COMPSCI 688: Probabilistic Graphical Models
Lecture 18: Variational Inference

Dan Sheldon
Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Introduction

Variational Inference (VI) Overview

▶ Variational inference is an approximate inference approach (alternative to MCMC)
▶ Variational inference is at the core of a large family of techniques, all of which start with the same mathematical idea
 ▶ mean-field and structured VI
 ▶ black-box VI
 ▶ expectation maximization (EM)
 ▶ variational EM
 ▶ variational Bayes
 ▶ variational auto-encoders
 ▶ loopy belief propagation and advanced message-passing algorithms

Problem Setting

Assume we have an unnormalized probability model over z. Two examples:
1. Bayesian model $p(z|x)$ for latent z, observed x, unknown $p(x)$
2. Unnormalized model $p(z) = \frac{1}{Z} \tilde{p}(z)$ with unknown Z (e.g., loopy MRF)
Introduction

The ELBO Decomposition

Variational Inference

Variational Learning

Problem Setting

For concreteness, henceforth we’ll assume the Bayesian model setting:

- \(p(z, x) = p(z)p(x|z) \) easy to compute
- We observe \(x \), but not \(z \)
- We want to approximate \(p(z|x) = \frac{p(z, x)}{p(x)} \)
 but don’t know the normalization constant \(p(x) \)

General Strategy

1. Let \(q_\phi(z) \) be a “simple” distribution from some family with parameters \(\phi \)

2. Try to optimize

\[
\min_{\phi} \text{KL}(q_\phi(z) \parallel p(z|x)) \quad \text{("reverse KL")}
\]

Then use \(q_\phi(z) \) in place of \(p(z|x) \)

Why use VI?

- Can often get reasonable approximations faster than MCMC
- Gives a bound on \(p(x) \) (or “Z”), useful for learning (more later)
The ELBO Decomposition

Big Idea: ELBO Decomposition

This is the math trick that is at the heart of all VI methods:

\[
\log p(x) = \sum_z q_\phi(z) \log \frac{p(z, x)}{q_\phi(z)} + \sum_z q_\phi(z) \log \frac{q_\phi(z)}{p(z|x)}
\]

\[
\text{ELBO}(q_\phi(z) \parallel p(z,x)) + \sum_z q_\phi(z) \log q_\phi(z) p(z|x)
\]

- ELBO: “Evidence Lower BOund” (will explain later)
- KL: what we want to minimize

Derivation

Claim:

\[
\log p(x) = \sum_z q_\phi(z) \log \frac{p(z, x)}{q_\phi(z)} + \sum_z q_\phi(z) \log \frac{q_\phi(z)}{p(z|x)}
\]

Proof. Start with RHS and simplify:

\[
\text{RHS} = \sum_z q_\phi(z) [\log p(z, x) - \log q_\phi(z) + \log q_\phi(z) - \log p(z|x)]
\]

\[
= \sum_z q_\phi(z) [\log p(z, x) - \log p(z, x) + \log p(x)]
\]

\[
= \sum_z q_\phi(z) \log p(x)
\]

\[
= \log p(x) \sum_z q_\phi(z)
\]

\[
= \log p(x)
\]

ELBO Significance

1. KL is “hard”: can’t evaluate the normalized distribution \(p(z|x)\)
2. ELBO is “easy” (ish). Uses unnormalized distribution \(p(z, x)\). Can often evaluate or approximate it, e.g., by Monte Carlo:

\[
\text{sample } z^{(1)}, \ldots, z^{(N)} \sim q_\phi(z), \text{ then compute } \frac{1}{N} \sum_{i=1}^{N} \log \frac{p(z^{(i)}, x)}{q_\phi(z^{(i)})}
\]

3. KL is non-negative
4. Therefore \(\log p(x) \geq \text{ELBO ("Evidence lower bound")}\)
5. Therefore, choosing \(\phi\) to maximize the ELBO is the same as choosing \(\phi\) to minimize the KL (since \(\log p(x)\) is constant with respect to \(\phi\))
ELBO Interpretation: Picture

Variational Inference

Uses of VI

There are two different uses of VI

1. Approximate a posterior distribution: \(p(z|x) \approx q_\phi(z) \)
2. Bound the log-likelihood: \(\log p(x) \geq \text{ELBO}(q_\phi(z) \parallel p(z,x)) \), usually in a learning procedure for \(p_\theta(x) \) (details to come)

Basic VI Algorithm

1. Input: \(p(z,x) \) and fixed \(x \)
2. Choose some approximating family \(q_\phi(z) \)
3. Maximize ELBO \(q_\phi(z) \parallel p(x,z) \) wrt \(\phi \)
4. Use \(q_\phi(z) \) as a proxy for \(p(z|x) \)

Many choices for
- Approximating family \(q_\phi \)
- How to estimate ELBO
- How to do optimization
ELBO Intuition

\[
\text{ELBO} = \sum_z q_\phi(z) \log p(z, x) - \sum_z q_\phi(z) \log q_\phi(z)
\]

- energy term encourages \(q_\phi(z) \) to be high where \(p(z|x) \) is high
- entropy term encourages \(q_\phi(z) \) to be spread out

Expectation Maximization (EM): VI + Learning

EM is a classical algorithm for maximum-likelihood learning with latent variables

Goal: choose \(\theta \) to maximize \(\log p_\theta(x) = \log \sum_z p_\theta(z, x) \) given observed \(x \)

Usual lower-bound derivation

\[
\log p_\theta(x) = \log \sum_z p_\theta(x, z) = \log \sum_z q(z) \frac{p_\theta(x, z)}{q(z)} \geq \sum_z q(z) \log \frac{p_\theta(x, z)}{q(z)} = \text{ELBO}
\]

(G Jensen’s inequality)

EM Algorithm

- Set \(q(z) = p_\theta(z|x) \) (maximize ELBO wrt \(q \))
- Maximize \(\sum_z q(z) \log \frac{p_\theta(x, z)}{q(z)} \) wrt \(\theta \)
- Repeat

Gives local maximum of \(\log p_\theta(x) \) wrt \(\theta \)
Variational EM

It is not always possible or practical to compute $p_{\theta}(z|x)$ exactly in EM. Variational EM is an extension where the ELBO is maximized jointly with respect to the parameters ϕ of the approximating distribution and parameters θ of the model ("simultaneous inference and learning")

Goal: choose θ to maximize $\log p_{\theta}(x) = \log \sum_z p_{\theta}(z, x)$ given observed x.

Define

$$L(\phi, \theta) = \text{ELBO}(q_{\phi}(z) \| p_{\theta}(z, x)) = \sum_z q_{\phi}(z) \log \frac{p_{\theta}(z, x)}{q_{\phi}(z)} \leq \log p_{\theta}(x)$$

then jointly optimize $L(\phi, \theta)$ with respect to ϕ and θ, e.g.:

- (Stochastic) gradient ascent
- Alternating (partial) optimization steps