
Plan for Today

Finish recurrences

Inversion Counting

Closest Pair of Points



Divide and Conquer

Divide-and-conquer.
Divide problem into several parts.
Solve each part recursively.
Combine solutions to sub-problems into overall 
solution.

Most common usage:
Problem of size n → two equal parts of size n/2
Combine solutions in linear time.



Recommender Systems

Netflix tries to match your movie preferences with 
others.

You rank n movies.
Netflix consults database to find people with 
similar tastes.
Netflix can recommend to you movies that they 
liked.

Doing this well was worth $1,000,000 to Netflix!!



Counting Inversions
Similarity metric:  number of inversions between two 
rankings.

My rank:  1, 2, …, n.
Your rank:  a1, a2, …, an.
Movies i and j inverted if i < j, but ai > aj.

You
Me

1 43 2 5
1 32 4 5
A B C D E

Movies

Inversions
3-2, 4-2

What is the brute force algorithm?
Brute force:  check all Θ(n2) pairs i and j.



Divide and Conquer
4 8 10 21 5 12 11 3 76 9

Count inversions relative to a sorted list

4 8 10 21 5 12 11 3 76 9
Divide into 2 sublists of equal size

5 blue-blue inversions 8 red-red inversions

Recursively count the inversions

9 blue-red inversions

Total = 5 + 8 + 9 = 22.

Combine: add recursive counts plus 
blue-red inversions



Divide and Conquer
4 8 10 21 5 12 11 3 76 9

Count inversions relative to a sorted list

4 8 10 21 5 12 11 3 76 9
Divide into 2 sublists of equal size

5 blue-blue inversions 8 red-red inversions

Recursively count the inversions

9 blue-red inversions

Total = 5 + 8 + 9 = 22.

Combine: add recursive counts plus 
blue-red inversions

Cost

O(1)

2*T(n/2)

???



Finding Inversions

Combine:  count blue-green inversions 
Assume each half is sorted.
Count inversions where ai and aj are in 
different halves. 
Merge two sorted halves into sorted whole.

Variation of mergesort



Finding Inversions

Idea: sort each half during the recursive call, 
then count inversions while merging the two 
sorted lists (merge-and-count).

Modified merge sort.



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.
numLeft = 6

Total:



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

2

numLeft = 6

Total:  6



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

2 3

numLeft = 5

Total:  6



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

72 3

numLeft = 4

Total:  6



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

7 102 3

numLeft = 3

Total:  6



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

7 10 112 3

numLeft = 3

Total:  6 + 3



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

7 10 11 142 3

numLeft = 2

Total:  6 + 3



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

7 10 11 142 3 16

numLeft = 2

Total:  6 + 3 + 2



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

7 10 11 142 3 16 17

numLeft = 2

Total:  6 + 3 + 2 + 2



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

7 10 11 142 3 1816 17

numLeft = 1

Total:  6 + 3 + 2 + 2



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

7 10 11 142 3 18 1916 17

numLeft = 0

Total:  6 + 3 + 2 + 2



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

7 10 11 142 3 18 19 2316 17

numLeft = 0

Total:  6 + 3 + 2 + 2



10 14 18 193 7 16 17 23 252 11

Merge and Count
Merge and count step. 

Given two sorted halves, count number of inversions 
where ai and aj are in different halves.

Combine two sorted halves into sorted whole.

7 10 11 142 3 18 19 23 2516 17

numLeft = 0

Total:  6 + 3 + 2 + 2 = 13



Counting Inversions:  
Implementation

Sort-and-Count(L) {
   if list L has one element
      return (0, L)
   
   Divide the list into two halves A and B
   (rA, A) ← Sort-and-Count(A)
   (rB, B) ← Sort-and-Count(B)

   (rC, L) ← Merge-and-Count(A, B)
   r = rA + rB + rC

   return (r, L)
}



Counting Inversions:  Implementation
Merge-and-Count (A, B) {

curA = 0;  curB = 0;
count = 0;
mergedList = empty list
while (not at end of A && not at end of B) {

a = A[curA];  b = B[curB];
if (a < b) {

append a to mergedList;
curA++;

else {
append b to mergedList;
curB++;
count = count + num elements left in A

}
}
if (at end of A) append rest of B to mergedList;
else append rest of A to mergedList;
return (count, mergedList);

}



Cost of Sort-and-Count?
Sort-and-Count(L) {
   if list L has one element
      return (0, L)
   
   Divide the list into two halves A and B
   (rA, A) ← Sort-and-Count(A)
   (rB, B) ← Sort-and-Count(B)

   (rC, L) ← Merge-and-Count(A, B)
   r = rA + rB + rC

   return (r, L)
}



Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair 
with smallest Euclidean distance between them.

Fundamental geometric primitive.

Graphics, computer vision, geographic information 
systems, molecular modeling, air traffic control.

Brute force.  Check all pairs of points p and q with 
Θ(n2) comparisons.



Closest Pair of Points
1-dimensional version



Closest Pair of Points
1-D version.  

Sort points

For each point, find the distance 
between a point and the point that 
follows it.

Remember the smallest.

Cost

O(n log n)

O(n)

Total is O(n log n)



Closest Pair of Points
Divide: draw vertical line L so that n/2 points 
on each side.

L



Closest Pair of Points

12

21

L

Solve: recursively find closest pair in each 
side.



Combine: find closest pair with one point from each side. 

Return closest of three pairs.

12

21
8

L

Closest Pair of Points



Running Time?

T(n) ≤ 2 T(n/2) + ???

Time for combine?

Goal: implement combine in linear time, to get  
O(n log n) overall



Combine: how to do this without comparing each point 
on left to each point on right?

8

L

Closest Pair of Points



Closest Pair of Points
Let δ be the minimum between pair on left and pair on 
right

If there exists a pair with one point in each side and 
whose distance < δ, find that pair.

12

21

δ = min(12, 21)

L



Closest Pair of Points
Observation:  only need to consider points 
within δ of line L.

12

21

δ

L

δ = min(12, 21)



12

21

1

2

3

4
5

6

7

Closest Pair of Points
Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)

δ



12

21

1

2

3

4
5

6

7

Closest Pair of Points
Unbelievable lemma: only need to check 
distances of those within 15 positions in sorted 

L

δ = min(12, 21)

δ



Closest Pair of Points

Let s1, s2, …, sk be the points in the 2δ-
strip sorted by y-coordinate.

Claim. If |i – j| > 15, then the distance 
between si and sj is at least δ.

Proof:
No two points lie in same δ/2-by-δ/2 
box.
Two points separated by at least 3 
rows have distance ≥  3δ/2.   

δ

27

29
30

31

28

26

25

δ

δ/2

 3 rows

δ/2

δ/2

39

i

j



Closest Pair Algorithm
Closest-Pair(p1, …, pn) {
   Compute separation line L such that half the points
   are on one side and half on the other side.

   δ1 = Closest-Pair(left half)
   δ2 = Closest-Pair(right half)
   δ  = min(δ1, δ2)

   Delete all points further than δ from separation line L

   Sort remaining points by y-coordinate.

   Scan points in y-order and compare distance between
   each point and next 11 neighbors. If any of these
   distances is less than δ, update δ.

   return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

Cost

T(n) ≤ 2T(n/2) + O(n log n) 
T(n) = O(n log2 n)



Closest Pair of Points:  
Improvement

Can we achieve O(n log n)?

Yes: pre-sort all points by x- and y-coordinates, and 
filter sorted lists to find the points within δ of L.

See the book for details.


