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Exponential Families

An exponential family defines a set of distributions with densities of the form

p◊(x) = h(x) exp(◊€T (x) ≠ A(◊))

I ◊: “(natural) parameters”
I T (x): “su�cient statistics”
I A(◊): “log-partition function”
I h(x): “base measure” (we’ll usually ignore)
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Interpretation (h(x) = 1)

p◊(x) = exp(◊€T (x) ≠ A(◊))

I ◊€T (x) is a real-valued “score” (positive or negative), defined in terms of
“features” T (x) and parameters ◊

I exp(◊€T (x)) is an unnormalized probability
I The log-partition function A(◊) = logZ(◊) ensures normalization

p◊(x) = exp(◊€T (x))
exp(A(◊)) , A(◊) = logZ(◊) = log

⁄
exp(◊€T (x))dx

I Valid parameters are the ones for which the integral for A(◊) is finite.
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Applications and Importance

I We can get many di�erent families of distributions by selecting di�erent “features”
T (x) for a variable x in some sample space:

I Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, . . .

I There is a general theory that covers learning and other properties of all of these
distributions!

I A good trick to seeing that a distribution belongs to an exponential family is to
match its log-density to

log p◊(x) = log h(x) + ◊€T (x) ≠ A(◊)
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Preview: Graphical Models

For some intuition why exponential families could be relevant for graphical models,
observe that the unnormalized probability factors over “simpler” functions, just like
graphical models:

exp(◊€T (x)) = exp
ÿ

i

◊iTi(x) =
Ÿ

i

exp(◊iTi(x))

(Think: what could T (x) look like to recover a graphical model?)
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Example: Bernoulli Distribution

The Bernoulli distribution with parameter µ œ [0, 1] has density (pmf)

pµ(x) =
I
µ x = 1
1 ≠ µ x = 0

One way to write the log-density is

log pµ(x) = I[x = 1] logµ+ I[x = 0] log(1 ≠ µ)

To match this to an exponential family

log p◊(x) = log h(x) + ◊€T (x) ≠ A(◊),
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This works (and is an interesting exercise), but uses two parameters where one would
su�ce. Instead. . .
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Example: Bernoulli, Single Parameter
To write the Bernoulli as a single-parameter exponential family, rewrite the log-density as

log pµ(x) = log(1 ≠ µ) + x log µ

1 ≠ µ
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Review: Bernoulli, Single Parameter

I h(x) = 1
I T (x) = I[x = 1] = x
I ◊ = log µ

1≠µ

I exp(◊€x) =
I
e◊ x = 1
1 x = 0

I A(◊) = log(1 + e◊)
I It’s easy to check that log(1 + e◊) = ≠ log(1 ≠ µ) when ◊ = log µ

1≠µ
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Example: Normal Distribution

pµ,‡2(x) = 1Ô
2fi‡2

exp
! ≠ 1

2‡2 (x ≠ µ)2
"
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Review: Normal Distribution

pµ,‡2(x) = 1Ô
2fi‡2

exp
! ≠ 1

2‡2 (x ≠ µ)2
"

= 1Ô
2fi‡2

exp
! ≠ 1

2‡2 (x2 ≠ 2xµ+ µ2)
"

log pµ,‡2(x) = x2 · ≠1
2‡2 + x · µ

‡2 ≠ µ2

2‡2 ≠ log(
Ô

2fi‡2)

I h(x) = 1
I T (x) = (x2, x)
I ◊ = ( ≠1

2‡2 ,
µ
‡2 )

I A(◊) = log
s

exp(x2◊1 + x◊2)dx = . . . = µ2

2‡2 + log(
Ô

2fi‡2)

Note: we need ◊1 < 0; why?
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Properties of Exponential Families
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Properties of Log-Partition Function

The log-partition function A(◊) has two critical properties that relate its derivatives to
moments (expectations) of the su�cient statistics T (X).
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First Derivative of A(◊) © First Moment of T (X)

ˆ

ˆ◊
A(◊) = Ep◊

[T (X)]

Proof: (assume h(x) © 1)

ˆ

ˆ◊
log

ÿ

x

exp(◊€T (x)) = 1q
x exp(◊€T (x))

ˆ

ˆ◊

ÿ

x

exp(◊€T (x))

= 1
Z(◊)

ÿ

x

exp(◊€T (x)) ˆ

ˆ◊
◊€T (x)

=
ÿ

x

exp(◊€T (x))
Z(◊) · T (x)

=
ÿ

x

p◊(x) · T (x)

= Ep◊
[T (X)]
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Second Derivative of A(◊) © Second Moment of T (X)

ˆ2

ˆ◊ ˆ◊€A(◊) = Varp◊
[T (X)]

Notation: ˆ2

ˆ◊ ˆ◊€A(◊) is the Hessian matrix of A(◊). The (i, j)th entry is ˆ2

ˆ◊i ˆ◊j
A(◊).

