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A Quiz Question

Consider an exponential family on x1, x2 œ {0, 1} with T (x1, x2) = I[x1 = 1, x2 = 1].
Suppose you use the data below to estimate maximum likelihood parameters:

x1 x2

1 1
1 0
1 1
0 1

At the maximum likelihood estimate ◊ú, what will be P◊ú(X1 = 1, X2 = 1)?
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Application Example
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Covid Model

Showed Covid modeling example w/ NumPyro. See Jupyter notebook
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Monte Carlo Methods
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Motivation

Computing expectations is important!

Ep(x)[f(X)] =
⁄
p(x)f(x)dx

Example: suppose p(x) is an MRF, then

P (Xu = a,Xv = b) = Ep(x)
#
I[Xu = a,Xv = b]

$

In general, computing expectations is hard, so we need an approximation.
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Monte Carlo methods

In a Monte Carlo method, we approximate an expected value by a sample average. Draw
N samples X1, . . . ,XN ≥ p(x), then

Ep(x)[f(X)] ¥ 1
N

Nÿ

n=1
f(Xn).

Nice properties:
I Unbiased
I Variance decreases like 1

N .
I Measure arbitrary properties by choosing f .

Not nice properties: sampling is algorithmically/computationally hard in general
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Examples
Suppose we have p(x) = 12(x2 ≠ x3), where x œ [0, 1]. Or suppose we have an MRF
with a cycle.

10

p(x)

x
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Question: How do we sample from these distributions?

Answer: We need an algorithm.
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Gibbs Sampling
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Markov Chain Monte Carlo Overview

I Markov chain Monte Carlo (MCMC) methods iteratively construct samples from a
given “target distribution” p(x)

I They require only access to the unnormalized distribution, so can apply easily to
models like MRFs.

I Formally, they work by constructing a Markov chain that has the target distribution
p(x) as its limiting distribution.

I We’ll introduce one MCMC method today, and then start to develop some of the
theory needed to understand the algorithm.

I Importance / applications: statistical physics, econometrics, ecology, epidemiology,
weather modeling, . . .
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The Gibbs Sampler

A simple and powerful algorithm! Assume X = (X1, . . . ,XD).

Initialize all variables arbitrarily, then repeatedly update each variable by sampling from
its conditional distribution given all other variables.

Gibbs sampler
I Initialize x1, . . . , xD
I Repeat

I For i = 1 to D, resample xi ≥ p(Xi |X≠i = x≠i)
I Record x = (x1, . . . , xD) as one sample

One sample is generated after each loop through all of the variables.
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Example: Cycle MRF
Suppose p(x) = rn

i=1 „(xi, xi+1) (mod n)

Then p(xi|x≠i) Ã „(xi≠1, xi)„(xi, xi+1) (factor reduction!)

For a general MRF: p(xi|x≠i) Ã r
c:iœc „c(xi,xc\i)
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The Gibbs Sampler: Properties

I The Gibbs sampler eventually draws samples from the target distribution p(x)
regardless of how it is initialized.

I It can take time to converge to the target distribution p(x). This phase of the
algorithm is referred to as the “burn-in” phase of the algorithm.

I Convergence to the target distribution needs to be tested empirically in most cases
using convergence diagnostics.

I Even after convergence, the samples are not independent, but can still be used in
Monte Carlo averages. The degree of correlation of the samples a�ects the rate of
convergence of Monte Carlo averages.
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