

Introduction ooooooo	KL Minimization and ELBO ooooooo	Variational Inference ooooo	Variational Learning oooo
-------------------------	-------------------------------------	--------------------------------	------------------------------

COMPSCI 688: Probabilistic Graphical Models
Lecture 18: Variational Inference
Dan Sheldon
Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 24

Introduction ●ooooo	KL Minimization and ELBO ooooooo	Variational Inference ooooo	Variational Learning oooo
------------------------	-------------------------------------	--------------------------------	------------------------------

Introduction

2 / 24

Introduction ○●ooooo	KL Minimization and ELBO ooooooo	Variational Inference ooooo	Variational Learning oooo
-------------------------	-------------------------------------	--------------------------------	------------------------------

Variational Inference (VI) Overview

- ▶ Variational inference is an approximate inference approach (alternative to MCMC)
- ▶ Variational inference is at the core of a large family of techniques, **all of which start with the same mathematical idea**
 - ▶ mean-field and structured VI
 - ▶ black-box VI
 - ▶ expectation maximization (EM)
 - ▶ variational EM
 - ▶ variational Bayes
 - ▶ variational auto-encoders \leftarrow HW5
 - ▶ loopy belief propagation and advanced message-passing algorithms

3 / 24

Introduction ○●ooooo	KL Minimization and ELBO ooooooo	Variational Inference ooooo	Variational Learning oooo
-------------------------	-------------------------------------	--------------------------------	------------------------------

Problem Setting

$\tilde{p}(z)$

Assume we have an unnormalized probability model over z . Two examples:

1. Bayesian model $p(z|x)$ for latent z , observed x , unknown $p(x)$
2. Unnormalized model $p(z) = \frac{1}{Z} \tilde{p}(z)$ with unknown Z (e.g., loopy MRF)

1. Bayesian

Want: $p(z|x) = \frac{p(z, x)}{p(x)}$

Have: $p(z|x) := \tilde{p}(z)$

easy

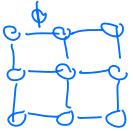
hard

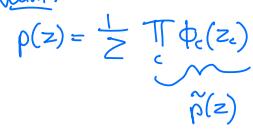
4 / 24

Introduction ooo●ooo KL Minimization and ELBO ooooooo Variational Inference ooooo Variational Learning oooo

Setting 2. unnormalized $p(z) = \frac{1}{Z} \tilde{p}(z)$

e.g. MRF want: $p(z) = \sum_c \prod_c \phi_c(z_c)$





5 / 24

Introduction ooooo● KL Minimization and ELBO ooooooo Variational Inference ooooo Variational Learning oooo

Problem Setting

For concreteness, henceforth we'll assume the Bayesian model setting:

- $p(z, x) = p(z)p(x|z)$ easy to compute
- We observe x , but not z
- We want to approximate

$$p(z|x) = \frac{p(z, x)}{p(x)}$$

but don't know the normalization constant $p(x)$



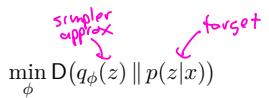
6 / 24

Introduction ooooo● KL Minimization and ELBO ooooooo Variational Inference ooooo Variational Learning oooo

General Strategy

Want: $p(z|x) \approx q_\phi(z)$

1. Let $q_\phi(z)$ be a "simple" distribution from some family with parameters ϕ
2. Try to optimize



$$\min_\phi D(q_\phi(z) \| p(z|x))$$

where D is some "distance". Then use $q_\phi(z)$ in place of $p(z|x)$

7 / 24

Introduction ooooo● KL Minimization and ELBO ooooooo Variational Inference ooooo Variational Learning oooo

Why use VI?

- Can often get reasonable approximations faster than MCMC
- Gives a bound on $p(x)$ (or "Z"), useful for learning (more later)

8 / 24

Introduction ooooooo

KL Minimization and ELBO ●oooooo

Variational Inference ooooo

Variational Learning oooo

KL Minimization and ELBO

9 / 24

Introduction ooooooo

KL Minimization and ELBO ●oooooo

Variational Inference ooooo

Variational Learning oooo

Idea: "Distance" Minimization

We want $q_\phi(z) \approx p(z|x)$.

