


Algorithm Design

Divide and | Dynamic
Greedy :
Conquer |Programming
Formulate problem 2 ? ?
Design algorithm less work | more work | more work
Prove correctness more work | less work | less work
Analyze running time | less work [more work | less work




Network Flow

@ Greedy, Divide-and-Conquer, and Dynamic
Programming were design techniques

@ Network flow — a specific class of problems.

@ Useful in many different applications!
(matching, transportation, network design, etc.)

® Goal: design and analyze algorithms for max-flow
problem, then apply to solve other problems



Soviet Rail Network, 1955

SRIGINS

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.



Flow Networks

@ Flow network.
@ Abstraction for material flowing through the edges.
® G = (V, E) = directed graph
@ Two distinguished nodes: s = source, t = sink.
@ c(e) = capacity of edge e.




Flows

® An s-t flow is a function f: E— R* that satisfies:

@ Capacity condition: For each e € E: 0O < f(e) < c(e)
@ Conservation condition: For each v € V - $s, t}:
> fle) = 2 F(e)

e intov e out of v




Flows

@ The value of a flow fis: v(f) = 3 f(e)

e out of s




Flows

@ The value of a flow fis: v(f) = 3 f(e)

e out of s




Maximum Flow Problem

Find s-t flow of maximum value.




Towards a Max Flow Algorithm

@ Greedy algorithm.
® Start with f(e) = O for all edges e € E.
@ Find an s-t path P where each edge has f(e) < c(e).
® Augment flow along path P.
@ Repeat until you get stuck.




Towards a Max-Flow
Algorithm

Key idea: repeatedly choose paths and
"augment” the amount of flow on those paths
as much as possible until capacities are met



Towards a Max Flow Algorithm

@ Greedy algorithm.
® Start with f(e) = O for all edges e € E.
@ Find an s-t path P where each edge has f(e) < c(e).
® Augment flow along path P.
@ Repeat until you get stuck.




Optimal Solution
 Flow value = 30




Problem

To fix the greedy algorithm, we need a way fo track:
(1) how much more flow can we send on any edge?
(2) how much flow can we “"undo” on each edge?




Residual Graph

@ Original edge: e = (u, v) € E.
@ Flow f(e), capacity c(e).

@ Create two residual edges
@ “"Forward edge” nesaa!
e = (u, v) with capacity c(e) - f(e) Vi
@ "Backward edge”
e’ = (v, u) with capacity f(e)

@ Residual graph: G¢ = (V, E;).
@ E; = edges with positive residual capacity
@ E. ={e: fle) <cle)} u {e: fle) > O}



Augmenting Path

Use path P in G¢ fo to update flow in G

Augment (£, P) {
b = bottleneck (P) // edge on P with least residual capacity
foreach e = (u,v) € P {
if e 1is a forward edge
f(e) = f(e) + b // forward edge: increase flow
else
let e’ = (v, u)
f(e’') = f(e’') - b // backward edge: decrease flow
}

return £

Example on board



Ford-Fulkerson Algorithm

Repat: find an augmenting path, and augment!

Ford-Fulkerson (G, s, t) {
foreach e € E f(e) = 0 // initially, no flow
G = copy of G // residual graph = original graph

while (there exists an s-t path P in Gg¢) ({

f = Augment(f, P) // change the flow

update G; // build a new residual graph
}

return £



Next Time

@ Termination and running time (easy)

® Correctness: Max-Flow Min-Cut Theorem



