A discrete Markov chain is a set of states with transition probabilities between each pair of states. Example (note: not a graphical model!)

- The probabilistic transitions in the state diagram can also be represented by an equivalent matrix of transition probabilities.
- The “from” states are rows and the “to” states are columns.
To simulate a Markov chain, we draw $x_0 \sim p_0$, then repeatedly sample x_{t+1} given the current state x_t according to the transition probabilities T.

By repeatedly making random transitions from a starting state, we generate a chain of random variables $X_0, X_1, X_2, X_3, \ldots$.

Formally, a Markov chain is specified by:

- A set of states $\{1, 2, \ldots, D\}$
- A starting distribution p_0 with $p_0(i) = P(X_0 = i)$.
- Transition probabilities $T_{ij} = P(X_{t+1} = j | X_t = i)$ for all $i, j \in \{1, 2, \ldots, D\}$

A Markov chain assumes the Markov property:

$$P(X_t = x_t | X_0 = x_0, X_1 = x_1, \ldots, X_{t-1} = x_{t-1}) = P(X_t = x_t | X_{t-1} = x_{t-1})$$

Three important questions:

1. What is the joint probability of a sequence of states of length N?
2. What is the marginal probability distribution over states after a given number of steps t?
3. What happens to the probability distribution over states in the limit as t goes to infinity?

Question: What is the joint probability over the state sequence x_0, \ldots, x_N?

Answer: by the Markov property:

$$P(X_1 = x_1, \ldots, X_N = x_N | X_0 = x_0) = P(X_1 = x_1 | X_0 = x_0) \times P(X_2 = x_2 | X_1 = x_1) \times \cdots \times P(X_N = x_N | X_{N-1} = x_{N-1})$$

Shorter version:

$$p(x_1, x_2, \ldots, x_N | x_0) = \prod_{t=0}^{N} p(x_{t+1} | x_t) = T_{x_0 x_1} \times T_{x_1 x_2} \times \cdots \times T_{x_{N-1} x_N}$$
The t-Step Distribution for Fixed x_0

Question: What is the marginal probability distribution after t steps given that the chain starts at x_0? i.e., what is $p(x_t | x_0)$?

Examples:

- $p(x_1 | x_0) = T_{x_0,x_1}$.
- $p(x_2 | x_0) = \sum_{x_1} p(x_1, x_2 | x_0) = \sum_{x_1} p(x_1 | x_0) T_{x_1,x_2}$.

In general, we have the recursive expression:

$$p(x_t | x_0) = \sum_{x_{t-1}} p(x_{t-1}, x_t | x_0) = \sum_{x_{t-1}} p(x_{t-1} | x_0) T_{x_{t-1},x_t}.$$

t-Step Recurrence as Matrix-Vector Multiplication

The recurrences for the t-step distributions can be expressed using matrix-vector multiplication. Let p_t be the row-vector

$$p_t = [P(X_t = 1), P(X_t = 2), \ldots, P(X_t = D)].$$

Then, since $T_{ij} = P(X_t = j | X_{t-1} = i)$, we can write the above recursive relationship as

$$p_t = p_{t-1} T.$$
t-Step Distribution as Matrix Power

By unrolling the recurrence, the t-step distribution can be obtained as a matrix power

\[p_t = p_{t-1}T = (p_{t-2})T = \cdots = (p_0)T \]

\[p_t = p_0 T^t \]

Thus

\[p_t = p_0 T^t \]

This also implies that \(T^t \) is the t-step transition matrix

\((T^t)_{ij} = P(X_t = j | X_0 = i) \)

Limiting Distribution

What happens as \(t \) becomes large? Does \(p_t \) converge to a some limiting distribution \(\pi \)?

That is, is there some \(\pi \) such that the following is true?

\[\lim_{t \to \infty} p_t = \pi \]

The algorithmic idea of Markov chain Monte Carlo is:

- Suppose \(\pi \) is hard to sample from directly
- If we can design a Markov chain such that \(\lim_{t \to \infty} p_t = \pi \), then we can draw samples by simulating the Markov chain for many time steps
- It’s remarkable that this could be possible, but it can be done for very general target distributions!
- We need to reason about limiting distributions their properties

One-Slide Summary So Far

- Markov chain: defined by initial distribution \(p_0 \in \mathbb{R}^D \), transition matrix \(T \in \mathbb{R}^{D \times D} \)
 \[p_0(i) = P(X_0 = i), \quad T_{ij} = P(X_t = j | X_{t-1} = i) \]
- Defines distribution of chain \(X_0, X_1, X_2, \ldots, X_t, \ldots \) (with Markov assumption)
- Joint probability
 \[p(x_1, x_2, \ldots, x_N | x_0) = p(x_1 | x_0)p(x_2 | x_1) \cdots p(x_N | x_N) \]
- Recurrence for t-step distribution: \(p(x_t) = \sum_{x_{t-1}} p(x_{t-1})T_{x_{t-1}x_t} \)
- Recurrence as matrix-vector multiplication. Let \(p_t \in \mathbb{R}^D \) with \(p_t(i) = P(X_t = i) \). Then
 \[p_t = p_{t-1}T \]
- Next: what happens as \(t \to \infty \)?
Stationary Distribution

Suppose a chain converges exactly, so that \(p_t = p_{t+1} = \pi \). Since \(p_{t+1} = p_t T \), this implies

\[
\pi = \pi T
\]

(stationary distribution)

▶ we call any such \(\pi \) a stationary distribution of the Markov chain
▶ If you start from \(\pi \) and run the chain for any number of steps, the distribution is unchanged.
▶ If \(\pi \) is a limiting distribution, it is a stationary distribution
▶ (Linear algebra connection: \(\pi \) is an eigenvector of \(T \) with eigenvalue 1. Useful for computing stationary distributions.)