Idea: define a "distance" $D(q_\phi(z) \| p(z|x))$ and choose ϕ to minimize it.

space of all dists over Z

10 / 24

Introduction ooooooo

KL Minimization and ELBO ●oooooo

Variational Inference ooooo

Variational Learning oooo

KL Divergence

$$\text{dive} \sum_z q(z) \log \frac{q(z)}{p(z)}$$

A widely used "distance" between distributions is the Kullback-Leibler divergence:

$$\text{KL}(q||p) = \int q(z) \log \left(\frac{q(z)}{p(z)} \right) dz = \mathbb{E}_{q(z)} \left[\log \frac{q(z)}{p(z)} \right]$$

It is a *divergence* because it only satisfies some properties of a distance metric. It satisfies:

- KL($q||p$) ≥ 0 for all q and p
- KL($q||p$) = 0 if and only if $q = p$

It does **not** satisfy:

- KL($q||p$) = KL($p||q$) for all q, p
- KL($q||p$) \leq KL($q||s$) + KL($s||p$) for all q, p, s

11 / 24

Introduction ooooooo

KL Minimization and ELBO ●oooooo

Variational Inference ooooo

Variational Learning oooo

Big Idea: ELBO Decomposition

$$\tilde{p}(z) = \frac{p(z, x)}{p(x)} \Leftarrow 'z'$$

This is the math trick that is at the heart of all VI methods:

$$\log p(x) = \underbrace{\sum_z q_\phi(z) \log \frac{p(z, x)}{q_\phi(z)}}_{\text{ELBO}(q_\phi(z) \| p(z, x))} + \underbrace{\sum_z q_\phi(z) \log \frac{q_\phi(z)}{p(z|x)}}_{\text{KL}(q_\phi(z) \| p(z|x))}$$

↑
approx unnormalized

- ELBO: "Evidence Lower BOund" (will explain later)
- KL: what we want to minimize

12 / 24

Introduction ooooooo KL Minimization and ELBO ooooooo Variational Inference ooooo Variational Learning oooo

Derivation

Claim:

$$\log p(x) = \sum_z q_\phi(z) \log \frac{p(z, x)}{q_\phi(z)} + \sum_z q_\phi(z) \log \frac{q_\phi(z)}{p(z|x)}$$

Proof. Start with RHS and simplify:

$$\begin{aligned} \text{RHS} &= \sum_z q_\phi(z) \left[\log p(z, x) - \log q_\phi(z) + \log q_\phi(z) - \log p(z|x) \right] \\ &= \sum_z q_\phi(z) \left[\log p(z, x) - \log p(z|x) + \log p(x) \right] \\ &= \sum_z q_\phi(z) \log p(x) \\ &= \log p(x) \sum_z q_\phi(z) \\ &= \log p(x) \end{aligned}$$

13 / 24

Introduction ooooooo KL Minimization and ELBO ooooooo Variational Inference ooooo Variational Learning oooo

ELBO Significance

$$= \mathbb{E}_{q_\phi(z)} \left[\log \frac{p(z, x)}{q_\phi(z)} \right]$$

"evidence" $\rightarrow \log p(x) = \sum_z q_\phi(z) \log \frac{p(z, x)}{q_\phi(z)} + \sum_z q_\phi(z) \log \frac{q_\phi(z)}{p(z|x)}$

$\frac{p(z|x)}{p(x)}$ $\leftarrow \hat{p}(z) = p(z|x)$

$\frac{q_\phi(z)}{p(z|x)}$ $\leftarrow \text{normalized}$

1. KL is "hard": can't evaluate the *normalized* distribution $p(z|x)$
 2. ELBO is "easy"(ish). Uses *unnormalized* distribution $p(z, x)$. Can often evaluate or approximate it, e.g., by Monte Carlo:
 sample $z^{(1)}, \dots, z^{(N)} \sim q_\phi(z)$, then compute $\frac{1}{N} \sum_{i=1}^N \log \frac{p(z^{(i)}, x)}{d_\phi(z^{(i)})}$
 3. KL is non-negative
 4. Therefore $\log p(x) \geq \text{ELBO}$ ("Evidence lower bound")
 5. Therefore, choosing ϕ to maximize the ELBO **is the same** as choosing ϕ to minimize the KL (since $\log p(x)$ is constant with respect to ϕ)

14 / 24

Introduction ooooooo KL Minimization and ELBO ooooooo Variational Inference ooooo Variational Learning oooo

ELBO Interpretation: Picture

$q_\phi(z) \approx p(z|x)$

Model $p(z|x)$

15 / 24

Introduction ooooooo KL Minimization and ELBO ooooooo Variational Inference ooooo Variational Learning oooo

Variational Inference

16 / 24

Introduction ooooooo KL Minimization and ELBO ooooooo Variational Inference o●ooo Variational Learning oooo

