Variational Auto-Encoder

Factor analysis model with non-linear mapping

\[p(z) = \mathcal{N}(z; 0, I) \]
\[p(x_j | z) = \text{Bernoulli}(x_j; (f_\theta(z))_j), \quad j = 1, \ldots, d \]

Example non-linear mapping:

\[f_\theta(z) = h_2(b_2 + W_2 (h_1(b_1 + W_1 z))) \]

Exact inference and learning are intractable.

Stochastic VI

Choose variational family, e.g., diagonal Gaussian, to approximate posterior:

\[q_\phi(z) = \mathcal{N}(\mu, \text{diag}(\sigma^2)), \quad \phi = (\mu, \sigma) \]

Stochastic optimization: repeatedly get unbiased gradient estimate \(\hat{\nabla}_\phi \), update \(\phi \):

\[\hat{\nabla}_\phi \approx \nabla_\phi \text{ELBO}(\phi) \]
\[\mathbb{E}[\hat{\nabla}_\phi] = \nabla_\phi \text{ELBO}(\phi) \]
\[\phi \leftarrow \phi + \alpha \hat{\nabla}_\phi \]

How to get \(\hat{\nabla}_\phi \)?
Gradient Estimation: Reparameterization

<table>
<thead>
<tr>
<th>LOTUS: law of the unconscious statistician</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without reparameterization</td>
</tr>
<tr>
<td>Variational distribution</td>
</tr>
<tr>
<td>Sampling</td>
</tr>
<tr>
<td>ELBO</td>
</tr>
<tr>
<td>ELBO estimate</td>
</tr>
<tr>
<td>Gradient estimate</td>
</tr>
</tbody>
</table>

Reparameterization with Diagonal Gaussians

$\epsilon \sim \mathcal{N}(0, I)$ $\quad z = \mu + \epsilon \sim \mathcal{N}(\mu, \sigma^2)$

Suppose the variational family is a diagonal Gaussian

$q_0(z) = \mathcal{N}(\mu, \text{diag}(\sigma^2))$

This can be reparameterized as:

$z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$

$T_\phi(\epsilon) = \mu + L \epsilon$

(\odot = elementwise multiplication)

Aside: Reparameterization with Arbitrary Gaussians

Another choice would be to use a general Gaussian distribution:

$\epsilon \sim \mathcal{N}(0, I) \implies \mu + L \epsilon \sim \mathcal{N}(\mu, LL^\top)$.

This is a reparameterization with

$q(\epsilon) = \mathcal{N}(\epsilon | 0, I), \quad T_\phi(\epsilon) = \mu + L \epsilon \quad \phi = (L, \mu)$

It covers any multivariate Gaussian, since an arbitrary covariance matrix Σ can be written as $\Sigma = LL^\top$ for some L (e.g., a Cholesky factor)

Example: Bernoulli VAE

$\approx \mathcal{N}(z | \phi) \propto q_\phi(z)$

Let's return to our Bernoulli VAE factor analysis model and use a diagonal Gaussian approximation:

$p(z) = \mathcal{N}(z; 0, I)$
$\quad p(x_j | z) = \text{Bernoulli}(x_j; \phi_0(z_j)), \quad j = 1, \ldots, d$
$\quad q_\phi(z) = \mathcal{N}(z; \mu, \text{diag}(\sigma^2))$

BBSVI would repeat the following steps:

Given x, p
Learning with Stochastic Variational Inference

The basic idea is to jointly maximize the ELBO with respect to model parameters θ and variational parameters ϕ by getting unbiased gradient estimates for both:

$$\text{ELBO}(\phi) = \mathbb{E}_{q}(\log p_{\theta}(Z, x)) - \log q_{\phi}(Z)$$

$$\nabla_{\phi} \log p_{\theta}(x) = \mathbb{E}_{q}(\nabla_{\phi} \log p_{\theta}(Z, x)) - \nabla_{\phi} \log q_{\phi}(Z)$$

$(\theta, \phi) \leftarrow (\theta, \phi) + \alpha \cdot (\nabla_{\theta} \text{ELBO}, \nabla_{\phi} \text{ELBO})$

With the optimized parameters we could approximate $p(z|x) \approx q_{\phi}(z)$ and lower bound the log-marginal likelihood $\log p(x) \geq \text{ELBO}(\phi)$. What about learning?

Learning with IID Data

How do we learn a latent variable model $p_{\theta}(z, x)$ when we have iid data $x^{(1)}, \ldots, x^{(N)}$?

Each datum $x^{(n)}$ has its own:

- marginal likelihood $p_{\theta}(x^{(n)})$
- posterior $p_{\theta}(z^{(n)} | x^{(n)})$
- variational distribution $q_{\phi}(z^{(n)})$
Learning with IID Data

Basic approach: introduce variational parameters $\phi^{(n)}$ for each datum and construct an overall lower bound:

$$
\mathcal{L}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log p_\theta(x^{(n)}) \geq \frac{1}{N} \sum_{n=1}^{N} \text{ELBO}(\theta, \phi^{(n)}, x^{(n)})
$$

$$
\text{ELBO}(\theta, \phi^{(n)}, x^{(n)}) = \mathbb{E}_{q_\phi^{(n)}} \left[\log p_\theta(Z^{(n)}; x^{(n)}) - \log q_\phi^{(n)}(Z^{(n)}) \right]
$$

Then optimize the lower bound with respect to all parameters. Compute:

$$
\hat{\theta} \bowtie \phi^{(1)}, \ldots, \phi^{(N)}
$$

Then update $\theta, \phi^{(1)}, \ldots, \phi^{(N)}$ using stochastic gradients.