Stationary and Limiting Distributions

We reason about limiting distributions via stationary distributions:

▶ If a Markov chain: (1) converges, and (2) has a unique stationary distribution \(\pi \), then it converges to \(\pi \).
▶ When can we guarantee (1) and (2)? What could go wrong?

What Could Go Wrong: Periodicity

A Markov chain can fail to converge by being periodic:

What Could Go Wrong: Reducibility

A Markov chain can fail to have a unique stationary distribution by being reducible:
A Markov chain is **regular** if there exists a t such that, for all i, j pairs,

$$(T^t)_{ij} > 0,$$

- Recall that T^t is the t-step transition probability matrix. This means it is possible to get from any state i to any state j in exactly t steps.
- A regular Markov chain cannot be periodic or reducible (**why?**), and guarantees the desired computational property

Theorem: A regular Markov chain has a unique stationary distribution π and

$$\lim_{t \to \infty} p_t = \pi$$

(We can sample from the unique stationary distribution by simulating the chain.)

Summary: Markov Chain Theory

- **t-step distribution:** Distribution of X_t, obtained by repeated multiplication with transition matrix: $p_t = p_0 T^t$
- **Limiting distribution:** the distribution of $\lim_{t \to \infty} p_t$, if it exists
- **Stationary distribution:** a distribution π such that $\pi T = \pi$. If you start from π and run the chain for any number of steps, the distribution is unchanged. Every limiting distribution is a stationary distribution.
- **Regularity:** if there is a t such that $(T^t)_{ij} > 0$ for all i, j, a Markov chain is regular. It is possible to get from any state i to any state j in exactly t steps.
- **Convergence to stationary distribution:** if T is regular, the chain converges to a unique stationary distribution π for any starting distribution.

High-Level Idea

Suppose we want to sample from p, but can’t do so directly. Instead, we can

- **Design a Markov chain** that has p as a stationary distribution
- **Run it for a long time** to get a sequence of states x_1, x_2, \ldots, x_S
- **Approximate an expectation as**

$$E_{p(X)}[f(X)] \approx \frac{1}{S} \sum_{t=1}^S f(x_t).$$
If we run the chain long enough, the approximation will be good! We can often make the following guarantees:

▶ Asymptotically correct: \(\lim_{S \to \infty} \frac{1}{S} \sum_{t=1}^{S} f(x_t) = E_p[f(X)] \)
▶ Variance decreases like \(1/S \)
▶ The chain converges exponentially quickly to the stationary distribution, so bias decreases quickly. (But in practice, we almost never know the rate!)

Some concerns:

▶ \(X_1, X_2, \ldots \) are not true samples from \(p \), especially early in the chain
▶ \(X_1, X_2, \ldots, X_S \) are not independent
▶ How to create a Markov chain with \(p \) as a stationary distribution?
▶ How to make sure that \(p \) is the only stationary distribution?
▶ How long to run the chain?
▶ How to initialize the chain?
▶ What is the best Markov chain?

MCMC for Multivariate Distributions

▶ To sample from a multivariate distribution \(p(x) \) for \(x \in \mathbb{R}^D \), an MCMC algorithm generates a sequence of states

\[x_1, x_2, x_3, \ldots, x_S \]

▶ Each \(x_t = (x_{t1}, \ldots, x_{tD}) \) is a full vector — with a setting for each variable
▶ The state space of the Markov chain is the full domain \(x \in \text{Val}(X) \). E.g., with \(D \) binary variables, the Markov chain has \(2^D \) states.
▶ Because state spaces are huge, MCMC algorithms specify rules for random transitions between states without materializing the full transition matrix.

Example: Binary MRF

- MRF: Two Binary-Valued Random Variables
- Markov Chain: One Random Variable with Four States
The Burning Question

How to design a Markov chain with a stationary distribution $\pi(x)$?

We will first introduce detailed balance, a sufficient condition for $\pi(x)$ to be a stationary distribution of a Markov chain T.

Then we will design sampling algorithms (i.e., Markov chains) that, by construction
1. Are regular
2. Satisfy detailed balance with respect to $\pi(x)$

These together will imply that the chain converges to π, which is the unique stationary distribution.

A Markov chain T satisfies detailed balance with respect to a distribution π if $\forall x, x'$,

$$\pi(x)T(x'|x) = \pi(x')T(x|x').$$

Detailed Balance Interpretation
Detailed Balance $ \Rightarrow $ Stationary

Theorem: If T satisfies detailed balance with respect to π then π is a stationary distribution of T.

Proof: Let $\pi' = \pi T$ be the result of running the Markov chain for 1 iteration. Then

$$
\pi'(x') = \sum_x \pi(x) T(x'|x) \quad \text{(definition of $\pi' = \pi T$)}
$$

$$
= \sum_x \pi(x') T(x'|x') \quad \text{(detailed balance)}
$$

$$
= \pi(x') \sum_x T(x'|x') \quad \left(\sum_x T(x|x') = 1 \right)
$$

$$
= \pi(x').
$$