Consider an exponential family on \(x_1, x_2 \in \{0, 1\} \) with \(T(x_1, x_2) = \mathbb{I}[x_1 = 1, x_2 = 1] \).
Suppose you use the data below to estimate maximum likelihood parameters:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

At the maximum likelihood estimate \(\theta^* \), what will be \(P_\theta^*(X_1 = 1, X_2 = 1) ? \)
Message Passing by Autodiff

To be concrete, let’s consider a pairwise MRF:

\[p_{\theta}(x) = \frac{1}{Z(\theta)} \prod_{(i,j) \in E} \exp(\theta_{ij} x_i x_j), \quad \theta = (\theta_{ij})_{(i,j) \in E, a \in \text{Val}(x_i), b \in \text{Val}(x_j)} \]

Fact (from previous lectures): \(\frac{\partial}{\partial \theta_{ij}} \log Z(\theta) = P_{\theta}(X_i = a, X_j = b) \)

Algorithm

1. Compute \(Z(\theta) \) by variable elimination (forward pass)
2. Compute \(\mu = \nabla_{\theta} \log Z(\theta) \) by autodiff
3. Recover marginals: \(P_{\theta}(X_i = a, X_j = b) = \mu_{ij} \)

The total running-time is \(\sim 2x \) the cost of the forward pass (variable elimination), which is the same as message passing. The backward pass of autodiff is equivalent to the distribute phase of message-passing.

- Message-passing for exact inference has two passes: collect/distribute (forward/backward in chains)
- There is a cool trick to implement message-passing using autodiff, so you only need to code the first pass, which is equivalent to using variable elimination to compute the partition function
- It can save a lot of effort worrying gnarly data structures (junction trees)— you only need to code variable elimination.

\[\text{Algorithm: Observations} \]

- Compute \(\mu = \nabla_{\theta} \log Z(\theta) \) by variable elimination and autodiff, then recover marginals as \(P_{\theta}(X_i = a) = \mu_{ia} \). (No junction trees here!)
Chain Example
Let’s use a chain on x_1, \ldots, x_n to see that the backward autodiff pass is equivalent to the backward pass of message-passing.

Suppose the forward messages are computed as

$$m_{i} \leftarrow m_{i+1} (x_{i+1}) = \sum_{x_i} m_{i, i+1} (x_i, x_{i+1}) \cdot m_{i+1} (x_{i+1})$$

If we ran the backward pass of message-passing, we would compute

$$d \log Z \over dm_{n} = 1 \over Z \cdot m_{n}$$

Instead, we can use backpropagation to compute $d \log Z$ for all intermediate quantities v in the forward pass.

Claim: the derivative of $\log Z$ with respect to the forward messages gives the backward messages

$$d \log Z \over dm_{i+1 \rightarrow i} (a) = 1 \over Z \cdot m_{i+1 \rightarrow i} (a)$$

Proof (by induction)

Base case: from the formula for Z, we see

Induction step: assume the claim holds for $j = i+1$. By the formula for $m_{i \rightarrow i+1}$ and the induction hypothesis

Monte Carlo Methods
Motivation

Computing expectations is important!

\[\mathbb{E}_{p(x)}[f(X)] = \int p(x)f(x)dx \]

Example: suppose \(p(x) \) is an MRF, then

\[P(X_u = a, X_v = b) = \mathbb{E}_{p(X)}[I[X_u = a, X_v = b]] \]

In general, computing expectations is hard, so we need an approximation.

Monte Carlo methods

In a Monte Carlo method, we approximate an expected value by a sample average. Draw \(N \) samples \(X_1, \ldots, X_N \sim p(x) \), then

\[\mathbb{E}_{p(x)}[f(X)] \approx \frac{1}{N} \sum_{i=1}^{N} f(X_i). \]

Nice properties:

- Unbiased
- Variance decreases like \(\frac{1}{N} \).
- Measure arbitrary properties by choosing \(f \).

Not nice properties: sampling is algorithmically/computationally hard in general.

Examples

Suppose we have \(p(x) = 12(x^2 - x^3) \), where \(x \in [0, 1] \). Or suppose we have an MRF with a cycle.

Question: How do we sample from these distributions? Answer: we need an alg.
Markov Chain Monte Carlo Overview

- **Markov chain Monte Carlo (MCMC)** methods iteratively construct samples from a given "target distribution" $p(x)$.
- They require only access to the **unnormalized** distribution, so can apply easily to models like MRFs.
- Formally, they work by constructing a Markov chain that has the target distribution $p(x)$ as its limiting distribution.
- We'll introduce one MCMC method today, and then start to develop some of the theory needed to understand the algorithm.
- Importance / applications: statistical physics, econometrics, ecology, epidemiology, weather modeling, ...

The Gibbs Sampler

A simple and powerful algorithm! Assume $X = (X_1, \ldots, X_D)$.

Initialize all variables arbitrarily, then repeatedly update each variable by sampling from its conditional distribution given all other variables.

Gibbs sampler

- **Initialize** x_1, \ldots, x_D
- **Repeat**
 - For $i = 1$ to D, resample $x_i \sim p(x_i | x_j, j \neq i)$
 - Record $x = (x_1, \ldots, x_D)$ as one sample

One sample is generated after each loop through all of the variables.

