Network Flow

Algorithm Design

	Greedy	Divide and Conquer	Dynamic Programming
Formulate problem	?	?	?
Design algorithm	less work	more work	more work
Prove correctness	more work	less work	less work
Analyze running time	less work	more work	less work

Network Flow

Greedy, Divide-and-Conquer, and Dynamic Programming were design techniques \odot Network flow \rightarrow a specific class of problems. Output Useful in many different applications! (matching, transportation, network design, etc.) Goal: design and analyze algorithms for max-flow problem, then apply to solve other problems

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Flow Networks

Solution Flow network.

Abstraction for material flowing through the edges.

- Two distinguished nodes: s = source, t = sink.

 $\circ c(e) = capacity of edge e.$

Flows

An s-t flow is a function f: E→ R⁺ that satisfies:
Capacity condition: For each e ∈ E: 0 ≤ f(e) ≤ c(e)
Conservation condition: For each v ∈ V - {s, t}:
∑ f(e) = ∑ f(e)
e out of v

Flows

The value of a flow f is: $v(f) = \sum_{e \text{ out of s}} f(e)$

Flows

The value of a flow f is: $v(f) = \sum_{e \text{ out of s}} f(e)$

Maximum Flow Problem

Find s-t flow of maximum value.

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edges e ∈ E.
- Find an s-t path P where each edge has f(e) < c(e).</p>

Augment flow along path P.

Repeat until you get stuck.

Towards a Max-Flow Algorithm

Key idea: repeatedly choose paths and "augment" the amount of flow on those paths as much as possible until capacities are met

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edges e ∈ E.
- Find an s-t path P where each edge has f(e) < c(e).</p>

Augment flow along path P.

Repeat until you get stuck.

Optimal Solution

Flow value = 30

Problem

To fix the greedy algorithm, we need a way to track: (1) how much more flow can we send on any edge? (2) how much flow can we "undo" on each edge?

Residual Graph

Ø Original edge: e = (u, v) ∈ E.
Ø Flow f(e), capacity c(e).

Create two residual edges
"Forward edge"
e = (u, v) with capacity c(e) - f(e)
"Backward edge"
e' = (v, u) with capacity f(e)

Ø Residual graph: G_f = (V, E_f).
 Ø E_f = edges with positive residual capacity
 Ø E_f = {e : f(e) < c(e)} ∪ {e' : f(e) > 0}

Augmenting Path Use path P in Gf to to update flow in G

Example on board

}

Ford-Fulkerson Algorithm

Repat: find an augmenting path, and augment!

Ford-Fulkerson(G, s, t) { foreach $e \in E$ f(e) = 0 // initially, no flow $G_f = copy$ of G // residual graph = original graph

```
while (there exists an s-t path P in G<sub>f</sub>) {
    f = Augment(f, P) // change the flow
    update G<sub>f</sub> // build a new residual graph
}
return f
```

}

Next Time

Termination and running time (easy)
 Correctness: Max-Flow Min-Cut Theorem