

Gibbs Sampler Correctness
oooooooooooo

Metropolis-Hastings
oooooooooooooooooooo

COMPSCI 688: Probabilistic Graphical Models

Lecture 15: Gibbs Sampler Correctness

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 22

Gibbs Sampler Correctness
●oooooooooooo

Metropolis-Hastings
oooooooooooooooooooo

Gibbs Sampler Correctness

Gibbs Sampler Correctness
○●oooooooooooo

Metropolis-Hastings
○○●oooooooooooo

Review

- ▶ A Markov chain is **regular** if there is a t such that $(T^t)_{ij} > 0$ for all i, j . It is possible to get from any state i to any state j in exactly t steps. A regular Markov chain has a unique stationary distribution and is guaranteed to converge to it.
- ▶ A Markov chain T satisfies **detailed balance** with respect to π if $\forall x, x'$,

$$\pi(x)T(x'|x) = \pi(x')T(x|x').$$

Detailed balance implies π is a stationary distribution of T .

- ▶ MCMC idea: given π , design a regular Markov chain that satisfies detailed balance with respect to π . Then samples from the Markov chain converge to π . (Specify the transitions $T(x'|x)$ "algorithmically", since the state space is huge.)

3 / 22

Gibbs Sampler Correctness
○○●oooooooooooo

Metropolis-Hastings
oooooooooooooooooooo

Gibbs Sampler Algorithm

Gibbs sampler

- ▶ Initialize $\mathbf{x} = (x_1, \dots, x_D)$
- ▶ $\mathbf{x}^{(0)} \leftarrow \mathbf{x}$
- ▶ For $t = 1$ to S
 - ▶ For $i = 1$ to D
 - ▶ Sample r from $p(X_i | \mathbf{X}_{-i} = \mathbf{x}_{-i})$
 - ▶ $x_i \leftarrow r$
 - ▶ $\mathbf{x}^{(t)} \leftarrow \mathbf{x}$
- ▶ Return $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(S)}$

We need to show

1. Regularity
2. Detailed Balance

4 / 22

Gibbs Sampler Correctness
oooo●oooo

Gibbs Sampling Picture

Metropolis-Hastings
oooooooooooo

5 / 22

Gibbs Sampler Correctness
oooo●oooo

Regularity for Gibbs Sampling

Metropolis-Hastings
oooooooooooo

We need to show it is possible to transition from \mathbf{x} to \mathbf{x}' in exactly t time steps for some t and arbitrary \mathbf{x}, \mathbf{x}' .

Question: Assume the full conditionals satisfy $p(x_i|\mathbf{x}_{-i}) > 0$ always, e.g. because $p(\mathbf{x}) > 0$. Is this condition true for Gibbs sampling? For what t is it true?

Answer: It is true for $t = 1$. Recall that we sweep through all variables in a single time step, sweeps. For each i there is positive probability of moving from x_i to x'_i

6 / 22

Gibbs Sampler Correctness
oooooo●ooo

Detailed Balance for Gibbs Sampling

Metropolis-Hastings
oooooooooooo

5 / 22

Metropolis-Hastings
oooooooooooo

- ▶ The Gibbs sampler re-samples the value of every variable X_i in sequence from the full conditional $p(X_i|\mathbf{X}_{-i} = \mathbf{x}_{-i})$
- ▶ We can view this as simulating a Markov chain with a *sequence* of transition operators, one for every variable:

$$T_i(\mathbf{x}'|\mathbf{x}) = p(x'_i|\mathbf{x}_{-i})\mathbb{I}[\mathbf{x}_{-i} = \mathbf{x}'_{-i}]$$

- ▶ We'll show that *each of these operators* satisfies detailed balance with respect to the full distribution p . The full result then follows from the fact that the composition of operators satisfying detailed balance also satisfies detailed balance.

Gibbs Sampler Correctness
oooooo●ooo

Claim: For all i , the operator T_i satisfies detailed balance with respect to p .

