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COMPSCI 688: Probabilistic Graphical Models
Lecture 12: Learning in Exponential Families
Exponential Families
Dan Sheldon
Manning College of Information and Computer Sciences
University of Massachusetts Amherst
Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)
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Exponential Families Interpretation (h(z) =1) )= (%)

6= (6:/97:) - 817< + 9:.%\

v
po(x) = exp(@TT(x) —(A(B) R, IR

An exponential family defines a set of distributions with densities of the form
aanorim, proly

07T (x) is a real-valued “score" (positive orPneg'ative), defined in terms of
po(z) = h(z) exp@ T(z) — WD) features” T'(x) and parameters 0

v

B (natural) rerer éfQJ » exp(fTT(x)) is an unnormalized probability
> 0: “(natural) parameters
> T(z): “sufficiznt statistics” € @ > The log-partition function A(6) = log Z(#) ensures normalization
» [A(): “log-partition function” exp(8TT(z))
> h(z): “base measure” (we'll usually ignore) po(z) = —————=,  A(0) =log Z(6) = log /exp 0T (x))dx
exp(A(®)) )
‘/\(‘K)EI P‘d‘o'
» Valid parameters are the ones for which the integral for A(f) is finite.
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Applications and Importance

» We can get many different families of distributions by selecting different “features”
T'(z) for a variable z in some sample space:

» Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, ...

» There is a general theory that covers learning and other properties of all of these
distributions!

» A good trick to seeing that a distribution belongs to an exponential family is to

match its log-density to
po(w) = h(x) exp(8 T(x) —"A(6))

log pg(x) = log h(z) + 0T (z) — A(6)
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Preview: Graphical Models

For some intuition why exponential families could be relevant for graphical models,
observe that the unnormalized probability factors over “simpler” functions, just like
graphical models:

3

eXp(QTT(;L')) = eXpZ 0:T;(z) = Hexp(ﬁiﬂ(w))

(Think: what could T'(z) look like to recover a graphical model?)
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Example: Bernoulli Distribution X = T = (Tl | Ib‘“’f’l)
9 = (9( J Q‘)_) éﬂ:ll
The Bernoulli distribution with parameter 1 € [0, 1] has density (pmf)
10 r=1
u\T) =
pu(z) {1 =0
One way to write the log-density is o 0 This works (and is an interesting exercise), but uses two parameters where one would
' 3 suffice. Instead. ..
log py.(z) = I[z = 1] log p + Iz = 0] log(1 — )
To match this to an exponential family
log pg(z) = log h(z) + 0T T(z) — A(H),
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Example: Bernoulli, Single Parameter logpu(z) =Ifz = 1}log u +Ifw = 0] log(1 — p)

To write the Bernoulli as a single-parameter exponential family, rewrite the log-density as
= log (I-wy ¢ 1T%=1] Joya - [og (l-any)

+ zlog

log py.(z) =

~A® W e

7(%):'7(
P cR

GXP(Q.X)s % eg K=

| X=3

cepresent [07%.,0\ ”(’/7 odds”

Al)= Ioc)(l £e®) |= ... = 1003(""*) P e "")’%"\
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Review: Bernoulli, Single Parameter

h(z) =1
> T(x)=Iz=1=x
> 0 =log ﬁ
1
> exp(Tz) = { ’ 0
> A(6) = log(1 +¢%)
> It's easy to check that log(1 + €?) = —log(1 — ) when 6 = log 1{7
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Example: Normal Distribution

1
WGXP ( - #(w - M)2)

< e oxp (ol @)

Puo2(®) =

[0 1(5<> = 'L, — U g UM?
O) P-M,c K 26
T B T By

-Alo)
T(¥\=(7<’J*) M

9 = (61,9;)&[«Rl (QPI&(WI' (— g‘c-:’ ?}
Ale)= ’dr:) gexe(x‘el %62 dx -

N!eCQ @(LO

2
= -%AE, + lOC) Y 27¢R
P I
F @0 5%, S)

i
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Review: Normal Distribution

1

2mo?

Ppuo2(z) = exp (— 5oz (z — p)?)

-1 pooopt

2 /
logp,, o2 (z) = x° - 22 TE oE T gpr T log(V2ma?)
> h(z)=1

- T(2) = (22, 2)

> 0= (2;0157 L

> A(0) = log [ exp(x20; + xbs)dr = ... = é% + log(v/2mo?)

