

Introduction oooooo	KL Minimization and ELBO oooooo	Variational Inference oooo	Variational Learning oooo
------------------------	------------------------------------	-------------------------------	------------------------------

COMPSCI 688: Probabilistic Graphical Models

Lecture 18: Variational Inference

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 24

Introduction ●ooooo	KL Minimization and ELBO oooooo	Variational Inference oooo	Variational Learning oooo
------------------------	------------------------------------	-------------------------------	------------------------------

Introduction

2 / 24

Introduction ●ooooo	KL Minimization and ELBO oooooo	Variational Inference oooo	Variational Learning oooo
------------------------	------------------------------------	-------------------------------	------------------------------

Variational Inference (VI) Overview

- ▶ Variational inference is an approximate inference approach (alternative to MCMC)
- ▶ Variational inference is at the core of a large family of techniques, **all of which start with the same mathematical idea**
 - ▶ mean-field and structured VI
 - ▶ black-box VI
 - ▶ expectation maximization (EM)
 - ▶ variational EM
 - ▶ variational Bayes
 - ▶ variational auto-encoders
 - ▶ loopy belief propagation and advanced message-passing algorithms

3 / 24

Introduction ●ooooo	KL Minimization and ELBO oooooo	Variational Inference oooo	Variational Learning oooo
------------------------	------------------------------------	-------------------------------	------------------------------

Problem Setting

Assume we have an unnormalized probability model over z . Two examples:

1. Bayesian model $p(z|x)$ for latent z , observed x , unknown $p(x)$
2. Unnormalized model $p(z) = \frac{1}{Z} \tilde{p}(z)$ with unknown Z (e.g., loopy MRF)

4 / 24

Introduction
oooo●ooo

KL Minimization and ELBO
ooooooo

Variational Inference
ooooo

Variational Learning
oooo

5 / 24

General Strategy

1. Let $q_\phi(z)$ be a “simple” distribution from some family with parameters ϕ
2. Try to optimize

$$\min_{\phi} D(q_\phi(z) \| p(z|x))$$

where D is some “distance”. Then use $q_\phi(z)$ in place of $p(z|x)$

7 / 24

Introduction
oooo●ooo

KL Minimization and ELBO
ooooooo

Variational Inference
ooooo

Variational Learning
oooo

Problem Setting

For concreteness, henceforth we'll assume the Bayesian model setting:

- $p(z, x) = p(z)p(x|z)$ easy to compute
- We observe x , but not z
- We want to approximate

$$p(z|x) = \frac{p(z, x)}{p(x)}$$

but don't know the normalization constant $p(x)$

6 / 24

Why use VI?

- Can often get reasonable approximations faster than MCMC
- Gives a bound on $p(x)$ (or “ Z ”), useful for learning (more later)

8 / 24

Introduction

KL Minimization and ELBO

Variational Inference

Variational Learning

9 / 24

KL Minimization and ELBO

Introduction

KL Minimization and ELBO

Variational Inference

Variational Learning

10 / 24

Idea: “Distance” Minimization

We want $q_\phi(z) \approx p(z|x)$.

Idea: define a “distance” $D(q_\phi(z) \| p(z|x))$ and choose ϕ to minimize it.

Introduction

KL Minimization and ELBO

Variational Inference

Variational Learning

11 / 24

KL Divergence

A widely used “distance” between distributions is the Kullback-Leibler divergence:

$$\text{KL}(q||p) = \int q(\mathbf{z}) \log \left(\frac{q(\mathbf{z})}{p(\mathbf{z})} \right) d\mathbf{z}$$

It is a *divergence* because it only satisfies some properties of a distance metric. It satisfies:

- ▶ $\text{KL}(q||p) \geq 0$ for all q and p
- ▶ $\text{KL}(q||p) = 0$ if and only if $q = p$

It does **not** satisfy:

- ▶ $\text{KL}(q||p) = \text{KL}(p||q)$ for all q, p
- ▶ $\text{KL}(q||p) \leq \text{KL}(q||s) + \text{KL}(s||p)$ for all q, p, s

Introduction

KL Minimization and ELBO

Variational Inference

Variational Learning

12 / 24

Big Idea: ELBO Decomposition

This is the math trick that is at the heart of all VI methods:

$$\log p(x) = \underbrace{\sum_z q_\phi(z) \log \frac{p(z, x)}{q_\phi(z)}}_{\text{ELBO}(q_\phi(z) \| p(z, x))} + \underbrace{\sum_z q_\phi(z) \log \frac{q_\phi(z)}{p(z|x)}}_{\text{KL}(q_\phi(z) \| p(z|x))}$$

- ▶ ELBO: “Evidence Lower BOund” (will explain later)
- ▶ KL: what we want to minimize

Introduction oooooooo	KL Minimization and ELBO oooooo●	Variational Inference ooooo	Variational Learning oooo
Derivation			
Claim: $\log p(x) = \sum_z q_\phi(z) \log \frac{p(z, x)}{q_\phi(z)} + \sum_z q_\phi(z) \log \frac{q_\phi(z)}{p(z x)}$			
Proof. Start with RHS and simplify: $\begin{aligned} \text{RHS} &= \sum_z q_\phi(z) [\log p(z, x) - \log q_\phi(z) + \log q_\phi(z) - \log p(z x)] \\ &= \sum_z q_\phi(z) [\log p(z, x) - \log p(z, x) + \log p(x)] \\ &= \sum_z q_\phi(z) \log p(x) \\ &= \log p(x) \sum_z q_\phi(z) \\ &= \log p(x) \end{aligned}$			
13 / 24			