Amortized Inference

The basic approach described above introduces a very large number of variational parameters and can be very slow for large data sets.

Amortized inference proposes to use a neural net to predict the variational parameters $\phi^{(n)}$ for datum $x^{(n)}$, e.g.

$$
q_\phi(z^{(n)} | x^{(n)}) = \mathcal{N}(z^{(n)}; [g_\phi(x^{(n)})])
$$

- The function g_ϕ predicts the mean of the variational posterior approximation for datum $x^{(n)}$. (We could also model the (co)variance as some function of $x^{(n)}$.)
- This is called amortization because it shares information across data points for learning the variational approximations.

Amortized Inferences: VAEs

A common choice for g_ϕ is a multi-layer neural network, similar to f_ϕ, e.g.:

$$
\begin{align*}
\theta & : \mathcal{Z} \mapsto \mathcal{M}_{1|x} \\
\phi^{(1)} & : x \mapsto \mathcal{M}_{2|x} \\
\phi^{(2)} & : x \mapsto \mathcal{M}_{3|x} \\
\phi^{(3)} & : x \mapsto \mathcal{M}_{4|x} \\
\phi^{(4)} & : x \mapsto \mathcal{M}_{5|x}
\end{align*}
$$

$$
\begin{align*}
\theta & : \mathcal{Z} \sim \mathcal{N}(\ldots) \mapsto \text{real-valued} \\
\phi^{(1)} & : x \sim \text{Bernoulli}(\ldots) \mapsto \mathbb{R}^{d_1} \\
\phi^{(2)} & : x \mapsto \mathbb{R}^{d_2} \\
\phi^{(3)} & : x \mapsto \mathbb{R}^{d_3} \\
\phi^{(4)} & : x \mapsto \mathbb{R}^{d_4} \\
\phi^{(5)} & : x \mapsto \mathbb{R}^{d_5}
\end{align*}
$$

$$(h_1, h_2, h_3 \text{ are elementwise non-linear functions})$$
Example: Inference and Learning in Bernoulli VAE

Putting all the pieces together, stochastic variational inference and learning for a Bernoulli VAE would repeat the following for all n in some order:

$$
\epsilon \sim \mathcal{N}(0, I) \quad q_{\phi}(z^{(n)} \mid x^{(n)}) \approx \mathcal{N}(z^{(n)}; q_{\phi}(z^{(n)}), \tau^2 I) \quad (z^{(n)} = g_\phi(x^{(n)}) + \tau \epsilon)
$$

$$
\hat{\nabla}_{\theta, \phi} = \nabla_{\theta, \phi}\left\{ \log \mathcal{N}(y_0(x^{(n)}) + \tau \epsilon; 0, I) \left| \log p_\theta(z) \right. \right. \\
&\left. \quad + \sum_{j=1}^{d} \log \text{Bernoulli}(x_j^{(n)}; (f_\phi g_\phi(x^{(n)}) + \tau \epsilon)_j) \right\} \log p_\theta(x(z)) \\
&\left. \quad - \log \mathcal{N}(g_\phi(x^{(n)}) + \tau \epsilon; g_\phi(x^{(n)}), \tau^2 I) \right\} \log q_{\phi}(z) \\
(\theta, \phi) &\leftarrow (\theta, \phi) + \alpha \cdot \nabla_{\theta, \phi}
$$
The ELBO can be decomposed into several terms with different computational properties:

\[
\text{ELBO}(\phi) = \mathbb{E}_{q_{\phi}(Z)} \left[\log \frac{p(Z, x)}{q_{\phi}(Z)} \right]
= \mathbb{E}_{q_{\phi}[\log p(Z)]} + \mathbb{E}_{q_{\phi}[\log p(x|Z)]} - \mathbb{E}_{q_{\phi}[\log q_{\phi}(Z)]}
\]

"cross entropy" "energy" "entropy"

With simple distributions (esp. Gaussians) the cross entropy and entropy terms can often be computed in closed form.

Example: Closed-Form Cross-Entropy

Example: \(p(z) \) is a standard normal and \(q_{\phi} \) is a diagonal Gaussian:

\[
p(z) = \mathcal{N}(z; 0, I)
q_{\phi}(z) = \mathcal{N}(z; \mu, \text{diag}(\sigma^2))
\implies \int q_{\phi}(z) \log p(z) = -\frac{d}{2} \log(2\pi) - \frac{1}{2} \sum_{j=1}^{d} \left(\mu_j^2 + \sigma_j^2 \right)
\]

When possible, it’s usually (but not always) best to compute these terms and their gradients analytically, and only use Monte Carlo estimation for the energy term.

This is because lower variance gradient estimates will make the stochastic optimization converge faster.