

A Quiz Question
○○○

Application Example
○○

Monte Carlo Methods
○○○○

Gibbs Sampling
○○○○○

HW3: due next Wed → Fri

Quiz 6: Friday

COMPSCI 688: Probabilistic Graphical Models

Lecture 13: Introduction to Markov Chain Monte Carlo

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 15

A Quiz Question
●○○

Application Example
○○

Monte Carlo Methods
○○○○

Gibbs Sampling
○○○○○

A Quiz Question

2 / 15

A Quiz Question
○○○

Application Example
○○

Monte Carlo Methods
○○○○

Gibbs Sampling
○○○○○

$p_\theta(x) \propto \exp(\theta \mathbb{I}[x_1=1, x_2=1] - A(\theta))$

Consider an exponential family on $x_1, x_2 \in \{0, 1\}$ with $T(x_1, x_2) = \mathbb{I}[x_1 = 1, x_2 = 1]$. Suppose you use the data below to estimate maximum likelihood parameters:

x_1	x_2	
1	1	1
1	0	0
1	1	1
0	1	0
		avg: $\frac{1}{2}$

$\text{"data exp"} \leftarrow \text{"model exp"}$

$\hat{E}[T(x)] = E_{p_\theta^*}[T(x)]$

$\hat{E}[\mathbb{I}[x_1=1, x_2=1]] = E_{p_\theta^*}[\mathbb{I}[x_1=1, x_2=1]]$

At the maximum likelihood estimate θ^* , what will be $P_{\theta^*}(X_1 = 1, X_2 = 1)$?

3 / 15

A Quiz Question
○○●

Application Example
○○

Monte Carlo Methods
○○○○

Gibbs Sampling
○○○○○

X r.v.

$$\begin{aligned} \mathbb{E}[\mathbb{I}[x \in A]] &= \int p(x) \cdot \mathbb{I}[x \in A] dx \\ &= \int_A p(x) dx \\ &= \Pr(X \in A) \end{aligned}$$

4 / 15

A Quiz Question
○○○

Application Example
●○

Monte Carlo Methods
○○○○

Gibbs Sampling
○○○○○

5 / 15

Application Example

A Quiz Question
○○○

Application Example
○●

Monte Carlo Methods
○○○○

Gibbs Sampling
○○○○○

6 / 15

Covid Model

Showed Covid modeling example w/ NumPyro. See Jupyter notebook

A Quiz Question
○○○

Application Example
○○

Monte Carlo Methods
●○○○

Gibbs Sampling
○○○○○

7 / 15

Monte Carlo Methods

A Quiz Question
○○○

Application Example
○○

Monte Carlo Methods
○●○○

Gibbs Sampling
○○○○○

8 / 15

Motivation

Computing expectations is important!

$$\mathbb{E}_{p(x)}[f(X)] = \int p(x)f(x)dx$$

Example: suppose $p(\mathbf{x})$ is an MRF, then

$$P(X_u = a, X_v = b) = \mathbb{E}_{p(\mathbf{x})} [\mathbb{I}[X_u = a, X_v = b]]$$

In general, computing expectations is hard, so we need an approximation.

Monte Carlo methods

In a Monte Carlo method, we approximate an expected value by a sample average. Draw N samples $X_1, \dots, X_N \sim p(x)$, then

$$\mathbb{E}_{p(x)}[f(X)] \approx \frac{1}{N} \sum_{n=1}^N f(X_n).$$

Nice properties:

- Unbiased
- Variance decreases like $\frac{1}{N}$. \Leftrightarrow "error" $\sim \frac{1}{\sqrt{N}}$
- Measure arbitrary properties by choosing f .

$$f(X) = X$$

$$f(X) = \mathbb{I}[X \in [a, b]]$$

Not nice properties: **sampling is algorithmically/computationally hard** in general

Given $p(x)$, may be hard to sample $X \sim p(x)$

9 / 15

Examples

- inverse transform sampling
- rejection sampling } low dimensional

Suppose we have $p(x) = 12(x^2 - x^3)$, where $x \in [0, 1]$. Or suppose we have an MRF with a cycle.

Question: How do we sample from these distributions? A: an algorithm

10 / 15

Gibbs Sampling

Markov Chain Monte Carlo Overview

Input: $p(x)$ - density
- pmf
(could be unnormalized)

- Markov chain Monte Carlo (MCMC) methods iteratively construct samples from a given "target distribution" $p(x)$
- They require only access to the *unnormalized* distribution, so can apply easily to models like MRFs.
- Formally, they work by constructing a *Markov chain* that has the target distribution $p(x)$ as its limiting distribution.
- We'll introduce one MCMC method today, and then start to develop some of the theory needed to understand the algorithm.
- Importance / applications: statistical physics, econometrics, ecology, epidemiology, weather modeling, ...

11 / 15

12 / 15

The Gibbs Sampler

Input: $p(\mathbf{x})$
 $\mathbf{x} \in \mathbb{R}^d$

A simple and powerful algorithm! Assume $\mathbf{X} = (X_1, \dots, X_D)$.

Initialize all variables arbitrarily, then repeatedly update each variable by sampling from its conditional distribution given all other variables.

Gibbs sampler

- Initialize x_1, \dots, x_D
- Repeat
 - For $i = 1$ to D , resample $x_i \sim p(X_i | \mathbf{X}_{-i} = \mathbf{x}_{-i})$
 - Record $\mathbf{x} = (x_1, \dots, x_D)$ as one sample

Subproblem usually "easy" because 1-D dist

One sample is generated after each loop through all of the variables.
 approximate

Example: Cycle MRF

Suppose $p(\mathbf{x}) = \prod_{i=1}^n \phi(x_i, x_{i+1}) \pmod{n}$

Update x_2 free fixed
 $p(x_2 | x_1, x_3, x_4, \dots, x_n)$

$$\propto \frac{1}{2} \phi(x_1, x_2) \phi(x_2, x_3) \phi(x_3, x_4) \dots \phi(x_n, x_1)$$

$$\propto \phi(x_1, x_2) \phi(x_2, x_3)$$

Then $p(x_i | \mathbf{x}_{-i}) \propto \phi(x_{i-1}, x_i) \phi(x_i, x_{i+1})$ (factor reduction!)

For a general MRF: $p(x_i | \mathbf{x}_{-i}) \propto \prod_{c: i \in c} \phi_c(x_i, \mathbf{x}_{c \setminus i})$

The Gibbs Sampler: Properties

$$\frac{1}{N} \sum_{n=1}^N f(x^{(n)})$$

- The Gibbs sampler eventually draws samples from the target distribution $p(\mathbf{x})$ regardless of how it is initialized.
- It can take time to converge to the target distribution $p(\mathbf{x})$. This phase of the algorithm is referred to as the "burn-in" phase of the algorithm.
- Convergence to the target distribution needs to be tested empirically in most cases using convergence diagnostics.
- Even after convergence, the samples are not independent, but can still be used in Monte Carlo averages. The degree of correlation of the samples affects the rate of convergence of Monte Carlo averages.