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Variational Inference Variational Inference

1. Input: p(z,x) and fixed
2. Choose some approximating family g4 (2)
3. Maximize ELBO(¢) wrt ¢ — equivalent to minimizing KL(g4(2) || p(2|x)) Something we skipped: p(z,z) discrete graphical model, ¢(z) = [T, ¢;(z;) ("mean
4. Use g4(2) as a proxy for p(z|z) field")
Today: z continuous, p(z,x) black box, ¢(z) TBD
p(Z, )
ELBO(¢) = Ey, (2 {bg %(’Z) =Ey,(z) [logp(Z, z)] — By, [log q4(Z)]
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Factor Analysis

Factor analysis is a classical statistical model. It posits an observed vector x € R? is
generated as a linear combination of basis vectors w1, ..., w,, with weights z1,..., 2z,
plus noise:

3ox Stochastic Variational Inference
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Visualization: PCA Demo
Probabilistic factor analysis assumes the weights are drawn from a standard normal. The
generative process is:
p(z) = N(z0,1)
p(x|z) = N(x; Wz, ¥)
(Typically ¥ is diagonal and the data is pre-processed so x has zero mean.)
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Factor Analysis: Learning

Consider learning the parameters § = (W, ¥) given data xW L x®) assumed to be
independently drawn from this model.

Since z is latent, the log-likelihood of a single datum x is log p(x), the “log-marginal
likelihood".

In this model, the marginal likelihood is available in closed form:

p(x) = /./\f(z; 0, N (x; Wz, ¥)dz = N (x;0, WW | + )
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Therefore, we can learn by maximizing the log-marginal likelihood:

N
£(0) = —% log([273)) — 1 3 xWTE R, = WWT 4w

n=1

Alternately, there is an EM algorithm for this model where both E and M steps have
simple forms.
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Factor Analysis; Generalizations A typical structure for fy is a multi-layer neural network, e,g.
fg(z) = ho (b2 + Wy - hy (b1 + le))
This model is “easy”, but factor analysis has many generalizations that make exact where hy, hy are element-wise nonlinear functions.
learning and inference intractable.
A variational autoencoder (VAE) uses a nonlinear-function fy instead of a linear
transformation W to map from z to the mean of x:
p(z) = N(z0,1)
p(x|z) = N(x; fo(2), )
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Another generalization changes the likelihood, e.g., to a Bernoulli distribution:

p(z) = N(z0,1)

p(zj|z) = Bernoulli(z;; (f4(2)),), j=1,...,d
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Inference and Learning in Generalized Models

Almost any change from the basic factor analysis model makes it so we can't compute
the marginal likelihood p(x) exactly, so inference and learning become hard.

The model is only tractable with linear transformations and a Gaussian likelihood.

We need additional inference tools for the generalizations.
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Black-Box Stochastic Variational Inference

A general inference approach that works well for models with continuous latent variables,
including factor analysis, is black-box stochastic variational inference:

» Black box: only requires computing logp(z,z) and its gradients for different z

» Stochastic: optimizes the ELBO using Monte Carlo estimates
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Stochastic Variational Inference

> Input: p(z,z) and fixed z
» Start with some ¢
» Fort=1,2,...,T
> g < unbiased estimate of V4ELBO
> Take a small step: ¢ < ¢ + eg (or Adam or other optimizer)
> Return ¢

Main issue: how to get g7
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