The Metropolis-Hastings Sampler

- The Metropolis Hastings sampler is an extremely general sampler based on the idea of "proposing" a new state with a proposal distribution \(q(x' | x) \), and then "accepting" or "rejecting".
- Like the Gibbs sampler, it can be used with continuous or discrete distributions and avoids computation of the partition function.
- Unlike the Gibbs sampler, it doesn’t require the ability to sample from the conditional distributions. (actual density \(= \frac{1}{Z} \tilde{p}(x) \))

Input: unnormalized density function \(\tilde{p}(x) \), assume can evaluate \(\tilde{p}(x) \) point-wise.
Proposal and Acceptance MCMC

Input: \(p \) target, \(q \) proposal

Initialize \(x \)

for \(t = 1, 2, 3, \ldots, S \):

Sample \(x' \sim q(x'|x) \)

Look at \(x \) and \(x' \), and calculate a probability \(\alpha(x, x') \) of keeping \(x' \).

Choose \(r \in [0, 1] \) uniformly

If \(r < \alpha(x, x') \) then

\(x \leftarrow x' \)

\(x(t) \leftarrow x \)

return \(x^{(1)}, x^{(2)}, \ldots, x^{(S)} \)

How to Choose Acceptance Probability?

The key missing step is how to set the acceptance probability \(\alpha(x, x') \). It can depend on \(p \) and \(q \). The transition probability density is

\[
T(x'|x) = \begin{cases}
q(x'|x)\alpha(x, x') & \text{if } x \neq x' \\
q(x|x') & \text{if } x = x'
\end{cases}
\]

Our goal is to satisfy detailed balance, i.e., for all \(x, x' \):

\[
p(x)T(x'|x) = p(x')T(x|x')
\]

\[
\iff p(x)q(x'|x)\alpha(x, x') = p(x')q(x|x')\alpha(x', x)
\]

We don’t care about \(T(x'|x) \) when \(x = x' \), because the detailed balance condition is always satisfied for \(x = x' \).

By symmetry, the general Metropolis-Hastings acceptance rule is:

\[
\alpha(x, x') = \min \left\{ 1, \frac{q(x'|x)\alpha(x, x')}{q(x|x')\alpha(x', x)} \right\}
\]
Metropolis-Hastings Algorithm

Initialize x

for $t = 1, 2, 3, \ldots, S$

Sample $x' \sim q(x'|x)$

Choose $r \in [0, 1]$ uniformly

if $r < \frac{p(x')q(x|x')}{p(x')q(x'|x)}$ then

$x \leftarrow x'$

$x^{(t)} \leftarrow x$

return $x^{(1)}, x^{(2)}, \ldots, x^{(S)}$

Gaussian Random Walk Sampler

A simple proposal uses a Gaussian random walk as the proposal distribution:

$x' \sim \mathcal{N}(x'|x, \sigma^2 I)$

By symmetry, the acceptance probability simplifies

$\alpha(x', x) = \frac{p(x')\mathcal{N}(x'|x, \sigma^2 I)}{p(x')\mathcal{N}(x|x, \sigma^2 I)} = \frac{p(x')}{p(x)}$

Proof of Detailed Balance

Claim: detailed balance holds with

$\alpha(x, x') = \min \left\{ 1, \frac{p(x')q(x|x')}{p(x)q(x'|x)} \right\}$

Proof: First, consider when $p(x)q(x'|x) > p(x')q(x|x')$.

$p(x)T(x'|x) = p(x)q(x'|x)\alpha(x', x) = p(x)q(x'|x)\frac{p(x')q(x|x')}{p(x)q(x'|x)} = p(x')q(x|x') = p(x')T(x|x')$

For the second case, we have $p(x')q(x|x') > p(x)q(x'|x)$. The proof is the same as the first case, with x and x' swapped.
Issues with MCMC

- **Burn-in**: The underlying Markov chains take time to converge to the distribution of interest. The time needed to reach the stationary distribution of the chain is called the *burn-in time*.

- **Autocorrelation**: Consecutive samples drawn from the chain at equilibrium may be highly correlated with each other. The time lag between samples that are approximately independent of each other is called the *autocorrelation time* of the chain.

Burn-in Time

- The most fundamental issue with burn-in is that, in the absence of a theoretical lower bound, you can never be exactly sure that the chain has converged to the equilibrium distribution.

- MCMC practitioners usually rely on heuristic convergence diagnostics to assess burn-in time.

- One of the most useful heuristics is to run multiple chains from different starting points and track one or more scalar functions of the state of the chain (the log probability of the data is often a good choice).

- The distribution of values of these functions will all converge to the same mean and variance at equilibrium.
Autocorrelation Time

- At or near equilibrium, different samplers can traverse the state space at different rates.
- The autocorrelation time of a sampler is the number of sampling iterations we must apply at equilibrium to obtain two samples that are approximately independent.
- Practitioners sometimes use estimates of autocorrelation at different lags to estimate an “effective sample size” of S MCMC samples.

Practical Aspects Summary

- $\text{HMC} = \text{MH} \; \text{w/ Metropolis proposals}$

- There are many different diagnostics.
- It’s often easy to diagnose clear failures.
- It’s basically impossible to diagnose success.
- Some practitioners advocate just running one chain for a very long time.