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Variational Inference

1. Input: p(z,x) and fixed

2. Choose some approximating family gy(z)

3. Maximize ELBO(¢) wrt ¢ — equivalent to minimizing KL(qy(2) || p(2|))
4. Use gg(z) as a proxy for p(z|z)

ELBO(¢) = Ey,(2) {og o (Z))} =Eqy,(z) [logp(Z, z)] — Eq, [log ¢4(Z)]
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Something we skipped: p(z,x) discrete graph|ca| model, ¢(z) = H ¢;(z;) ("mean
field”) Croovdinatt sscent VT | CAVL "‘Mesqu «pcsmns

Today: z continuous, p(z,z) black box, q(z) TBD
BevT ~ Hme
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Factor Analysis

p() = Te(2)
Factor analysis is a classical statistical model. It posits an observed vector x € R? is
generated as a linear combination of basis vectors wi, ..., w,, with weights z;,..., 2z,

plus noise: ¢ \/\/
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4 Kl = WY w, . Wy, J/
\ Y= W= + V\Ol.cc
- Y AN . ('14\=|c-ﬁ7r
X = Z(‘W( F2,Wy + o F 2(,‘\/\/,,. + noise W"’-S’“l““
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X= W=z + nu(z.e,/

=y~ N (w2, B)

Probabilistic factor analysis assumes the weights are drawn from a standard normal. The
generative process is:
p(z) = N(z0,1)
p(xlz) = N(x; Wz, )

(Typically ¥ is diagonal and the data is pre-processed so x has zero mean.)
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Visualization: PCA Demo
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Consider learning the parameters § = (W, ) given data x(), ... x®¥) assumed to be
independently drawn from this model.

p(z) = N(2;0,1)

Factor Analysis: Learning
p(x|z) = N(x; Wz, ¥)

Since z is latent, the log-likelihood of a single datum x is log p(x), the “log-marginal
likelihood".

In this model, the marginal likelihood is available in closed form:

p(x) = /N(z; 0, N (x; Wz, ¥)dz = N (x;0, WW | + )
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Therefore, we can learn by maximizing the log-marginal likelihood:

N L 0Ty 1,0
ﬁ(@):—glog(|27r2|)—52x” %\,

n=1

T=WW' +7¥

Alternately, there is an EM algorithm for this model where both E and M steps have
simple forms.

ariational Inference
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Factor Analysis; Generalizations A typical structure for fy is a multi-layer neural network, e,g.
— 1
fg(z) = ho (bQ + Wy - hy (b1 + le))
| P
This model is “easy”, but factor analysis has many generalizations that make exact where hy, hy are element-wise nonlinear functions.
learning and inference intractable.
A variational autoencoder (VAE) uses a nonlinear-function fy instead of a linear
transformation W to map from z to the mean of x: W
z
p(z) = N (20,1) 2";/“
(2)
p(x|z) = N(x; fo(2), ¥) -5
Wz
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Another generalization changes the likelihood, e.g., to a Bernoulli distribution:

p(z) = N (z;0,1)
p(zj|z) = Bernoulli(z;; (fo(2)),), j=1,...,d

#
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Inference and Learning in Generalized Models

Almost any change from the basic factor analysis model makes it so we can't compute
the marginal likelihood p(x) exactly, so inference and learning become hard.

The model is only tractable with linear transformations and a Gaussian likelihood.

We need additional inference tools for the generalizations.
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Black-Box Stochastic Variational Inference
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A general inference approach that works well for models with continuous latent variables,
including factor analysis, is black-box stochastic variational inference:

> Black box: only requires computing log p(z, ) and its gradients for different z

» Stochastic: optimizes the ELBO using Monte Carlo estimates
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Stochastic Variational Inference

p(?,x)
i ELBO[3) = H_:%(,\[“’j ¥

Input: p(z,z) and fixed z
Start with some ¢
Fort=1,2,...,T
> g < unbiased estimate of V4ELBO
> Take a small step: ¢ < ¢ + eg (or Adam or other optimizer)
Return ¢
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Main issue: how to get g7
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