Uses of VI

There are two different uses of VI

1. Approximate a posterior distribution: $p(z|x) \approx q_\phi(z)$ target simple
2. Bound the log-likelihood: $\log p_\theta(x) \geq \text{ELBO}(q_\phi(z) \parallel p_\theta(z, x))$, usually in a learning procedure for $p_\theta(x)$ (details to come)

17 / 24

Introduction ooooooo KL Minimization and ELBO ooooooo Variational Inference o●ooo Variational Learning oooo

Basic VI Algorithm

target

1. **Input:** $p(z, x)$ and fixed x
2. Choose some approximating family $q_\phi(z)$
3. Maximize $\text{ELBO}(q_\phi(z) \parallel p(x, z))$ wrt ϕ
4. Use $q_\phi(z)$ as a proxy for $p(z|x)$

Many choices for

- Model $p(z, x)$
- Approximating family q_ϕ
- How to estimate ELBO
- How to do optimization

18 / 24

Introduction ooooooo KL Minimization and ELBO ooooooo Variational Inference o●ooo Variational Learning oooo

ELBO Intuition

$$\text{ELBO} = \sum_z q_\phi(z) \log \frac{p(z, x)}{q_\phi(z)} - \log p(x)$$

$$\text{ELBO} = \underbrace{\sum_z q_\phi(z) \log p(z, x)}_{\text{energy}} - \underbrace{\sum_z q_\phi(z) \log q_\phi(z)}_{\text{entropy}}$$

- energy term encourages $q_\phi(z)$ to be high where $p(z|x)$ is high
- entropy term encourages $q_\phi(z)$ to be spread out

19 / 24

Introduction ooooooo KL Minimization and ELBO ooooooo Variational Inference o●ooo Variational Learning oooo

ELBO Intuition

$$\text{ELBO} = \underbrace{\sum_z q_\phi(z) \log p(z, x)}_{\text{energy}} - \underbrace{\sum_z q_\phi(z) \log q_\phi(z)}_{\text{entropy}}$$

$p(z, x)$ $q_\phi(z)$ $p(z|x)$

dist q_ϕ that maximizes energy

dist that maximizes entropy + energy

$\tilde{p}(z) = p(z|x)$

z

20 / 24

Introduction oooooooo

KL Minimization and ELBO oooooooo

Variational Inference ooooo

Variational Learning ●○○

Variational Learning

21 / 24

Introduction oooooooo

KL Minimization and ELBO oooooooo

Variational Inference ooooo

Variational Learning ○○○

Expectation Maximization (EM): VI + Learning

EM is a classical algorithm for maximum-likelihood learning with latent variables

Goal: choose θ to maximize $\log p_\theta(x) = \log \sum_z p_\theta(z, x)$ given observed x

Usual lower-bound derivation

$$\begin{aligned} \log p_\theta(x) &= \log \sum_z p_\theta(z, x) \\ &= \log \sum_z q_\phi(z) \cdot \frac{p_\theta(z, x)}{q_\phi(z)} \\ &\stackrel{\text{log concave}}{\geq} \sum_z q_\phi(z) \log \frac{p_\theta(z, x)}{q_\phi(z)} \end{aligned}$$

(Jensen's inequality)

ELBO

EM Algorithm

- ▶ Set $q(z) = p_\theta(z|x)$ (maximize ELBO wrt q)
- ▶ Maximize $\sum_z q(z) \log \frac{p_\theta(x, z)}{q(z)}$ wrt θ
- ▶ Repeat

Gives local maximum of $\log p_\theta(x)$ wrt θ

22 / 24

Introduction oooooooo

KL Minimization and ELBO oooooooo

Variational Inference ooooo

Variational Learning ○○○

23 / 24

Introduction oooooooo

KL Minimization and ELBO oooooooo

Variational Inference ooooo

Variational Learning ○○○●

Variational EM

It is not always possible or practical to compute $p_\theta(z|x)$ exactly in EM.

Variational EM is an extension where the ELBO is maximized jointly with respect to the parameters ϕ of the approximating distribution and parameters θ of the model ("simultaneous inference and learning")

Goal: choose θ to maximize $\log p_\theta(x) = \log \sum_z p_\theta(z, x)$ given observed x .

Define

$$\mathcal{L}(\phi, \theta) = \text{ELBO}(q_\phi(z) \| p_\theta(z, x)) = \sum_z q_\phi(z) \log \frac{p_\theta(z, x)}{q_\phi(z)} \leq \log p_\theta(x)$$

then jointly optimize $\mathcal{L}(\phi, \theta)$ with respect to ϕ and θ , e.g.:

- ▶ (Stochastic) gradient ascent
- ▶ Alternating (partial) optimization steps

24 / 24