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Variational Inference (VI) Overview

I Variational inference is an approximate inference approach (alternative to MCMC)
I Variational inference is at the core of a large family of techniques, all of which

start with the same mathematical idea
I mean-field and structured VI
I black-box VI
I expectation maximization (EM)
I variational EM
I variational Bayes
I variational auto-encoders
I loopy belief propagation and advanced message-passing algorithms
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Problem Setting
Assume we have an unnormalized probability model over z. Two examples:

1. Bayesian model p(z|x) for latent z, observed x, unknown p(x)
2. Unnormalized model p(z) = 1

Z p̃(z) with unknown Z (e.g., loopy MRF)
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Problem Setting

For concreteness, henceforth we’ll assume the Bayesian model setting:
I p(z, x) = p(z)p(x|z) easy to compute
I We observe x, but not z
I We want to approximate

p(z|x) = p(z, x)
p(x)

but don’t know the normalization constant p(x)
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General Strategy

1. Let q„(z) be a “simple” distribution from some family with parameters „

2. Try to optimize

min
„

D
!
q„(z) Î p(z|x)

"

where D is some “distance”. Then use q„(z) in place of p(z|x)
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Why use VI?

I Can often get reasonable approximations faster than MCMC
I Gives a bound on p(x) (or “Z”), useful for learning (more later)
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KL Minimization and ELBO
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Idea: “Distance” Minimization
We want q„(z) ¥ p(z|x).

Idea: define a “distance” D(q„(z)Î p(z|x)) and choose „ to minimize it.
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KL Divergence
A widely used “distance” between distributions is the Kullback-Leibler divergence:

KL(q||p) =
⁄

q(z) log
3
q(z)
p(z)

4
dz

It is a divergence because it only satisfies some properties of a distance metric. It
satisfies:

I KL(q||p) Ø 0 for all q and p

I KL(q||p) = 0 if and only if q = p

It does not satisfy:
I KL(q||p) = KL(p||q) for all q, p
I KL(q||p) Æ KL(q||s) + KL(s||p) for all q, p, s
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Big Idea: ELBO Decomposition

This is the math trick that is at the heart of all VI methods:

log p(x) =
ÿ

z

q„(z) log p(z, x)
q„(z)

¸ ˚˙ ˝
ELBO

!
q„(z) Î p(z,x)

"

+
ÿ

z

q„(z) log q„(z)
p(z|x)

¸ ˚˙ ˝
KL

!
q„(z) Î p(z|x)

"

I ELBO: “Evidence Lower BOund” (will explain later)
I KL: what we want to minimize
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Derivation
Claim:

log p(x) =
ÿ

z

q„(z) log p(z, x)
q„(z) +

ÿ

z

q„(z) log q„(z)
p(z|x)

Proof. Start with RHS and simplify:

RHS =
ÿ

z

q„(z) [log p(z, x) ≠ log q„(z) + log q„(z) ≠ log p(z|x)]

=
ÿ

z

q„(z) [log p(z, x) ≠ log p(z, x) + log p(x)]

=
ÿ

z

q„(z) log p(x)

= log p(x)
ÿ

z

q„(z)

= log p(x)
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ELBO Significance

log p(x) =
ÿ

z

q„(z) log p(z, x)
q„(z)

¸ ˚˙ ˝
ELBO

!
q„(z) Î p(z,x)

"

+
ÿ

z

q„(z) log q„(z)
p(z|x)

¸ ˚˙ ˝
KL

!
q„(z) Î p(z|x)

"

1. KL is “hard”: can’t evaluate the normalized distribution p(z|x)
2. ELBO is “easy”(ish). Uses unnormalized distribution p(z, x). Can often evaluate or

approximate it, e.g., by Monte Carlo:

sample z(1), . . . , z(N) ≥ q„(z), then compute 1
N

qN
i=1 log p(z(i),x)

q„(z(i))

3. KL is non-negative
4. Therefore log p(x) Ø ELBO (“Evidence lower bound”)
5. Therefore, choosing „ to maximize the ELBO is the same as choosing „ to

minimize the KL (since log p(x) is constant with respect to „)
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ELBO Interpretation: Picture
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Variational Inference
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Uses of VI

There are two di�erent uses of VI

1. Approximate a posterior distribution: p(z|x) ¥ q„(z)

2. Bound the log-likelihood: log p◊(x) Ø ELBO
!
q„(z) Î p◊(z, x)

"
, usually in a learning

procedure for p◊(x) (details to come)
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Basic VI Algorithm

1. Input: p(z, x) and fixed x

2. Choose some approximating family q„(z)

3. Maximize ELBO(q„(z) Î p(x, z)) wrt „

4. Use q„(z) as a proxy for p(z|x)

Many choices for
I Approximating family q„

I How to estimate ELBO
I How to do optimization
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ELBO Intuition

ELBO =
ÿ

z

q„(z) log p(z, x)
¸ ˚˙ ˝

energy

≠
ÿ

z

q„(z) log q„(z)
¸ ˚˙ ˝

entropy

I energy term encourages q„(z) to be high where p(z|x) is high
I entropy term encourages q„(z) to be spread out
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ELBO Intuition

ELBO =
ÿ

z

q„(z) log p(z, x)
¸ ˚˙ ˝

energy

≠
ÿ

z

q„(z) log q„(z)
¸ ˚˙ ˝

entropy
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Variational Learning
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Expectation Maximization (EM): VI + Learning
EM is a classical algorithm for maximum-likelihood learning with latent variables
Goal: choose ◊ to maximize log p◊(x) = log q

z p◊(z, x) given observed x

Usual lower-bound derivation

log p◊(x) = log
ÿ

z

p◊(x, z)

= log
ÿ

z

q(z)p◊(x, z)
q(z)

Ø
ÿ

z

q(z) log p◊(x, z)
q(z)

= ELBO

(Jensen’s inequality)

EM Algorithm

I Set q(z) = p◊(z|x) (maximize ELBO
wrt q)

I Maximize
ÿ

z

q(z) log p◊(x, z)
q(z) wrt ◊

I Repeat

Gives local maximum of log p◊(x) wrt ◊
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Variational EM
It is not always possible or practical to compute p◊(z|x) exactly in EM.
Variational EM is an extension where the ELBO is maximized jointly with respect the
the parameters „ of the approximating distribution and parameters ◊ of the model
(“simultaneous inference and learning”)

Goal: choose ◊ to maximize log p◊(x) = log q
z p◊(z, x) given observed x.

Define

L(„, ◊) = ELBO
!
q„(z) Î p◊(z, x)

"
=

ÿ

z

q„(z) log p◊(z, x)
q„(z) Æ log p◊(x)

then jointly optimize L(„, ◊) with respect to „ and ◊, e.g.:
I (Stochastic) gradient ascent
I Alternating (partial) optimization steps
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