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Issues with MCMC

▶ Burn-in: The underlying Markov chains take time to converge to the distribution
of interest. The time needed to reach the stationary distribution of the chain is
called the burn-in time.

▶ Autocorrelation: Consecutive samples drawn from the chain at equilibrium may be
highly correlated with each other. The time lag between samples that are
approximately independent of each other is called the autocorrelation time of the
chain.
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Burn-in Time

▶ The most fundamental issue with burn-in is that, in the absence of a theoretical
lower bound, you can never be exactly sure that the chain has converged to the
equilibrium distribution.

▶ MCMC practitioners usually rely on heuristic convergence diagnostics to assess
burn-in time.

▶ One of the most useful heuristics is to run multiple chains from different starting
points and track one or more scalar functions of the state of the chain (the log
probability of the data is often a good choice).

▶ The distribution of values of these functions will all converge to the same mean and
variance at equilibrium.
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Example: Burn-in Time
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Example: Burn-in Time
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Autocorrelation Time

▶ At or near equilibrium, different samplers can traverse the state space at different
rates.

▶ The autocorrelation time of a sampler is the number of sampling iterations we must
apply at equilibrium to obtain two samples that are approximately independent.

▶ Practitioners sometimes use estimates of autocorrelation at different lags to
estimate an “effective sample size” of S MCMC samples
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Practical Aspects Summary

▶ There are many different diagnostics. Useful to learn some of them
▶ It’s often easy to diagnose clear failures
▶ It’s basically impossible to diagnose success
▶ Some practitioners advocate just running one chain for a very long time
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Bayesian Inference
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Bayesian Inference Example

Suppose we observe data x(1), . . . , x(n) which we assume to come from a Bernoulli
model

p(x(n)|θ) =
{

θ x(n) = 1
1 − θ x(n) = 0

▶ Maximum-likelihood says to find θ by solving maxθ
1
n

∑N
n=1 log p(x(n)|θ)
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When might we want something different?

Example: you go on a three-day trip to Australia and want to learn about the weather

X =
{

1 rain
0 no rain

Observe x(1) = 1, x(2) = 1, x(3) = 1

MLE learning → θ̂ = 1

It rains every day in Australia. What went wrong?
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Being Bayesian

A Bayesian says: give me the probability of θ given the data. What does this mean?

p(θ|Data) = p(θ)p(Data|θ)
p(Data)

▶ p(θ) is the prior. It encodes beliefs (either subjective or objective) about θ prior to
seeing any evidence. We need one!

▶ p(Data|θ) = ∏N
n=1 p(x(n)|θ) is the likelihood. It incorporates evidence.

▶ p(Data) =
∫

p(θ)p(Data|θ)dθ is the marginal likelihood or evidence. We usually
don’t need to compute it.

▶ p(θ|Data) is the posterior. What we believe about θ after observing data.
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Why Be Bayesian?

▶ Philosophy: Update subjective prior beliefs based on evidence.
▶ Practical: deal with small samples
▶ Practical: excellent tools exist (MCMC, stan)
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Making our Model Bayesian

θ ∼ Uniform([0, 1])
x(n) ∼ Bernoulli(θ)
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Bayesian Modeling: Implications

▶ We now have a joint probability model p(θ, x)

p(θ, x) = p(θ)p(x|θ)

▶ θ is now a random variable instead of a fixed but unknown parameter
▶ Learning is replaced by posterior inference

▶ Learning: maxθ L(θ|x(1), . . . , x(N))
▶ Posterior inference: compute p(θ|x(1), . . . , x(N))
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Posterior Inference

p(θ|x(1:N)) = p(θ)p(x(1:N)|θ)
p(x(1:N))

∝ p(θ)p(x(1:N)|θ)

=
N∏

n=1
θI[x

(n)=1](1 − θ)I[x(n)=0]

= θ#(X=1)(1 − θ)#(X=0)

E.g., use MCMC to sample from density on [0, 1] proportional to this

General inference strategy: use MCMC to sample from density proportional to
p(θ)p(Data | θ)

But in some special cases the problem is easy to solve without MCMC. . . (next time)
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A Little History. . .

▶ Bayes is the OG statistics! (Bayes, Laplace ~late 1700s)
▶ But suspicious about priors (“objective Bayes”), often used flat ones

▶ Early 1900s: frequentist stats, e.g., MLE (Fisher, Neyman)
▶ But inference requires imagining repeated data from same distribution

▶ Subjective Bayes (Savage, de Finetti)
▶ Prior encodes subjective personal beliefs

▶ Mid 1900s: objective Bayes (Jeffreys)
▶ Pragmatic view, combines frequentist ideas
▶ E.g., does posterior converge to truth as we get more data?

▶ 2000s: Computational Bayes?
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More Motivation: de Finetti

Exchangeability: A sequence of random variables x1, x2, x3, . . . is exchangeable if for
any n and any permutation π

p(x1, x2, . . . , xn) = p(xπ1 , xπ2 , . . . , xπn)

(the joint probability is invariant to any permutation of the indices)

Examples:
▶ x1, x2, x3, . . . where xi are iid (sequence is iid)
▶ x0 + x1, x0 + x2, x0 + x3, . . . (sequence is exchangeable but not iid)
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de Finetti Theorem (1930s): A sequence of random variables x1, x2, . . . is
exchangeable if and only if for all n

p(x1, x2, . . . , xn) =
∫ n∏

i=1
p(xi|θ)p(θ)dθ

for some p(θ). (Actually, θ doesn’t need to have a density.)

Implications: if exchangeable,
▶ There must exist a parameter θ
▶ There must exist a likelihood p(x|θ)
▶ There must exist a distribution p(θ)
▶ The data is conditionally independent given θ

19 / 19