Proof: algebra

Important consequence: A(◊) is convex
I Variance is PSD =∆ Hessian is PSD =∆ A convex
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17 / 27

Exponential Families Properties of Exponential Families Learning in Exponential Families

Log-Likelihood
The average log-likelihood in an exponential family is

L(◊) = 1
N

Nÿ

n=1
log p◊(x(n))

= 1
N

Nÿ

n=1

1
◊€T (x(n))

2
≠ A(◊) + 1

N

Nÿ

n=1
log h(x(n))

= ◊€
1 1
N

Nÿ

n=1
T (x(n))

¸ ˚˙ ˝
"su�cient statistics"

2
≠ A(◊) + const

I All we need to know about the data for estimation is the average value of T (x(n)) ,
i.e., the “su�cient statistics”
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Moment-Matching
At the maximum-likelihood parameters, ˆ

ˆ◊L(◊) = 0

ˆ

ˆ◊
L(◊) = ˆ

ˆ◊

3
◊€

1 1
N

Nÿ

n=1
T (x(n))

2
≠ A(◊)

4

= 1
N

Nÿ

n=1
T (x(n)) ≠ Ep◊

[T (X)] = 0

=∆ at maximum-likelihood parameters, we have the moment-matching conditions:

Ep◊
[T (X)] = 1

N

Nÿ

n=1
T (x(n)) =: Ê[T (X]

I “model expectation equals data expectation”
I sometimes we can easily solve for the maximum-likelihood parameters; other times
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Concavity of Log-Likelihood

L(◊) = ◊€
1 1
N

Nÿ

n=1
T (x(n))

2

¸ ˚˙ ˝
linear in ◊

≠ A(◊)
¸ ˚˙ ˝
convex

+const

The log-likelihood is concave

=∆ every zero-gradient point is a global optimum

=∆ the moment-matching conditions are necessary and su�cient for optimality
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Summary So Far

I p◊(x) = h(x) exp(◊€T (x) ≠ A(◊))
I Bernoulli, normal, Poisson, MRF, . . .
I First property: ˆ

ˆ◊A(◊) = Ep◊
[T (X)]

I Second property: ˆ2

ˆ◊ ˆ◊€A(◊) = Varp◊
[T (X)]

I Likelihood: L(◊) = ◊€T ≠ A(◊) + const where T = 1
N

qN
n=1 T (x(n)) are the

average su�cient statistics over the data
I L(◊) is concave
I Moment-matching conditions are necessary and su�cient for parameters ◊ to

maximize the likelihood: Ep◊
[T (X)] = T = Ê[T (X)]

21 / 27

Exponential Families Properties of Exponential Families Learning in Exponential Families

Pairwise MRFs as an Exponential Family
Consider the chain model on x1, x2, x3, x4 œ {0, 1}:

p(x) = „1,2(x1, x2)„2,3(x2, x3)„3,4(x3, x4)
Z
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Pairwise MRFs as an Exponential Family: Review

The log-density is

log p(x) = log „1,2(x1, x2) + log „2,3(x2, x3) + log „3,4(x3, x4) ≠ logZ

= log „1,2(0, 0) · I[x1 = 0, x2 = 0] + log „1,2(0, 1) · I[x1 = 0, x2 = 1]
+ log „1,2(1, 0) · I[x1 = 1, x2 = 0] + log „1,2(1, 1) · I[x1 = 1, x2 = 1]

+ log „2,3(0, 0) · I[x2 = 0, x3 = 0] + . . .

+ log „3,4(0, 0) · I[x3 = 0, x4 = 0] + . . .

≠ logZ
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This is an exponential family with

T (x) =
1
I[x1 = 0, x2 = 0], . . . , I[x1 = 1, x2 = 1],

I[x2 = 0, x3 = 0], . . . , I[x2 = 1, x3 = 1],

I[x3 = 0, x4 = 0], . . . , I[x3 = 1, x4 = 1]
2

T (x) =
1
I[xi = a, xj = b]

2
(i,j)œE, aœVal(Xi), bœVal(Xj)

◊ =
!
◊abij

"
(i,j)œE, aœVal(Xi), bœVal(Xj)

log p◊(x) = ◊€x ≠ A(◊) =
3 ÿ

(i,j)œE

ÿ

aœVal(Xi)

ÿ

bœVal(Xj)
◊abij · I[xi = a, xj = b]

4
≠ A(◊)

The final three lines are accurate for general pairwise MRFs.
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Moment-Matching for Pairwise-MRFs

If we apply the moment-matching conditions to pairwise MRFs, we recover our previous
result. At the maximum-likelihood parameters:

Ep◊
[T (X)] = Ê[T (X)],

Ep◊

#
I[Xi = a,Xj = b]

$
= Ê

#
I[Xi = a,Xj = b]

$ ’(i, j) œ E, a, b,

P◊(Xi = a,Xj = b) = #(Xi = a,Xj = b)
N

’(i, j) œ E, a, b,

(we still have to solve for ◊ numerically; recall that the RHS minus the LHS is the
gradient of L(◊))
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Moment-Matching for Gaussians
For a normal distribution, we had T (x) = (x2, x)

log pµ,‡2(x) = x2 · ≠1
2‡2 + x · µ

‡2 ≠ µ2

2‡2 ≠ log(
Ô

2fi‡2)

We know Ep◊
[X] = µ and Ep◊

[X2] = µ2 + ‡2.

Moment-matching says the max-likelihood parameters satisfy:

Ep◊
[X] = Ê[X] =∆ µ = Ê[X]

Ep◊
[X2] = Ê[X2] =∆ µ2 + ‡2 = Ê[X2]

=∆ ‡2 = Ê[X2] ≠ µ2

We can easily solve for the maximum-likelihood µ, ‡2.
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