Hamiltonian MCMC

Dan Sheldon

April 15, 2024

Metropolis-Hastings

- Initialize $x^{(0)}$ arbitrarily
- Given $x^{(t)} = x$, propose
 $$x' \sim Q(\cdot | x)$$
- Accept and set $x^{(t+1)} = x'$ with probability $\min(a, 1)$
 $$a = \frac{P(x')}{P(x)} \cdot \frac{Q(x | x')}{Q(x' | x)}$$
- Else reject and set $x^{(t+1)} = x^{(t)}$

For large enough T, have $x^{(T)} \sim P$

Review: Metropolis-Hastings

- Given: probability density $P(x)$, $x \in \mathbb{R}^d$
- Goal: generate sample $x \sim P$

Problem: random walk

Slow mixing due to "random walk" behavior

- Typical proposal is a random displacement
 - Spherical Gaussian \rightarrow Brownian motion-like
 - Ignores density surface

Why?

- Simple random-walk Metropolis method, given equal computer time.

Main Idea

▶ Idea: use density to guide proposals
▶ Select random velocity $p/m \in \mathbb{R}^d$
 ▶ $p =$ momentum, $m =$ mass
▶ Simulate motion on energy surface
 \[
 \{(x, E(x)) : x \in \mathbb{R}^d \} \subseteq \mathbb{R}^{d+1}, \quad E(x) = -\log P(x)
 \]
 with initial velocity p/m for some amount of time to get proposal x'.

Hamiltonian Mechanics

▶ Position $x \in \mathbb{R}^d$
▶ Velocity $p/m \in \mathbb{R}^d$
▶ Potential energy $E(x)$ (= height)

▶ Temporal dynamics
 \[
 \frac{dx}{dt} = \frac{p}{m}, \quad \frac{dp}{dt} = -\frac{\partial E(x)}{\partial x}
 \]

Puck of mass m sliding on frictionless surface with velocity p/m, height at x equal to $E(x)$ (and thus "incline" $\partial E(x)/\partial x$).

Generalization: Kinetic Energy

Define $K(p) = \frac{p^T p}{2m}$

kinetic energy

\[
\begin{align*}
\frac{dx}{dt} &= \frac{p}{m} \\
\frac{dp}{dt} &= -\frac{\partial E(x)}{\partial x}
\end{align*}
\]

\Rightarrow

\[
\begin{align*}
\frac{dx}{dt} &= \frac{\partial K(p)}{\partial p} \\
\frac{dp}{dt} &= -\frac{\partial E(x)}{\partial x}
\end{align*}
\]
Generalization: The Hamiltonian

Define $H(x, p) = E(x) + K(p)$

Hamiltonian or total energy

$\frac{dx}{dt} = \frac{\partial K(p)}{\partial p}$
$\frac{dp}{dt} = -\frac{\partial E(x)}{\partial x}$

\Rightarrow

Simulating Hamiltonian Mechanics

Euler's method

$x(t + \varepsilon) = x(t) + \varepsilon p(t)$

$p(t + \varepsilon) = p(t) - \varepsilon \frac{\partial E(x(t))}{\partial x}$

Problem: numerically unstable

Leapfrog Method

More accurate and stable method

$p(t + \varepsilon/2) = p(t) - (\varepsilon/2) \frac{\partial E(x(t))}{\partial x}$

$x(t + \varepsilon) = x(t) + \varepsilon p(t + \varepsilon/2)$

$p(t + \varepsilon) = p(t + \varepsilon/2) - (\varepsilon/2) \frac{\partial E(x(t + \varepsilon))}{\partial x}$
Leapfrog Method

Figure 5.1 shows the result of using Euler’s method to approximate the dynamics defined by the Hamiltonian of Equation 5.8, starting from $q(0) = 0$ and $p(0) = 1$, and using a stepsize of $\varepsilon = 0.3$ for 20 steps (i.e. to $\tau = 0.3 \times 20 = 6$). The results are not good—Euler’s method produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a smaller value of ε, and correspondingly more steps, produces a more accurate result at $\tau = 6$, but although the divergence to infinity is slower, it is not eliminated.

(a) Momentum (p) Euler’s method, stepsize 0.3
(b) Modified Euler’s method, stepsize 0.3
(c) (d) Leapfrog method, stepsize 0.3

Hamiltonian MCMC

Random velocity/momentum instead of random displacement
- Start at x
- Choose random momentum $p \sim \exp(-p^T p/2m)$
- Simulate Hamiltonian mechanics for s time units \rightarrow end at x'
- Propose x'

Problem: how to compute $Q(x' | x)$ for acceptance probability?

Auxilliary Variables

Sample both x and p from

$$P(x, p) = \exp(-H(x, p))$$
$$= \exp(-E(x)) \exp(-K(p)),$$

when done, discard p values

Note: x and p are independent

Hamiltonian MCMC

Gibbs step
- Start at (x, p^-)
- Choose random momentum $p \sim \exp(-p^T p/2m)$
- End at (x, p)

Metropolis-Hastings step
- Start at (x, p)
- Simulate Hamiltonian mechanics \rightarrow end at (x', p')
- Propose $(x', -p')$
Acceptance Probability?

\[
\begin{align*}
a &= \frac{P(x', -p')}{P(x, p)} \cdot \frac{Q(x, p | x', -p')}{Q(x', -p' | x, p)} \\
&= \frac{P(x', -p')}{P(x, p)} & \text{(reversibility, volume preservation)} \\
&= \exp(E(x) - E(x') + K(p) - K(p')) & (K(p') = K(-p')) \\
&\approx 1 & \text{(conservation of energy)}
\end{align*}
\]

Reversibility

Let \(T_{L,\epsilon} : \mathbb{R}^{2d} \rightarrow \mathbb{R}^{2d} \) be simulation mapping with \(L \) steps at time increment \(\epsilon \)

\[T_{L,\epsilon}(x, p) = (x', p') \implies T_{L,\epsilon}(x', -p') = (x, -p) \]

Demo

Demo with sampling

Example

Hamiltonian Monte Carlo

Simple Metropolis
Example

Setup: 100D Gaussian, standard deviations in different dimensions are 0.01, 0.02, \ldots, 1.00

![Graphs showing random-walk Metropolis and Hamiltonian Monte Carlo](image)