Plan for Today

@ Finish recurrences
@ Inversion Counting

® Closest Pair of Points



Divide and Conquer

Divide-and-conquer.

@Divide problem into several parts.

@ Solve each part recursively.

@ Combine solutions to sub-problems info overall
solution.

Most common usage:
®@Problem of size n = two equal parts of size n/2
@ Combine solutions in linear time.



Recommender Systems

Netflix tries to match your movie preferences with

others.

@ You rank n movies.

@ Netflix consults database to find people with
similar tastes.

@ Netflix can recommend to you movies that they
liked.

Doing this well was worth $1,000,000 to Netflix!!




Counting Inversions

Similarity metric: number of inversions between two
rankings.

@ My rank: 1, 2, .., n.

@ Your rank: q;, a,, ..., a,.

® Movies i and j inverted if i < j, but ag; > a;.

Movies

A|lB]C|D]JE

Inversions

Me 3-2 4-2

You

What is the brute force algorithm?
Brute force: check all ©(n?) pairs i and j.



Divide and Conquer

Count inversions relative to a s_or’re’d list
1548102 6 912113 7

| 1]5]/4/8]10[ 2 6/9]12[11]3] 7

5 blue-blue inversions 8 red-red inversions

9 blue-red inversions




Divide and Conquer

Count inversions relative to a s_or’re’d list

1548102 6 91211 3 7 | Cost

115/ 4/8[10/ 2 6]9]12[11]3]7. O(1)

— 2*T(n/2)
5 blue-blue inversions 8 red-red inversions ~

227

9 blue-red inversions




Finding Inversions

Variation of mergesort

Combine: count blue-green inversions
@ Assume each half is sorted.
@ Count inversions where a; and a; are in

different halves.
@ Merge two sorted halves into sorted whole.



Finding Inversions

Idea: sort each half during the recursive call,
then count inversions while merging the two
sorted lists (merge-and-count).

Modified merge sort.



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 6
|

3|7 (10|14 18|19 2 111617 23|25

Total:



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 6
| |

3|7 (10|14 18|19 2 111617 23|25

Total: 6



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 5
| |

3|7 (10|14 18|19 2 111617 23|25

Total: 6



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 4
| |

3|7 (10|14 18|19 2 111617 23|25

Total: 6



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 3
| |

3|7 (10|14 18|19 2 111617 23|25

23,710

Total: 6



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 3
| |

3|7 (10|14 18|19 2 111617 23|25

2, 3|7 /10/ 1

Total: 6 + 3



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 2
| |

3|7 (10|14 18|19 2 111617 23|25

23,710/ 11 14

Total: 6 + 3



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 2
| |

3|7 (10|14 18|19 2 111617 23|25

2 3|7 1011 14|16

Total: 6 + 3 + 2



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 2
| |

3|7 (10|14 18|19 2 111617 23|25

2 3 |7/|10 11 14|16 17

Total: 6 + 3 + 2 + 2



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft =1
| |

3|7 (10|14 18|19 2 111617 23|25

2,37 10|11 14 16 17 |18

Total: 6 + 3 + 2 + 2



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 0
| |

3|7 (10|14 18|19 2 111617 23|25

2,37 |10|11 14 16 17|18 |19

Total: 6 + 3 + 2 + 2



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 0
| |

3|7 (10|14 18|19 2 111617 23|25

2, 3 |7|10 11 14|16 1718|1923

Total: 6 + 3 + 2 + 2



Merge and Count

@ Merge and count step.

® Given two sorted halves, count number of inversions
where g; and a; are in different halves.

® Combine two sorted halves into sorted whole.

numLeft = 0
| |

3|7 (10|14 18|19 2 111617 23|25

2,3 |7|10 11 14|16 17|18 19|23 25

Total: 6 + 3 + 2 + 2 =13



Counting Inversions:
Implementation

Sort-and-Count(L) {
if list L has one element
return (O, L)

Divide the list into two halves A and B
(ra, A) < Sort-and-Count(A)
(rg, B) « Sort-and-Count(B)

(re, L) < Merge-and-Count(A, B)
r = l"A + l"B + I"c
return (r, L)



Counting Inversions: Implementation

Merge-and-Count (A, B) {
curA =0; curB = 0;
count = O;
mergedList = empty list
while (not at end of A && not at end of B) §
a = AlcurA]; b = B[curB];
if (a <b){
append a to mergedList;
curA++;
else §{
append b to mergedList;
curB++;
count = count + num elements left in A

}

;
if (at end of A) append rest of B to mergedList;

else append rest of A fo mergedList;
return (count, mergedList);



Cost of Sort-and-Count?

Sort-and-Count(L) {
if list L has one element
return (O, L)

Divide the list into two halves A and B
(ra, A) < Sort-and-Count(A)
(rg, B) « Sort-and-Count(B)

(re, L) < Merge-and-Count(A, B)
r = l"A + l"B + I"c
return (r, L)



Closest Pair of Points

@ Closest pair. Given n points in the plane, find a pair
with smallest Euclidean distance between them.

@ Fundamental geometric primitive.

@ Graphics, computer vision, geographic information
systems, molecular modeling, air ftraffic control.

@ Brute force. Check all pairs of points p and q with
©(nz) comparisons.



Closest Pair of Points

1-dimensional version

-~ *—@ @ ® -0



Closest Pair of Points

@ 1-D version. Cost

@ Sort points O(n log n)

® For each point, find the distance
between a point and the point that
follows it.

O(n)

@ Remember the smallest.

Total is O(n log n)



Closest Pair of Points

Divide: draw vertical line L so that n/2 points
on each side.




Closest Pair of Points

Solve: recursively find closest pair in each
side.




Closest Pair of Points

Combine: find closest pair with one point from each side.

Return closest of three pairs.




Running Time?

T(n) < 2 T(n/2) + 227
Time for combine?

Goal: implement combine in linear time, to get
O(n log n) overall



Closest Pair of Points

Combine: how to do this without comparing each point
on left to each point on right?




Closest Pair of Points

Let & be the minimum between pair on left and pair on
right

If there exists a pair with one point in each side and
whose distance < o, find that pair.




Closest Pair of Points

Observation: only need to consider points
within o of line L.




Closest Pair of Points

Sort points in 20-strip by their y coordinate.




Closest Pair of Points

Unbelievable lemma: only need to check
distances of those within 15 positions in sorted




Closest Pair of Points

@ Let sy, s, ..., sk be the points in the 20-
strip sorted by y-coordinate.

@ Claim. If i - j| > 15, then the distance

between s; and s; is at least 0.
@ Proof:
@ No two points lie in same 0/2-by-0/2 |
box. b

@ Two points separated by at least 3
rows have distance > 34/2.




Closest Pair Algorithm

Closest-Pair(p;, ..., p,) 1 Cost
Compute separation line L such that half the points
are on one side and half on the other side. O(n log n)
0, = Closest-Pair(left half) ALGNAD)
0, = Closest-Pair(right half)
O = min(d,, d,)
Delete all points further than ® from separation line L O(n)
Sort remaining points by y-coordinate. O(n log n)

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these O(n)
distances is less than d, update 0.

T(n) < 2T(n/2) + O(n log n)
O(n log® n)

return 0.

} T(n)



Closest Pair of Points:
Improvement

@ Can we achieve O(n log n)?

@ Yes: pre-sort all points by x- and y-coordinates, and
filter sorted lists to find the points within d of L.

@ See the book for details.



