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Variational Inference (VI) Overview

▶ Variational inference is an approximate inference approach (alternative to MCMC)
▶ Variational inference is at the core of a large family of techniques, all of which

start with the same mathematical idea
▶ mean-field and structured VI
▶ black-box VI
▶ expectation maximization (EM)
▶ variational EM
▶ variational Bayes
▶ variational auto-encoders
▶ loopy belief propagation and advanced message-passing algorithms
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Problem Setting
Assume we have an unnormalized probability model over z. Two examples:

1. Bayesian model p(z|x) for latent z, observed x, unknown p(x)
2. Unnormalized model p(z) = 1

Z p̃(z) with unknown Z (e.g., loopy MRF)
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Problem Setting

For concreteness, henceforth we’ll assume the Bayesian model setting:
▶ p(z, x) = p(z)p(x|z) easy to compute
▶ We observe x, but not z
▶ We want to approximate

p(z|x) = p(z, x)
p(x)

but don’t know the normalization constant p(x)
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General Strategy

1. Let qϕ(z) be a “simple” distribution from some family with parameters ϕ

2. Try to optimize

min
ϕ

D
(
qϕ(z) ∥ p(z|x)

)

where D is some “distance”. Then use qϕ(z) in place of p(z|x)
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Why use VI?

▶ Can often get reasonable approximations faster than MCMC
▶ Gives a bound on p(x) (or “Z”), useful for learning (more later)
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KL Minimization and ELBO
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Idea: “Distance” Minimization
We want qϕ(z) ≈ p(z|x).

Idea: define a “distance” D(qϕ(z)∥ p(z|x)) and choose ϕ to minimize it.

10 / 24

Introduction KL Minimization and ELBO Variational Inference Variational Learning

KL Divergence
A widely used “distance” between distributions is the Kullback-Leibler divergence:

KL(q||p) =
∫

q(z) log
(

q(z)
p(z)

)
dz

It is a divergence because it only satisfies some properties of a distance metric. It
satisfies:

▶ KL(q||p) ≥ 0 for all q and p

▶ KL(q||p) = 0 if and only if q = p

It does not satisfy:
▶ KL(q||p) = KL(p||q) for all q, p

▶ KL(q||p) ≤ KL(q||s) + KL(s||p) for all q, p, s
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Big Idea: ELBO Decomposition

This is the math trick that is at the heart of all VI methods:

log p(x) =
∑

z

qϕ(z) log p(z, x)
qϕ(z)

︸ ︷︷ ︸
ELBO

(
qϕ(z) ∥ p(z,x)

)

+
∑

z

qϕ(z) log qϕ(z)
p(z|x)

︸ ︷︷ ︸
KL

(
qϕ(z) ∥ p(z|x)

)

▶ ELBO: “Evidence Lower BOund” (will explain later)
▶ KL: what we want to minimize
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Derivation
Claim:

log p(x) =
∑

z

qϕ(z) log p(z, x)
qϕ(z) +

∑

z

qϕ(z) log qϕ(z)
p(z|x)

Proof. Start with RHS and simplify:

RHS =
∑

z

qϕ(z) [log p(z, x) − log qϕ(z) + log qϕ(z) − log p(z|x)]

=
∑

z

qϕ(z) [log p(z, x) − log p(z, x) + log p(x)]

=
∑

z

qϕ(z) log p(x)

= log p(x)
∑

z

qϕ(z)

= log p(x)
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ELBO Significance

log p(x) =
∑

z

qϕ(z) log p(z, x)
qϕ(z)

︸ ︷︷ ︸
ELBO

(
qϕ(z) ∥ p(z,x)

)

+
∑

z

qϕ(z) log qϕ(z)
p(z|x)

︸ ︷︷ ︸
KL

(
qϕ(z) ∥ p(z|x)

)

1. KL is “hard”: can’t evaluate the normalized distribution p(z|x)
2. ELBO is “easy”(ish). Uses unnormalized distribution p(z, x). Can often evaluate or

approximate it, e.g., by Monte Carlo:

sample z(1), . . . , z(N) ∼ qϕ(z), then compute 1
N

∑N
i=1 log p(z(i),x)

qϕ(z(i))

3. KL is non-negative
4. Therefore log p(x) ≥ ELBO (“Evidence lower bound”)
5. Therefore, choosing ϕ to maximize the ELBO is the same as choosing ϕ to

minimize the KL (since log p(x) is constant with respect to ϕ)
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ELBO Interpretation: Picture
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Variational Inference
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Uses of VI

There are two different uses of VI

1. Approximate a posterior distribution: p(z|x) ≈ qϕ(z)

2. Bound the log-likelihood: log pθ(x) ≥ ELBO
(
qϕ(z) ∥ pθ(z, x)

)
, usually in a learning

procedure for pθ(x) (details to come)
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Basic VI Algorithm

1. Input: p(z, x) and fixed x

2. Choose some approximating family qϕ(z)

3. Maximize ELBO(qϕ(z) ∥ p(x, z)) wrt ϕ

4. Use qϕ(z) as a proxy for p(z|x)

Many choices for
▶ Approximating family qϕ

▶ How to estimate ELBO
▶ How to do optimization
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ELBO Intuition

ELBO =
∑

z

qϕ(z) log p(z, x)
︸ ︷︷ ︸

energy

−
∑

z

qϕ(z) log qϕ(z)
︸ ︷︷ ︸

entropy

▶ energy term encourages qϕ(z) to be high where p(z|x) is high
▶ entropy term encourages qϕ(z) to be spread out
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ELBO Intuition

ELBO =
∑

z

qϕ(z) log p(z, x)
︸ ︷︷ ︸

energy

−
∑

z

qϕ(z) log qϕ(z)
︸ ︷︷ ︸

entropy

20 / 24



Introduction KL Minimization and ELBO Variational Inference Variational Learning

Variational Learning
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Expectation Maximization (EM): VI + Learning
EM is a classical algorithm for maximum-likelihood learning with latent variables
Goal: choose θ to maximize log pθ(x) = log ∑

z pθ(z, x) given observed x

Usual lower-bound derivation

log pθ(x) = log
∑

z

pθ(x, z)

= log
∑

z

q(z)pθ(x, z)
q(z)

≥
∑

z

q(z) log pθ(x, z)
q(z)

= ELBO

(Jensen’s inequality)

EM Algorithm

▶ Set q(z) = pθ(z|x) (maximize ELBO
wrt q)

▶ Maximize
∑

z

q(z) log pθ(x, z)
q(z) wrt θ

▶ Repeat

Gives local maximum of log pθ(x) wrt θ
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Variational EM
It is not always possible or practical to compute pθ(z|x) exactly in EM.
Variational EM is an extension where the ELBO is maximized jointly with respect the
the parameters ϕ of the approximating distribution and parameters θ of the model
(“simultaneous inference and learning”)

Goal: choose θ to maximize log pθ(x) = log ∑
z pθ(z, x) given observed x.

Define

L(ϕ, θ) = ELBO
(
qϕ(z) ∥ pθ(z, x)

)
=

∑

z

qϕ(z) log pθ(z, x)
qϕ(z) ≤ log pθ(x)

then jointly optimize L(ϕ, θ) with respect to ϕ and θ, e.g.:
▶ (Stochastic) gradient ascent
▶ Alternating (partial) optimization steps

24 / 24


