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Variational Inference

1. Input: p(z, x) and fixed x
2. Choose some approximating family q„(z)
3. Maximize ELBO(„) wrt „ — equivalent to minimizing KL(q„(z) Î p(z|x))
4. Use q„(z) as a proxy for p(z|x)

ELBO(„) = Eq„(Z)

C
log p(Z, x)

q„(Z)

D
= Eq„(Z) [log p(Z, x)] ≠ Eq„

[log q„(Z)]
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Variational Inference

Something we skipped: p(z, x) discrete graphical model, q(z) = r
j qj(zj) (“mean

field”)

Today: z continuous, p(z, x) black box, q(z) TBD
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Factor Analysis
Factor analysis is a classical statistical model. It posits an observed vector x œ Rd is
generated as a linear combination of basis vectors w1, . . . ,wm with weights z1, . . . , zm
plus noise:
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Probabilistic factor analysis assumes the weights are drawn from a standard normal. The
generative process is:

p(z) = N (z; 0, I)
p(x|z) = N (x;Wz,�)

(Typically � is diagonal and the data is pre-processed so x has zero mean.)
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Visualization: PCA Demo
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Factor Analysis: Learning

Consider learning the parameters ◊ = (W,�) given data x(1), . . . ,x(N) assumed to be
independently drawn from this model.

Since z is latent, the log-likelihood of a single datum x is log p(x), the “log-marginal
likelihood”.

In this model, the marginal likelihood is available in closed form:

p(x) =
⁄

N (z; 0, I)N (x;Wz,�)dz = N (x; 0,WW€ + �)
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Therefore, we can learn by maximizing the log-marginal likelihood:

L(◊) = ≠N

2 log(|2fi�|) ≠ 1
2

Nÿ

n=1
x(n)€�≠1x(n), � = WW€ + �

Alternately, there is an EM algorithm for this model where both E and M steps have
simple forms.
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Factor Analysis: Generalizations

This model is “easy”, but factor analysis has many generalizations that make exact
learning and inference intractable.

A variational autoencoder (VAE) uses a nonlinear-function f◊ instead of a linear
transformation W to map from z to the mean of x:

p(z) = N (z; 0, I)
p(x|z) = N (x; f◊(z),�)
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A typical structure for f◊ is a multi-layer neural network, e,g.

f◊(z) = h2
!
b2 + W2 · h1(b1 + W1z)

"

where h2, h1 are element-wise nonlinear functions.
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Another generalization changes the likelihood, e.g., to a Bernoulli distribution:

p(z) = N (z; 0, I)
p(xj |z) = Bernoulli

!
xj ; (f◊(z))j

"
, j = 1, . . . , d
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Inference and Learning in Generalized Models

Almost any change from the basic factor analysis model makes it so we can’t compute
the marginal likelihood p(x) exactly, so inference and learning become hard.

The model is only tractable with linear transformations and a Gaussian likelihood.

We need additional inference tools for the generalizations.
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Black-Box Stochastic Variational Inference

A general inference approach that works well for models with continuous latent variables,
including factor analysis, is black-box stochastic variational inference:

I Black box: only requires computing log p(z, x) and its gradients for di�erent z
I Stochastic: optimizes the ELBO using Monte Carlo estimates
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Stochastic Variational Inference

I Input: p(z, x) and fixed x
I Start with some „
I For t = 1, 2, . . . , T

I g Ω unbiased estimate of Ò„ELBO
I Take a small step: „ Ω „ + ‘g (or Adam or other optimizer)

I Return „

Main issue: how to get g?
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