Proof:

$$\begin{aligned} p(\mathbf{x}')T_i(\mathbf{x}|\mathbf{x}') &= p(\mathbf{x}')p(x_i|\mathbf{x}'_{-i})\mathbb{I}[\mathbf{x}_{-i} = \mathbf{x}'_{-i}] \\ &= p(\mathbf{x}'_{-i})p(x'_i|\mathbf{x}'_{-i})p(x_i|\mathbf{x}'_{-i})\mathbb{I}[\mathbf{x}_{-i} = \mathbf{x}'_{-i}] \\ &= p(\mathbf{x}_{-i})p(x'_i|\mathbf{x}_{-i})p(x_i|\mathbf{x}_{-i})\mathbb{I}[\mathbf{x}_{-i} = \mathbf{x}'_{-i}] \\ &= p(\mathbf{x})T_i(\mathbf{x}'|\mathbf{x}). \end{aligned}$$

7 / 22

8 / 22

Gibbs Sampler Correctness
oooooooo●

Gibbs Sampling Picture 2

Metropolis-Hastings
oooooooooooo●

9 / 22

Gibbs Sampler Correctness
oooooooo●

Applications and Limitations of The Gibbs Sampler

- ▶ The Gibbs sampler is great for graphical models because the single variable conditionals only depend on factors involving that variable
- ▶ The Gibbs sampler can work with unnormalized densities, including Markov networks, without needing to compute the partition function. Why?
- ▶ The Gibbs sampler can always be used with discrete distributions, because the conditionals are always available in exact form.
- ▶ For continuous distributions, it may be harder or impossible to sample from the conditional distributions.
- ▶ The Gibbs sampler can be “slow mixing” (take a long time to converge) if correlations between variables are high.

10 / 22

Gibbs Sampler Correctness
oooooooo

Metropolis-Hastings
●oooooooooooo

Metropolis-Hastings

11 / 22

Metropolis-Hastings
○oooooooooooo

The Metropolis-Hastings Sampler

- ▶ The Metropolis Hastings sampler is an extremely general sampler based on the idea of “proposing” a new state with a *proposal distribution* $q(x'|x)$, and then “accepting” or “rejecting”
- ▶ Like the Gibbs sampler, it can be used with continuous or discrete distributions and avoids computation of the partition function.
- ▶ Unlike the Gibbs sampler, it doesn’t require the ability to sample from the conditional distributions.

12 / 22

Gibbs Sampler Correctness
oooooooooooo

Proposal and Acceptance MCMC Illustration

Metropolis-Hastings
oo•oooooooooooo

13 / 22

Gibbs Sampler Correctness
oooooooooooo

How to Choose Acceptance Probability?

The key missing step is how to set the acceptance probability $\alpha(x, x')$. It can depend on p and q . The transition probability density is

$$T(x'|x) = \begin{cases} q(x'|x)\alpha(x, x') & \text{if } x \neq x' \\ ? & \text{if } x = x' \end{cases}$$

Our goal is to satisfy detailed balance, i.e., for all x, x' :

$$\begin{aligned} p(x)T(x'|x) &= p(x')T(x|x') \\ \iff p(x)q(x'|x)\alpha(x, x') &= p(x')q(x|x')\alpha(x', x) \end{aligned}$$

We don't care about $T(x'|x)$ when $x = x'$, because the detailed balance condition is always satisfied for $x = x'$.

Gibbs Sampler Correctness
oooooooooooo

Proposal and Acceptance MCMC

Metropolis-Hastings
ooo•oooooooooooo

```
Initialize x
for t = 1, 2, 3, ..., S :
    Sample x' ~ q(x'|x)
    Look at x and x', and calculate a
    probability α(x, x') of keeping x'.
    Choose r ∈ [0, 1] uniformly
    if r < α(x, x') then
        x ← x'
        x(t) ← x
    return x(1), x(2), ..., x(S)
```

