set(gca, ‘xscale’, ‘log’);

Save your figure using the either the print command or the GUI, and include it in your writeup. Then
answer the following questions.

1. Does the plot show any evidence of overfitting? If so, for what range of A values (roughly) is the model
overfit? What do the images of the weight vectors look when the model is overfit? Include an example
in your report.

2. Does the plot show any evidence of underfitting? For what range of A values (roughly) is the model
underfit? What do the images of the weight vectors look like when the model is underfit? Include an
example in your report.

3. If you had to choose one value of A, what would you select?

4. Would it make sense to run any additional experiments to look for a better value of A. If so, what
values would you try?

Problem 3: Learning Curve (10 points)

A learning curve shows accuracy on the vertical axis vs. the amount of training data used to learn the
model on the horizontal axis. To produce a learning curve, train a sequence of models using subsets of the
available training data, starting with only a small fraction of the data and increasing the amount until all
of the training data is used.

Complete the code in the script problem_2.m to produce a learning curve. Read the comments in the file
for more instructions. Use commands similar to those in Problem 2 to plot both training and test accuracy
vs. the amount of training data used. (This time, you will not set the horizontal axis to have log-scale.)
Include the plot in your writeup, and answer the following questions:

1. Does the plot show evidence that additional training data might improve performance on the test set?
Why or why not?

2. Is the any relationship between the amount of training data used and the propensity of the model to
overfit? Explain.

For Fun

Confusion Matrix

Accuracy measures the percentage of correctly classified digits, but fails to let us know where our classifier
is making its mistakes. For example, perhaps we always correctly classify examples of the digit 1, bu make
many more mistakes on examples of the digit 4. Or perhaps we commonly confuse the digits 3 and 6.

A “confusion matrix” can help explore these questions. Read about confusion matrices (on Wikipedia
or elsewhere) and create a confusion matrix for one of the classifiers from Problems 1-3. Use the confusion
matrix to answer the question: which are the two most commonly confused digits by the classifier?

SVM vs. Logistic Regression Comparison

Would SVMs perform better than logistic regression on this problem? libsvm is a freely available im-
plementation of SVM training and prediction with a MATLAB interface. It can be downloaded from
http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Install 1ibsvm and test it out on a small example prob-
lem so you understand the usage. Then try SVMs instead of logistic regression as the base learner for this
multiclass classification problem and run experiments to see if you can make it perform better than logistic
regression.

(Note: Pay attention to the libsvm interface for making predictions after you train a model—while it
is possible to extract a weight vector and make predictions yourself, it is usually less error-prone to treat
their model data structure as a black box and use it in conjunction with the provided prediction methods
to make predictions.)

