Dynamic Programming

Today:
® Weighted Inferval Scheduling

@ Segmented Least Squares



Weighted Interval
Scheduling



Recursive Algorithm

Compute-Opt(j) {

if j == O then
return O
else

return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))
end

;

Running time?



Worst Case Running Time

p(1) = O, p(j) = j-2

Worst-case running fime is exponential.



Memoization

Store results of each sub-problem in an array.

Initialize M[j] to be “empty” for j=1,...,n
M-Compute-Opt(j) {
if j == 0 then
return O
else if M[j] is empty then
M[j] = max(w; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
end if
return M[]]

;

This gives O(n) running time!
..but we'll see an even easier approach



Iterative Solution

Solve subproblems in ascending order

Iterative-Compute-Opt {
M[O] = O
for j=1ton
MLi]l = max(v; + MIp(j)], M[j-1])
end

;

Running time is obviously O(n)



Finding the Solution
(Not just value)

@ Exercise: suppose you are given the array M,
so that M[j] = OPT(j). How can you produce
the optimal set of jobs?

@ Hint: first decide whether job n is part of
optimal solution



Find-Solution

Use the recurrence a second time to
"backtrack” through M array

Find-Solution(M, j) §
if j ==
return {}
else if v; + M[p(j)] > M[j-1] then
return {j} u Find-Solution(M, p(j)) // case 1

else
return Find-Solution(M, j-1) // case 2
end

Call Find-Solution(M, n)



Dynamic Programming
"Recipe”

@ Recursive formulation of optimal solution in
terms of subproblems

@ Only polynomially many different subproblems

@ Iterate through subproblems in order

Interval scheduling: n subproblems



Segmented Least
Squares



A Second Example of
Dynamic Programming

Two important questions: (1) how many subproblems?
and (2) what does recurrence look like? (how many
cases?)

Weighted Interval scheduling
@ n subproblems
@ Two cases: include j or dont include j

Segmented Least Squares
@ n subproblems
@ Many cases...



Ordinary Least Squares (OLS)

@ Foundational problem in statistics and numerical
analysis.

@ Given n points in the plane: (x, v.), (X,, ¥.) , - . .,
(xnl Yn)

@ Find a line y = ax + b that minimizes the sum of the
squared error:

SSE = i (y,-—ax,.—b)z

i=l1




Least Squares Solution

@ Result from calculus, least squares achieved
when:

a

9

n Zi xi2 - (21 X; )2

We will use this as a subroutine
(running time O(n))



Least Squares

@ Sometimes a single line does not work very well.




Segmented Least Squares

@ Given n points in the plane (x, v.), (X, ¥,) , - - ., (X., ¥.)
with x,< x,< .. < X, ind a sequence of lines that fits
well.

X

No longer have a simple solution from calculus



Segmented Least Squares

Issue: how many lines? With foo many lines, you can get
a prefect solution, but there may be a much simpler
explanation (e.g., two lines)

3
50 00050004




Segmented Least Squares

Idea: Find a sequence to minimize some combination of:
@ the totfal error from each segment
@ the number of lines




Segmented Least
Squares

@ Finish problem formulation and develop
recurrence on board



Segmented Least Squares: Algorithm

Segmented-Least-Squares() { Cost
for all pairsi < |
compute the least square error e; for o(n3)
the segment p;,..., p;

end

M[O] = O

for j=11ton 4
M[j] = min,.;.;(e; + C + M[i-1]) O(n?)

end

return M[n] Total = O(n?)



Segmented Least Squares:
A Second Example

Weighted Interval scheduling
@ n subproblems
@ Two cases: include j or dont include j

Segmented Least Squares
@ n subproblems

@ Up to n cases (select starting point p; of final
segment, i < j)



