

Review
○○○

Motivation: Continuous Latent Variable Models
○○○○○○○○○○

Black-Box Stochastic Variational Inference
○○○

1 / 17

COMPSCI 688: Probabilistic Graphical Models
Lecture 19: Black-Box Stochastic Variational Inference

Dan Sheldon

Manning College of Information and Computer Sciences
 University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

Review
●○○

Motivation: Continuous Latent Variable Models
○○○○○○○○○○

Black-Box Stochastic Variational Inference
○○○

2 / 17

Review

Review
○○○

Motivation: Continuous Latent Variable Models
○○○○○○○○○○

Black-Box Stochastic Variational Inference
○○○

1 / 17

Variational Inference

1. **Input:** $p(z, x)$ and fixed x
 2. Choose some approximating family $q_\phi(z)$
 3. Maximize ELBO(ϕ) wrt ϕ — equivalent to minimizing $\text{KL}(q_\phi(z) \parallel p(z|x))$
 4. Use $q_\phi(z)$ as a proxy for $p(z|x)$

$$\text{ELBO}(\phi) = \mathbb{E}_{q_\phi(Z)} \left[\log \frac{p(Z, x)}{q_\phi(Z)} \right] = \mathbb{E}_{q_\phi(Z)} [\log p(Z, x)] - \mathbb{E}_{q_\phi} [\log q_\phi(Z)]$$

3 / 17

Review
○○○

Motivation: Continuous Latent Variable Models
○○○○○○○○○○

Black-Box Stochastic Variational Inference
○○○

2 / 17

Variational Inference

Something we skipped: $p(z, x)$ discrete graphical model, $q(z) = \prod_j q_j(z_j)$ ("mean field")

Today: z continuous, $p(z, x)$ black box, $q(z)$ TBD

4 / 17

Motivation: Continuous Latent Variable Models

Factor Analysis

Factor analysis is a classical statistical model. It posits an observed vector $\mathbf{x} \in \mathbb{R}^d$ is generated as a linear combination of basis vectors $\mathbf{w}_1, \dots, \mathbf{w}_m$ with weights z_1, \dots, z_m plus noise:

Probabilistic factor analysis assumes the weights are drawn from a standard normal. The generative process is:

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; 0, I)$$
$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}; \mathbf{W}\mathbf{z}, \Psi)$$

(Typically Ψ is diagonal and the data is pre-processed so \mathbf{x} has zero mean.)

Visualization: PCA Demo

Factor Analysis: Learning

Consider learning the parameters $\theta = (\mathbf{W}, \Psi)$ given data $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$ assumed to be independently drawn from this model.

Since \mathbf{z} is latent, the log-likelihood of a single datum \mathbf{x} is $\log p(\mathbf{x})$, the “log-marginal likelihood”.

In this model, the marginal likelihood is available in *closed form*:

$$p(\mathbf{x}) = \int \mathcal{N}(\mathbf{z}; 0, I) \mathcal{N}(\mathbf{x}; \mathbf{Wz}, \Psi) d\mathbf{z} = \mathcal{N}(\mathbf{x}; 0, \mathbf{WW}^\top + \Psi)$$

9 / 17

Therefore, we can learn by maximizing the log-marginal likelihood:

$$\mathcal{L}(\theta) = -\frac{N}{2} \log(|2\pi\Sigma|) - \frac{1}{2} \sum_{n=1}^N \mathbf{x}^{(n)\top} \Sigma^{-1} \mathbf{x}^{(n)}, \quad \Sigma = \mathbf{WW}^\top + \Psi$$

Alternately, there is an EM algorithm for this model where both E and M steps have simple forms.

10 / 17

Factor Analysis: Generalizations

This model is “easy”, but factor analysis has many generalizations that make exact learning and inference intractable.

A variational autoencoder (VAE) uses a nonlinear-function f_θ instead of a linear transformation \mathbf{W} to map from \mathbf{z} to the mean of \mathbf{x} :

$$\begin{aligned} p(\mathbf{z}) &= \mathcal{N}(\mathbf{z}; 0, I) \\ p(\mathbf{x}|\mathbf{z}) &= \mathcal{N}(\mathbf{x}; f_\theta(\mathbf{z}), \Psi) \end{aligned}$$

11 / 17

A typical structure for f_θ is a multi-layer neural network, e.g.

$$f_\theta(\mathbf{z}) = h_2(\mathbf{b}_2 + \mathbf{W}_2 \cdot h_1(\mathbf{b}_1 + \mathbf{W}_1 \mathbf{z}))$$

where h_2, h_1 are element-wise nonlinear functions.

12 / 17

Review
ooo

Motivation: Continuous Latent Variable Models
oooooooo●○

Black-Box Stochastic Variational Inference
ooo

Another generalization changes the likelihood, e.g., to a Bernoulli distribution:

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, I)$$

$$p(x_j|\mathbf{z}) = \text{Bernoulli}(x_j; (f_\theta(\mathbf{z}))_j), \quad j = 1, \dots, d$$

13 / 17

Review
ooo

Motivation: Continuous Latent Variable Models
oooooooo●

Black-Box Stochastic Variational Inference
ooo

Inference and Learning in Generalized Models

Almost any change from the basic factor analysis model makes it so we can't compute the marginal likelihood $p(\mathbf{x})$ exactly, so inference and learning become hard.

The model is *only* tractable with linear transformations and a Gaussian likelihood.

We need additional inference tools for the generalizations.

14 / 17

Review
ooo

Motivation: Continuous Latent Variable Models
oooooooooooo

Black-Box Stochastic Variational Inference
●ooo

Black-Box Stochastic Variational Inference

15 / 17

Review
ooo

Motivation: Continuous Latent Variable Models
oooooooooooo

Black-Box Stochastic Variational Inference
ooo

Black-Box Stochastic Variational Inference

A general inference approach that works well for models with continuous latent variables, including factor analysis, is *black-box stochastic variational inference*:

- ▶ **Black box:** only requires computing $\log p(z, x)$ and its gradients for different z
- ▶ **Stochastic:** optimizes the ELBO using Monte Carlo estimates

16 / 17

Stochastic Variational Inference

- ▶ **Input:** $p(z, x)$ and fixed x
- ▶ Start with some ϕ
- ▶ For $t = 1, 2, \dots, T$
 - ▶ $g \leftarrow$ **unbiased estimate** of ∇_ϕ ELBO
 - ▶ Take a small step: $\phi \leftarrow \phi + \epsilon g$ (or Adam or other optimizer)
- ▶ **Return** ϕ

Main issue: how to get g ?