Note: we need 6, < 0; why?
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Properties of Log-Partition Function

The log-partition function A(6) has two critical properties that relate its derivatives to
moments (expectations) of the sufficient statistics 7'(X).

derwattyes of A’(G) & ‘EEFMNHC"* of T(x)]
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. - _(Mean - Uagian @
First Derivative of A(f) = First Moment of T'(X) Second Derivative of A(#) = Second l:'/lomenjc of T'(X)
% £92(0) K~ Po (A= (T TID) P Lot A 4
- R =
S A) = B, [T(X) compete T 0= (6,0 ,0) , / \/ RR
00 dake pean Hessiqn Conuex
2
Proof: (assume h(z) =1) ‘ 5 aeawA(e) = Var, [T(X)]
2 U e = = 5e 20T
%6 loC3 ?exe(g 7(*)) = ?@#()(977&)) 50 Z KP(O /(x))

f

f

L5 28T 6T

exe(@"'T(sO\
2: Z(8)

2 el “Ttx)
=
]Ees[T( <) |

TG
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Notation: %A(G) is the Hessian matrix of A(#). The (¢, j)th entry is ﬁfl(e).
Proof: algebra
Important consequence: A(6) is convex

» Variance is PSD = Hessian is PSD =— A convex
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Log-Likelihood & K log pe(rd= [o5 ) + o 7t<) — Al®)

The average log-likelihood in an exponential family is

1(o)= ’[ri i log po (%)

— ( i'r( f"'))

(qd‘j) SO\‘PIC(C (ent
stefisheg

LS (G706 - AR) ¢ feg W)

— Al §) + const.

> All we need to know about the data for estimation is the average value of T'(z(™) ,
i.e., the “sufficient statistics”

Exponential Families

00000000000
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At the maximum-likelihood parameters, % L(O)=0

O= ESL(Q) = 56(9 (piT(KM)> /5\[9 + [onq—>

5216 - ,[109)]

—> at maximum-likelihood parameters, we have the moment-matching conditions

Epy [T(X)] = ~

N
=N 7™y = RT(X
N; (') (T(X]

» “model expectation equals data expectation”

» sometimes we can easily solve for the maximum-likelihood parameters; other times
numerical routines are needed
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3 7

= €T<% i T(m("))) — A(6) +const
n=1

linear in 6 convex

The log-likelihood is concave
= every zero-gradient point is a global optimum

= the moment-matching conditions are necessary and sufficient for optimality
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Summary So Far

v

po(x) = h(z) exp(6TT(x) — A(6))

» Bernoulli, normal, Poisson, MRF, ...

> First property: %A(G) =E,, [T(X)]

» Second property: %A(Q) = Vary, [T(X)]

» Likelihood: £(0) = 60"T — A(f) + const where T = + S-27 T(2(™)) are the
average sufficient statistics over the data

> L(0) is concave

» Moment-matching conditions are necessary and sufficient for parameters 6 to
maximize the likelihood: E,, [T'(X)] =T = E[T(X)]

Learning in Exponential Families
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Pairwise MRFs as an Exponential Family

Consider the chain model on 1, za, x3, 24 € {0,1}:

p(x) = ¢1,2($17$2)¢2,3(T;7$3)¢3,4(r37$4)
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Pairwise MRFs as an Exponential Family: Review

The log-density is
log p(x) = log ¢1,2(x1, x2) + log ¢o,3(x2, x3) + log ¢35 4(x3, 24) — log Z

=log ¢12(0,0) - I[z1 = 0,22 = 0] +log $12(0,1) - I[x; = 0,29 = 1]
+log ¢12(1,0) - T[zy = 1,22 = 0] +log ¢12(1,1) - Izy = 1,22 = 1]
+log ¢2,3(0,0) - I[xo = 0,23 = 0] + ...
+log ¢34(0,0) - I[z3 = 0,24 = 0] + ...
—logZ
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This is an exponential family with
T(x) = (H[J;I = 0,20 = 0], Iz = 1,25 = 1,
H[:I,'z = 0,1’3 = 0],

H[I3:07.’E4:O], cee

]I[.Z‘Q = 1,323 = 1],

I[zg = 1,24 = 1])

T(x) = (Ife; = a,z; =
(x) ([ﬂfz @ bD(i,j)eE,aeVal(Xi),beVal(Xj)

_ ab
0= (aij )(i,j)eE, a€Val(X;),beVal(X;)

logpg(x) = 0" x — A(6) = ( > >0l =a,x; = b]) — A(6)

(4,§)€E a€Val(X;) beVal(X;)

The final three lines are accurate for general pairwise MRFs.
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Moment-Matching for Pairwise-MRFs

If we apply the moment-matching conditions to pairwise MRFs, we recover our previous
result. At the maximum-likelihood parameters:

Ep, [T(X)] = E[T (X)),
Ep, [11X; = a, X; =b]] =R[I[X; = a,X; =b]] V(i,j) € E,a,b,

#Xi=a, X; =)

N ¥(i.j) € E,a.b,

(we still have to solve for  numerically; recall that the RHS minus the LHS is the
gradient of £(0))
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Moment-Matching for Gaussians

For a normal distribution, we had T'(z) = (22, z)

p (1

2
e P oe(Voro?
552 +z p iy log(Vv2ma?)

log .42 (x) ==

We know Ep,[X] = u and Ep,[X?] = 12 + 2. 6= E[K]- W™

Moment-matching says the max-likelihood parameters satisfy:

By [X] =E[X] — = E[X]
B, X2 = BIX? = 1 +0? = BX?)
= 0% = I@[X2] —

We can easily solve for the maximum-likelihood 1, o.
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