Example: Cycle MRF

Suppose $p(x) \propto \prod_{i=1}^{n} \phi(x_i, x_{i+1})$ (mod n)

Update x_2

$$p(x_2 | x_1, x_3, \ldots, x_n) = \frac{1}{2} \phi_1(x_1, x_2) \phi_2(x_2, x_3) \cdots \phi_n(x_{n-1}, x_n)$$

$$\propto \phi_1(x_1, x_2) \phi_2(x_2, x_3) \cdots \phi_n(x_{n-1}, x_n)$$

Then $p(x_i | x_{-i}) \propto \phi(x_{i-1}, x_i) \phi(x_i, x_{i+1})$ (factor reduction!)

For a general MRF: $p(x_i | x_{-i}) \propto \prod_{e \in G} \phi_e(x_i, x_{e \setminus i})$

The Gibbs Sampler: Properties

- The Gibbs sampler eventually draws samples from the target distribution $p(x)$ regardless of how it is initialized.
- It can take time to converge to the target distribution $p(x)$. This phase of the algorithm is referred to as the "burn-in" phase of the algorithm.
- Convergence to the target distribution needs to be tested empirically in most cases using convergence diagnostics.
- Even after convergence, the samples are **not independent**, but can still be used in Monte Carlo averages. The degree of correlation of the samples affects the rate of convergence of Monte Carlo averages.

$$\frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}) \propto E[f(x)]$$
Markov Chain Theory

A discrete Markov chain is a set of states with transition probabilities between each pair of states. Example (note: not a graphical model!)

Transition Matrix

- The probabilistic transitions in the state diagram can also be represented by an equivalent matrix of transition probabilities.
- The “from” states are rows and the “to” states are columns.

Markov Chains: Simulation and State Sequences

- To simulate a Markov chain, we draw $x_0 \sim p_0$, then repeatedly sample x_{t+1} given the current state x_t according to the transition probabilities T.
Markov Chain: Formal Definition

By repeatedly making random transitions from a starting state, we generate a chain of random variables $X_0, X_1, X_2, X_3, \ldots$.

Formally, a Markov chain is specified by:

- A set of states $\{1, 2, \ldots, D\}$
- A starting distribution $p_0(i) = P(X_0 = i)$.
- Transition probabilities $T_{ij} = P(X_{t+1} = j | X_t = i)$ for all $i, j \in \{1, 2, \ldots, D\}$

A Markov chain assumes the Markov property:

$$P(X_t = x_t | X_0 = x_0, X_1 = x_1, \ldots, X_{t-1} = x_{t-1}) = P(X_t = x_t | X_{t-1} = x_{t-1})$$

$$X_t \perp X_0, \ldots, X_{t-1} | X_{t-1}$$

Markov Chain Factorization

$$X_j \perp X_{j+1} \ldots X_N$$

Question: What is the joint probability over the state sequence x_0, \ldots, x_N?

Answer: by the Markov property:

$$P(X_1 = x_1, \ldots, X_N = x_N | X_0 = x_0) = P(X_1 = x_1 | X_0 = x_0) \times P(X_2 = x_2 | X_1 = x_1) \times \cdots \times P(X_N = x_N | X_{N-1} = x_{N-1})$$

Shorter version:

$$p(x_1, x_2, \ldots, x_N | x_0) = p(x_1 | x_0) p(x_2 | x_1) \cdots p(x_N | x_{N-1})$$

$$= T_{x_0 x_1} \times T_{x_1 x_2} \times \cdots \times T_{x_{N-1} x_N}$$

The t-Step Distribution for Fixed x_0

Question: What is the marginal probability distribution after t steps given that the chain starts at x_0? i.e., what is $p(x_t | x_0)$?

Examples:

$$p(x_1 | x_0) =$$

$$p(x_2 | x_0) =$$

In general, we have the recursive expression:

$$p(x_t | x_0) =$$
The t-Step Distribution for Random X_0

Question: What is the marginal probability distribution after t steps given that $X_0 \sim p_0$? I.e., what is $p(x_t)$?

By similar logic:

$$p(x_1) = \sum_{x_0} p(x_0, x_1) = \sum_{x_0} p(x_0, x_1) = p(x_1)$$

In general:

$$p(x_t) = \sum_{x_{t-1}} p(x_{t-1}, x_t) = \sum_{x_{t-1}} p(x_{t-1}) T x_{t-1} x_t.$$

t-Step Recurrence as Matrix-Vector Multiplication

The recurrences for the t-step distributions can be expressed using matrix-vector multiplication. Let p_t be the row-vector

$$p_t = [P(X_t = 1), P(X_t = 2), \ldots, P(X_t = D)].$$

Then, since $T_{ij} = P(X_t = j | X_{t-1} = i)$, we can write the above recursive relationship as

$$p_t = p_{t-1} T.$$

t-Step Distribution as Matrix Power

By unrolling the recurrence, the t-step distribution can be obtained as a matrix power

$$p_t = p_{t-1} T$$

$$= (p_{t-2} T) T$$

$$= (p_{t-3} T) T T$$

$$= (p_{t-4} T) T T T$$

$$\vdots$$

$$= p_0 T T \cdots T, \quad t \text{ times}.$$
Thus

\[p_t = p_0 T^t. \]

This also implies that \(T^t \) is the \(t \)-step transition matrix

\[(T^t)_{ij} = P(X_t = j|X_0 = i) = P(X_{s+t} = j|X_s = i)\]