Introduction oooooooo	KL Minimization and ELBO ooooo●○	Variational Inference ooooo	Variational Learning oooo
ELBO Significance			
$\log p(x) = \underbrace{\sum_z q_\phi(z) \log \frac{p(z, x)}{q_\phi(z)}}_{\text{ELBO}(q_\phi(z) \parallel p(z, x))} + \underbrace{\sum_z q_\phi(z) \log \frac{q_\phi(z)}{p(z x)}}_{\text{KL}(q_\phi(z) \parallel p(z x))}$			
<ol style="list-style-type: none"> 1. KL is "hard": can't evaluate the <i>normalized</i> distribution $p(z x)$ 2. ELBO is "easy"(ish). Uses <i>unnormalized</i> distribution $p(z, x)$. Can often evaluate or approximate it, e.g., by Monte Carlo: sample $z^{(1)}, \dots, z^{(N)} \sim q_\phi(z)$, then compute $\frac{1}{N} \sum_{i=1}^N \log \frac{p(z^{(i)}, x)}{d_\phi(z^{(i)})}$ 3. KL is non-negative 4. Therefore $\log p(x) \geq \text{ELBO}$ ("Evidence lower bound") 5. Therefore, choosing ϕ to maximize the ELBO is the same as choosing ϕ to minimize the KL (since $\log p(x)$ is constant with respect to ϕ) 			
14 / 24			

Introduction oooooooo	KL Minimization and ELBO oooooo●	Variational Inference ooooo	Variational Learning oooo
ELBO Interpretation: Picture			
15 / 24			

Introduction oooooooo	KL Minimization and ELBO oooooo	Variational Inference ●oooo	Variational Learning oooo
Variational Inference			
16 / 24			

Introduction

KL Minimization and ELBO

Variational Inference

Variational Learning

Uses of VI

There are two different uses of VI

1. Approximate a posterior distribution: $p(z|x) \approx q_\phi(z)$
2. Bound the log-likelihood: $\log p_\theta(x) \geq \text{ELBO}(q_\phi(z) \parallel p_\theta(z, x))$, usually in a learning procedure for $p_\theta(x)$ (details to come)

17 / 24

Introduction

KL Minimization and ELBO

Variational Inference

Variational Learning

Basic VI Algorithm

1. **Input:** $p(z, x)$ and fixed x
2. Choose some approximating family $q_\phi(z)$
3. Maximize $\text{ELBO}(q_\phi(z) \parallel p(x, z))$ wrt ϕ
4. Use $q_\phi(z)$ as a proxy for $p(z|x)$

Many choices for

- ▶ Approximating family q_ϕ
- ▶ How to estimate ELBO
- ▶ How to do optimization

18 / 24

Introduction

KL Minimization and ELBO

Variational Inference

Variational Learning

ELBO Intuition

$$\text{ELBO} = \underbrace{\sum_z q_\phi(z) \log p(z, x)}_{\text{energy}} - \underbrace{\sum_z q_\phi(z) \log q_\phi(z)}_{\text{entropy}}$$

- ▶ energy term encourages $q_\phi(z)$ to be high where $p(z|x)$ is high
- ▶ entropy term encourages $q_\phi(z)$ to be spread out

19 / 24

Introduction

KL Minimization and ELBO

Variational Inference

Variational Learning

ELBO Intuition

$$\text{ELBO} = \underbrace{\sum_z q_\phi(z) \log p(z, x)}_{\text{energy}} - \underbrace{\sum_z q_\phi(z) \log q_\phi(z)}_{\text{entropy}}$$

20 / 24

Introduction ooooooo
KL Minimization and ELBO ooooooo
Variational Inference ooooo
Variational Learning ●ooo

Variational Learning

21 / 24

Introduction ooooooo
KL Minimization and ELBO ooooooo
Variational Inference ooooo
Variational Learning o●oo

Expectation Maximization (EM): VI + Learning

EM is a classical algorithm for maximum-likelihood learning with latent variables
Goal: choose θ to maximize $\log p_\theta(x) = \log \sum_z p_\theta(z, x)$ given observed x

Usual lower-bound derivation

$$\begin{aligned}\log p_\theta(x) &= \log \sum_z p_\theta(x, z) \\ &= \log \sum_z q(z) \frac{p_\theta(x, z)}{q(z)} \\ &\geq \sum_z q(z) \log \frac{p_\theta(x, z)}{q(z)} \\ &= \text{ELBO}\end{aligned}$$

EM Algorithm

- ▶ Set $q(z) = p_\theta(z|x)$ (maximize ELBO wrt q)
- ▶ Maximize $\sum_z q(z) \log \frac{p_\theta(x, z)}{q(z)}$ wrt θ
- ▶ Repeat

Gives local maximum of $\log p_\theta(x)$ wrt θ
(Jensen's inequality)

22 / 24

Introduction ooooooo
KL Minimization and ELBO ooooooo
Variational Inference ooooo
Variational Learning ooo●

23 / 24

Introduction ooooooo
KL Minimization and ELBO ooooooo
Variational Inference ooooo
Variational Learning ooo●

Variational EM

It is not always possible or practical to compute $p_\theta(z|x)$ exactly in EM.
Variational EM is an extension where the ELBO is maximized jointly with respect to the parameters ϕ of the approximating distribution and parameters θ of the model ("simultaneous inference and learning")

Goal: choose θ to maximize $\log p_\theta(x) = \log \sum_z p_\theta(z, x)$ given observed x .
Define

$$\mathcal{L}(\phi, \theta) = \text{ELBO}(q_\phi(z) \| p_\theta(z, x)) = \sum_z q_\phi(z) \log \frac{p_\theta(z, x)}{q_\phi(z)} \leq \log p_\theta(x)$$

then jointly optimize $\mathcal{L}(\phi, \theta)$ with respect to ϕ and θ , e.g.:

- ▶ (Stochastic) gradient ascent
- ▶ Alternating (partial) optimization steps

24 / 24