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Variational Inference (VI) Overview Problem Setting
Assume we have an unnormalized probability model over z. Two examples:
» Variational inference is an approximate inference approach (alternative to MCMC) 1. Bayesian model p(z|z) for latent z, observed x, unknown p(z)
. . . . . . 2. Unnormalized model p(z) = L5(z) with unknown Z (e.g., loopy MRF
» Variational inference is at the core of a large family of techniques, all of which p(z) = zp(2) (eg Py )
start with the same mathematical idea
> mean-field and structured VI
> black-box VI
> expectation maximization (EM)
> variational EM
> variational Bayes
> variational auto-encoders
> loopy belief propagation and advanced message-passing algorithms
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Problem Setting
For concreteness, henceforth we'll assume the Bayesian model setting:

> p(z,z) = p(z)p(x|z) easy to compute

» We observe x, but not z

» We want to approximate

p(z,z)
plzle) = ==
p(z)
but don’t know the normalization constant p(z)
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General Strategy Why use VI?
1. Let g4(2) be a “simple” distribution from some family with parameters ¢
2. Try to optimize » Can often get reasonable approximations faster than MCMC
) > Gives a bound on p(z) (or “Z"), useful for learning (more later)
min D(gy(2) || plz|))
where D is some “distance”. Then use g4 () in place of p(z|z)
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Idea: “Distance” Minimization

We want gy(z) =~ p(z|z).

Variational Learning

Idea: define a “distance” D(gy(2)|| p(2|x)) and choose ¢ to minimize it.
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KL Divergence

A widely used “distance” between distributions is the Kullback-Leibler divergence:

KL(gllp) = [ a(z) o (%) iz

It is a divergence because it only satisfies some properties of a distance metric. It
satisfies:

» KL(g||p) > 0 for all g and p
» KL(¢|l]p) =0ifand only if g =p
It does not satisfy:
> KL(qllp) = KL(pl|q) for all ¢, p
> KL(qllp) < KL(g||s) + KL(s||p) for all ¢, p, s
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Big Idea: ELBO Decomposition

This is the math trick that is at the heart of all VI methods:

oz (o) = 3 4o(2)log 1 j;) +3" golz) log %12

p(
qp p(z]x)

ELBO(g4(2) || p(z.2)) KL(g4(2) [l p(2]))

» ELBO: "Evidence Lower BOund" (will explain later)
> KL: what we want to minimize

ional Learning

12/24




KL Minimization and ELBO
0000800

Derivation
Claim:

log p(z

Proof. Start with RHS and simplify:

RHS—Zqo [logp(z,x) —
—Z% [logp(z,x) —
—Z% ) log p(x)

Z q5(2) log
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L 2 a (@))

log g¢(2) + log qg(2) — log p(z|x)]

logp(z,x) + log p()]
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ELBO Significance

( , @) qs(2)
log p(z q +)_as(z)
Z s(e)log” ) ‘é ¢ p(zlz)
ELBO(g4(2) || p(z.2)) KL(gg(2) [l p(2l))
1. KL is “hard”: can't evaluate the normalized distribution p(z|x)

2. ELBO is “easy”(ish). Uses unnormalized distribution p(z,x). Can often evaluate or
approximate it, e.g., by Monte Carlo:
p(W )

ap(z(D)

sample 21 ... 2(M) ~ gy(z2), then compute % SN log

3. KL is non-negative

=logp(z) ) q
Z 0(2) 4. Therefore log p(x) > ELBO (“Evidence lower bound”)
=log p(x) 5. Therefore, choosing ¢ to maximize the ELBO is the same as choosing ¢ to
minimize the KL (since log p(z) is constant with respect to ¢)
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ELBO Interpretation: Picture
Variational Inference
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There are two different uses of VI
1. Approximate a posterior distribution: p(z|z) ~ g4(2)

2. Bound the log-likelihood: log pg(z) > ELBO(gy(2) || pa(2,z)), usually in a learning
procedure for py(z) (details to come)
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1. Input: p(z,z) and fixed x

2. Choose some approximating family g4 (z)
3. Maximize ELBO(gy(2) || p(z, 2)) wrt ¢
4. Use g4(z) as a proxy for p(z|z)

Many choices for

> Approximating family g,
» How to estimate ELBO
» How to do optimization

\
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ELBO Intuition ELBO Intuition
ELBO:Z%( log p(z, x) Zqo z)log qg(2)
z
energy entropy
ELBO = Zq¢ )logp(z, x) Z% ) log gy (2)
energy entropy
> energy term encourages g4(z) to be high where p(z|z) is high
> entropy term encourages ¢,(2) to be spread out
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Expectation Maximization (EM): VI + Learning

EM is a classical algorithm for maximum-likelihood learning with latent variables
Goal: choose 0 to maximize logpp(z) = log Y, pe(z, ) given observed z

Usual lower-bound derivation

EM Algorithm
log po(z) = log Zpg(x, z) &
z

> Set g(z) = pg(z|z) (maximize ELBO

—tog Y ()P0 wrt q) -
) - po(, 2
py(z, 2) > Maximize  _ q(z)log @ wrt 0
> zz:Q(z) log B » Repeat z q
= ELBO

Gives local maximum of log py(z) wrt 0
(Jensen’s inequality)
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Variational EM

It is not always possible or practical to compute py(z|z) exactly in EM.

Variational EM is an extension where the ELBO is maximized jointly with respect the
the parameters ¢ of the approximating distribution and parameters 6 of the model
(“simultaneous inference and learning™)

Goal: choose 0 to maximize log pp(z) = log Y, pe(z,x) given observed .
Define

z,T
L(¢,0) = ELBO(gy(2) || po(z,2)) = Zqé(z) log% < log py(x)
then jointly optimize £(¢, ) with respect to ¢ and 0, e.g.:

> (Stochastic) gradient ascent
> Alternating (partial) optimization steps
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