COMPSCI 688: Probabilistic Graphical Models
Lecture 15: Gibbs and Metropolis-Hastings Samplers

Dan Sheldon
Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

Review

A Markov chain is regular if there is a t such that $(T^t)_{ij} > 0$ for all i, j. It is possible to get from any state i to any state j in exactly t steps. A regular Markov chain has a unique stationary distribution and is guaranteed to converge to it.

A Markov chain T satisfies detailed balance with respect to π if $\forall x, x'$,

$$\pi(x)T(x'|x) = \pi(x')T(x|x').$$

Detailed balance implies π is a stationary distribution of T.

MCMC idea: given π, design a regular Markov chain that satisfies detailed balance with respect to π. Then samples from the Markov chain converge to π. (Specify the transitions $T(x'|x)$ “algorithmically”, since the state space is huge.)

Gibbs Sampler Algorithm

\begin{itemize}
 \item Initialize $x = (x_1, \ldots, x_D)$
 \item $x^{(0)} \leftarrow x$
 \item For $t = 1$ to S
 \begin{itemize}
 \item For $i = 1$ to D
 \begin{itemize}
 \item Sample r from $p(X_i | X_{-i} = x_{-i})$
 \item $x^{(t)}_i \leftarrow r$
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}

We need to show

1. Regularity
2. Detailed Balance
Gibbs Sampler Correctness

Regularity for Gibbs Sampling

We need to show it is possible to transition from \(x \) to \(x' \) in exactly \(t \) time steps for some \(t \) and arbitrary \(x, x' \).

Question: Assume the full conditionals satisfy \(p(x_i|x_{-i}) > 0 \) always, e.g. because \(p(x) > 0 \). Is this condition true for Gibbs sampling? For what \(t \) is it true?

Answer: True for \(t = 1 \). Update \(x_i = x'_i \) in one loop through all variables.

Gibbs Sampler Correctness

Detailed Balance for Gibbs Sampling

- The Gibbs sampler re-samples the value of every variable \(X_i \) in sequence from the full conditional \(p(X_i|X_{-i} = x_{-i}) \).
- We can view this as simulating a Markov chain with a sequence of transition operators, one for every variable:
 \[
 T_i(x'|x) = p(x'_i|x_{-i}) I[x_{-i} = x'_{-i}]
 \]
- We’ll show that each of these operators satisfies detailed balance with respect to the full distribution \(p \). The full result then follows from the fact that the composition of operators satisfying detailed balance also satisfies detailed balance.

Claim: For all \(i \), the operator \(T_i \) satisfies detailed balance with respect to \(p \).

Proof:

\[
\text{RHS} = p(x) T_i(x'|x) = \left[p(x) T_i(x'|x) \right] I[x_i = x'_i]
\]

\[
= p(x') T_i(x'|x') I[x_i = x'_i]
\]

\[
= p(x') T_i(x'|x') I[x_i = x'_i]
\]

\[
= p(x^0) T_i(x'|x^0)
\]

\[
= p(x^0) T_i(x'|x^0)
\]

\[
\text{Want} : p(x) T_i(x'|x) = p(x) T_i(x|x')
\]
Applications and Limitations of The Gibbs Sampler

- The Gibbs sampler is great for graphical models because the single variable conditionals only depend on factors involving that variable.
- The Gibbs sampler can work with unnormalized densities, including Markov networks, without needing to compute the partition function. Why? $p(x_i|x_j) \propto p(x_j|x_i)$.
- The Gibbs sampler can always be used with discrete distributions, because the conditionals are always available in exact form.
- For continuous distributions, it may be harder or impossible to sample from the conditional distributions.
- The Gibbs sampler can be “slow mixing” (take a long time to converge) if correlations between variables are high.