
Dynamic Programming

Today:

Weighted Interval Scheduling

Segmented Least Squares

Weighted Interval
Scheduling

Compute-Opt(j) {
 if j == 0 then
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
 end
}

Running time?

Recursive Algorithm

Worst Case Running Time

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

Worst-case running time is exponential.

Initialize M[j] to be “empty” for j=1,…,n
M-Compute-Opt(j) {
 if j == 0 then
 return 0
 else if M[j] is empty then
 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
 end if
 return M[j]
}

Memoization
Store results of each sub-problem in an array.

This gives O(n) running time!
...but we’ll see an even easier approach

Iterative Solution
Solve subproblems in ascending order

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
 end
}

Running time is obviously O(n)

Finding the Solution
(Not just value)

Exercise: suppose you are given the array M,
so that M[j] = OPT(j). How can you produce
the optimal set of jobs?

Hint: first decide whether job n is part of
optimal solution

Find-Solution

Find-Solution(M, j) {
 if j == 0
 return {}
 else if vj + M[p(j)] > M[j-1] then

 return {j} ∪ Find-Solution(M, p(j)) // case 1
else
 return Find-Solution(M, j-1) // case 2
end

}

Use the recurrence a second time to
“backtrack” through M array

Call Find-Solution(M, n)

Dynamic Programming
“Recipe”

Recursive formulation of optimal solution in
terms of subproblems

Only polynomially many different subproblems

Iterate through subproblems in order

Interval scheduling: n subproblems

Segmented Least
Squares

A Second Example of
Dynamic Programming

Two important questions: (1) how many subproblems?
and (2) what does recurrence look like? (how many
cases?)

Weighted Interval scheduling
n subproblems
Two cases: include j or don’t include j

Segmented Least Squares
n subproblems
Many cases...

Ordinary Least Squares (OLS)
Foundational problem in statistics and numerical
analysis.

Given n points in the plane: (x1, y1), (x2, y2) , . . . ,
(xn, yn).

Find a line y = ax + b that minimizes the sum of the
squared error:

�

SSE = (yi − axi −b)2
i=1

n
∑ x

y

Least Squares Solution

Result from calculus, least squares achieved
when:

�

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

We will use this as a subroutine
(running time O(n))

Least Squares

Sometimes a single line does not work very well.

x

y

Segmented Least Squares
Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn)
with x1 < x2 < ... < xn, find a sequence of lines that fits
well.

x

y

No longer have a simple solution from calculus

Segmented Least Squares
Issue: how many lines? With too many lines, you can get
a prefect solution, but there may be a much simpler
explanation (e.g., two lines)

x

y

Segmented Least Squares
Idea: Find a sequence to minimize some combination of:

the total error from each segment
the number of lines

x

y

Segmented Least
Squares

Finish problem formulation and develop
recurrence on board

Segmented Least Squares: Algorithm

Segmented-Least-Squares() {
 for all pairs i < j
 compute the least square error eij for
 the segment pi,…, pj

 end

 M[0] = 0
 for j = 1 to n
 M[j] = min 1 ≤ i ≤ j (eij + C + M[i-1])
 end

 return M[n]
}

Cost

O(n3)

O(n2)

Total = O(n3)

Segmented Least Squares:
A Second Example

Weighted Interval scheduling
n subproblems
Two cases: include j or don’t include j

Segmented Least Squares
n subproblems
Up to n cases (select starting point pi of final
segment, i ≤ j)