14 / 22

Gibbs Sampler Correctness
oooooooooooo

Metropolis-Hastings
oooo•oooooooooooo

Gibbs Sampler Correctness
oooooooooooo

Metropolis-Hastings
oooo•oooooooooooo

There are different acceptance rules $\alpha(x, x')$ that ensure detailed balance. Metropolis-Hastings is based on the adjusting the larger "flow" to be equal to the smaller one.

$$\underbrace{p(x)q(x'|x)}_{x \rightarrow x' \text{ flow}} \underbrace{\alpha(x, x')}_{\text{adjustment}} = \underbrace{p(x')q(x|x')}_{x' \rightarrow x \text{ flow}} \underbrace{\alpha(x', x)}_{\text{adjustment}}$$

The rule is

- ▶ If $x \rightarrow x'$ flow > $x' \rightarrow x$ flow, set $\alpha(x, x')$ equal to their ratio, and set $\alpha(x', x) = 1$
- ▶ If $p(x)q(x'|x) > p(x')q(x|x')$, set $\alpha(x, x') = \frac{p(x')q(x|x')}{p(x)q(x'|x)}$ and set $\alpha(x', x) = 1$.

15 / 22

16 / 22

By symmetry, the general Metropolis-Hastings acceptance rule is:

$$\alpha(x, x') = \min \left\{ 1, \frac{p(x')q(x|x')}{p(x)q(x'|x)} \right\}$$

Proof of Detailed Balance

Claim: detailed balance holds with $\alpha(x, x') = \min \left\{ 1, \frac{p(x')q(x|x')}{p(x)q(x'|x)} \right\}$

Proof: First, consider when $p(x)q(x'|x) > p(x')q(x|x')$. Then $\alpha(x, x') = \frac{p(x')q(x|x')}{p(x)q(x'|x)}$ and $\alpha(x', x) = 1$, and we have

$$\begin{aligned} p(x)T(x'|x) &= p(x)q(x'|x)\alpha(x, x') \\ &= p(x)q(x'|x) \frac{p(x')q(x|x')}{p(x)q(x'|x)} \\ &= p(x')q(x|x') \\ &= p(x')q(x|x')\alpha(x', x) \\ &= p(x')T(x|x'). \end{aligned}$$

For the second case, we have $p(x')q(x|x') > p(x)q(x'|x)$. The proof is the same as the first case, with x and x' swapped.

Metropolis-Hastings Algorithm

```

Initialize x
for t = 1, 2, 3, ..., S :
    Sample x' ~ q(x'|x)
    Choose r ∈ [0, 1] uniformly
    if r < p(x')Q(x|x') / p(x)Q(x'|x) then
        x ← x'
        x(t) ← x
    return x(1), x(2), ..., x(S)

```

Gibbs Sampler Correctness
oooooooooooo

Gaussian Random Walk Sampler

A simple proposal uses a Gaussian random walk as the proposal distribution:

$$\mathbf{x}' \sim \mathcal{N}(\mathbf{x}' | \mathbf{x}, \sigma^2 I)$$

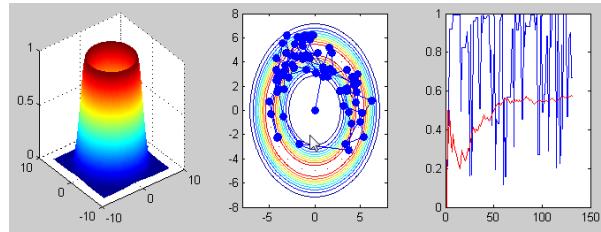
By symmetry, the acceptance probability simplifies

$$\alpha(\mathbf{x}', \mathbf{x}) = \frac{p(\mathbf{x}') \mathcal{N}(\mathbf{x}' | \mathbf{x}, \sigma^2 I)}{p(\mathbf{x}) \mathcal{N}(\mathbf{x}' | \mathbf{x}, \sigma^2 I)} = \frac{p(\mathbf{x}')}{p(\mathbf{x})}$$

Metropolis-Hastings
oooooooooooo●○

Gibbs Sampler Correctness
oooooooooooo

Demo: Gaussian Random Walk Sampler



Metropolis-Hastings
oooooooooooo●●