Dynamic Programming

Today:

- Weighted Interval Scheduling
- Segmented Least Squares

Weighted Interval Scheduling

Recursive Algorithm

Compute-Opt(j) \{ if $\mathrm{j}=0$ then return 0
else
return $\max \left(\mathrm{v}_{\mathrm{j}}+\right.$ Compute-Opt(p(j)), Compute-Opt(j-1))
end

Running time?

Worst Case Running Time

Worst-case running time is exponential.

Memoization

Store results of each sub-problem in an array.

Initialize $M[j]$ to be "empty" for $j=1, \ldots, n$ M-Compute-Opt(j) \{
if $\mathrm{j}=0$ then
return 0
else if $M[j]$ is empty then
$M[j]=\max \left(w_{j}+M\right.$-Compute-Opt(p(j)), M-Compute-Opt(j-1))
end if
return $M[j]$
\}

This gives $O(n)$ running time!
...but we'll see an even easier approach

Iterative Solution

Solve subproblems in ascending order

$$
\begin{aligned}
& \text { Iterative-Compute-Opt \{ } \\
& M[0]=0 \\
& \text { for } j=1 \text { to } n \\
& M[j]=\max \left(v_{j}+M[p(j)], M[j-1]\right) \\
& \text { end }
\end{aligned}
$$

Running time is obviously $O(n)$

Finding the Solution (Not just value)

- Exercise: suppose you are given the array M, so that $M[j]=$ OPT (j). How can you produce the optimal set of jobs?
- Hint: first decide whether job n is part of optimal solution

Find-Solution

Use the recurrence a second time to

 "backtrack" through M arrayFind-Solution $(M, j)\{$

$$
\text { if } j=0
$$

return $\}$
else if $v_{j}+M[p(j)]>M[j-1]$ then
return $\{j\} \cup$ Find-Solution($M, p(j))$ // case 1 else
return Find-Solution($M, j-1$)
// case 2 end
\}
Call Find-Solution(M, n)

Dynamic Programming
 "Recipe"

- Recursive formulation of optimal solution in terms of subproblems
- Only polynomially many different subproblems
- Iterate through subproblems in order

Interval scheduling: n subproblems

Segmented Least

Squares

A Second Example of Dynamic Programming

Two important questions: (1) how many subproblems? and (2) what does recurrence look like? (how many cases?)

Weighted Interval scheduling

- n subproblems
- Two cases: include j or don't include j

Segmented Least Squares

- n subproblems
- Many cases...

Ordinary Least Squares (OLS)

- Foundational problem in statistics and numerical analysis.
- Given n points in the plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, $\left(x_{n}, y_{n}\right)$.
- Find a line $y=a x+b$ that minimizes the sum of the squared error:

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

Least Squares Solution

- Result from calculus, least squares achieved when:

$$
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
$$

We will use this as a subroutine (running time $O(n)$)

Least Squares

- Sometimes a single line does not work very well.

Segmented Least Squares

- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with $X_{1}<X_{2}<\ldots<X_{n}$, find a sequence of lines that fits well.

No longer have a simple solution from calculus

Segmented Least Squares

Issue: how many lines? With too many lines, you can get a prefect solution, but there may be a much simpler explanation (e.g., two lines)

Segmented Least Squares

Idea: Find a sequence to minimize some combination of: - the total error from each segment - the number of lines

Segmented Least

Squares

- Finish problem formulation and develop recurrence on board

Segmented Least Squares: Algorithm

Segmented-Least-Squares() \{

end
$M[0]=0$
for $\mathrm{j}=1$ to n
$M[j]=\min _{1 \leq i \leq j}\left(e_{i j}+C+M[i-1]\right)$
$O\left(n^{2}\right)$
end
return $M[n]$

Segmented Least Squares: A Second Example

Weighted Interval scheduling

- n subproblems
- Two cases: include j or don't include j

Segmented Least Squares

- n subproblems
- Up to n cases (select starting point pi of final segment, $\mathrm{i} \leq \mathrm{j}$)

