
Dynamic Programming

Today:

Weighted Interval Scheduling

Segmented Least Squares



Weighted Interval 
Scheduling



Compute-Opt(j) {
   if j == 0 then
      return 0
   else
      return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
   end
}

Running time?

Recursive Algorithm



Worst Case Running Time
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Worst-case running time is exponential.



Initialize M[j] to be “empty” for j=1,…,n
M-Compute-Opt(j) {
   if j == 0 then
       return 0
   else if M[j] is empty then
      M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   end if
   return M[j]
}

Memoization
Store results of each sub-problem in an array.

This gives O(n) running time!
...but we’ll see an even easier approach



Iterative Solution
Solve subproblems in ascending order

Iterative-Compute-Opt {
   M[0] = 0
   for j = 1 to n
      M[j] = max(vj + M[p(j)], M[j-1])
   end
}

Running time is obviously O(n)



Finding the Solution
(Not just value)

Exercise: suppose you are given the array M, 
so that M[j] = OPT(j). How can you produce 
the optimal set of jobs?

Hint: first decide whether job n is part of 
optimal solution



Find-Solution

Find-Solution(M, j) {
    if j == 0
        return {}
    else if vj + M[p(j)] > M[j-1] then

   return {j} ∪ Find-Solution(M, p(j))  // case 1
else
   return Find-Solution(M, j-1)         // case 2
end

}

Use the recurrence a second time to 
“backtrack” through M array

Call Find-Solution(M, n)



Dynamic Programming 
“Recipe”

Recursive formulation of optimal solution in 
terms of subproblems

Only polynomially many different subproblems

Iterate through subproblems in order

Interval scheduling: n subproblems



Segmented Least 
Squares



A Second Example of 
Dynamic Programming

Two important questions: (1) how many subproblems? 
and (2) what does recurrence look like? (how many 
cases?)

Weighted Interval scheduling
n subproblems
Two cases: include j or don’t include j

Segmented Least Squares
n subproblems
Many cases...



Ordinary Least Squares (OLS)
Foundational problem in statistics and numerical 
analysis.

Given n points in the plane:  (x1, y1), (x2, y2) , . . . , 
(xn, yn).

Find a line y = ax + b that minimizes the sum of the 
squared error: 
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SSE = (yi − axi −b)2
i=1

n
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Least Squares Solution

Result from calculus, least squares achieved 
when:
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a =
n xi yi − ( xi )i∑ ( yi )i∑i∑

n xi
2 − ( xi )

2
i∑i∑

, b =
yi − a xii∑i∑

n

We will use this as a subroutine 
(running time O(n))



Least Squares

Sometimes a single line does not work very well.

x
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Segmented Least Squares
Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) 
with x1 < x2 < ... < xn, find a sequence of lines that fits 
well.
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No longer have a simple solution from calculus



Segmented Least Squares
Issue: how many lines? With too many lines, you can get 
a prefect solution, but there may be a much simpler 
explanation (e.g., two lines)

x
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Segmented Least Squares
Idea: Find a sequence to minimize some combination of:

the total error from each segment
the number of lines

x

y



Segmented Least 
Squares

Finish problem formulation and develop 
recurrence on board



Segmented Least Squares:  Algorithm

Segmented-Least-Squares() {
   for all pairs i < j
      compute the least square error eij for 
      the segment pi,…, pj

    end

   M[0] = 0
   for j = 1 to n
      M[j] = min 1 ≤ i ≤ j (eij + C + M[i-1])
   end

   return M[n]
}

Cost

O(n3)

O(n2)

Total = O(n3)



Segmented Least Squares:
A Second Example

Weighted Interval scheduling
n subproblems
Two cases: include j or don’t include j

Segmented Least Squares
n subproblems
Up to n cases (select starting point pi of final 
segment, i ≤ j)


