
Network Flow



Algorithm Design

Greedy Divide and 
Conquer

Dynamic
Programming

Formulate problem ? ? ?

Design algorithm less work more work more work

Prove correctness more work less work less work

Analyze running time less work more work less work



Network Flow

Greedy, Divide-and-Conquer, and Dynamic 
Programming were design techniques

Network flow → a specific class of problems. 

Useful in many different applications! 
(matching, transportation, network design, etc.)

Goal: design and analyze algorithms for max-flow 
problem, then apply to solve other problems



Soviet Rail Network, 1955

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.



Flow network.
Abstraction for material flowing through the edges.
G = (V, E) = directed graph
Two distinguished nodes:  s = source, t = sink.
c(e) = capacity of edge e.
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An s-t flow is a function f: E→ R+ that satisfies:
Capacity condition:  For each e ∈ E: !0 ≤ f(e) ≤ c(e)
Conservation condition:  For each v ∈ V – {s, t}: !
∑ f(e) =   ∑ f(e)

Flows
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The value of a flow f is:  v(f) = ∑ f(e)     
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The value of a flow f is:  v(f) = ∑ f(e)     
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Find s-t flow of maximum value.

Maximum Flow Problem
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Towards a Max Flow Algorithm
Greedy algorithm.

Start with f(e) = 0 for all edges e ∈ E.
Find an s-t path P where each edge has f(e) < c(e).
Augment flow along path P.
Repeat until you get stuck.
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Towards a Max-Flow 
Algorithm

Key idea: repeatedly choose paths and 
“augment” the amount of flow on those paths 
as much as possible until capacities are met



Towards a Max Flow Algorithm
Greedy algorithm.

Start with f(e) = 0 for all edges e ∈ E.
Find an s-t path P where each edge has f(e) < c(e).
Augment flow along path P.
Repeat until you get stuck.
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Optimal Solution

s

1

2

t

10

10

10

10

20

20

30

Flow value = 30

20

20

10



Problem
To fix the greedy algorithm, we need a way to track:
(1) how much more flow can we send on any edge?
(2) how much flow can we “undo” on each edge?
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Residual Graph
Original edge:  e = (u, v)  ∈ E.

Flow f(e), capacity c(e).

Create two residual edges
“Forward edge” 
e = (u, v) with capacity c(e) - f(e)
“Backward edge” 
e’ = (v, u) with capacity f(e)

Residual graph:  Gf = (V, Ef ).
Ef = edges with positive residual capacity
Ef = {e : f(e) < c(e)} ∪ {e’ : f(e) > 0}

u v 17
6

u v 11

residual 
capacity

 6



Augmenting Path

Augment(f, P) {
   b = bottleneck(P) 
   foreach e = (u,v) ∈ P {
      if e is a forward edge
             f(e) = f(e) + b
      else
         let e’ = (v, u)
         f(e’) = f(e’) - b
   }
   return f
}

// edge on P with least residual capacity

Use path P in Gf to to update flow in G

// forward edge: increase flow

// backward edge: decrease flow

Example on board



Ford-Fulkerson Algorithm

Ford-Fulkerson(G, s, t) {
   foreach e ∈ E  f(e) = 0 // initially, no flow
   Gf = copy of G          // residual graph = original graph

   while (there exists an s-t path P in Gf) {
      f = Augment(f, P)    // change the flow
      update Gf                  // build a new residual graph
   }
   return f
}

Repat: find an augmenting path, and augment!



Next Time

Termination and running time (easy)

Correctness: Max-Flow Min-Cut Theorem


