

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
ooooooo

Exponential Families
ooooooooooooooo

HW 2: due tomorrow
No quiz → next week (exponential families)

COMPSCI 688: Probabilistic Graphical Models

Lecture 11: Continuous Distributions and Exponential Families

Dan Sheldon

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Partially based on materials by Benjamin M. Marlin (marlin@cs.umass.edu) and Justin Domke (domke@cs.umass.edu)

1 / 38

Big Picture
●ooo

Continuous Distributions
oooooooooooo

Expectations
ooooooo

Exponential Families
ooooooooooooooo

Big Picture

2 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
ooooooo

Exponential Families
ooooooooooooooo

The Big Picture

Summary of course so far

- ▶ compact **representations** of high-dimensional distributions
 - ▶ Bayes nets, MRFs, CRFs
 - ▶ conditional independence, graph structure, factorization
- ▶ **inference**
 - ▶ conditioning, marginalization
 - ▶ variable elimination, message passing
 - ↳ *trees only, efficient!*
 - ↳ *extensions: junction trees, loopy belief propagation*
- ▶ **learning**
 - ▶ Bayes nets: counting
 - ▶ MRFs/CRFs: numerical optimization of log-likelihood, inference is key subroutine

$\frac{\partial}{\partial \theta} Z(\theta) = \text{marginals}$

3 / 38

Big Picture
ooo

Continuous Distributions
oooooooooooo

Expectations
ooooooo

Exponential Families
ooooooooooooooo

What's left?

- ▶ Inference (and therefore learning) not tractable for many models
 - approximate inference
 - ↳ *MC* *variational*
- ▶ Other types of probability distributions (**continuous**, parametric, . . .)
 - ↳ *statistical models, ML models*

4 / 38

Big Picture ○○○○	Continuous Distributions ●○○○○○○○○○○	Expectations ○○○○○○○	Exponential Families ○○○○○○○○○○○○○○○○○○
---------------------	---	-------------------------	--

How to Think About a Density

A density is "like" a probability. For $X \in \mathbb{R}$ with density $p(x)$

$$P(X \in [x, x + \epsilon]) = \int_x^{x+\epsilon} p(x) dx \approx \epsilon p(x)$$

$$p(x) = \lim_{\epsilon \rightarrow 0} \frac{1}{\epsilon} P(X \in [x, x + \epsilon])$$

The density can be thought of as the probability of X landing in a tiny interval around x (divided the width of the interval).

The standard rules of probability (conditioning, marginalization) usually translate to densities in a straightforward way.

Example: Multivariate Normal Distribution

A multivariate normal (or Gaussian) random variable $\mathbf{X} \in \mathbb{R}^n$ has density

$$p(\mathbf{x}; \mu, \Sigma) = \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

▶ $\mu \in \mathbb{R}^n$: mean, mode

▶ $\Sigma \in \mathbb{R}^{n \times n}$: covariance matrix, defines scale and orientation

▶ Must be positive definite (PSD): $\mathbf{x}^T \Sigma \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$. (Equivalently, all eigenvalues positive). **PD**

Visualization

Sequence of examples due to Andrew Ng / Stanford

Multivariate Gaussian

$$p(\mathbf{x}; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right).$$

Examples: Symmetric

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Sigma = 0.6I;$$

$$\Sigma = 2I.$$

$$\Sigma = I$$

13 / 38

Examples: Non-Symmetric

$$\text{Cov}(X_1, X_2) = 0.5$$

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}.$$

$$\Sigma_{ij} = \text{Cov}(X_i, X_j)$$

14 / 38

Contours

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}.$$

15 / 38

Mean

- Change mu: move mean of density around

$$\mu = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \quad \mu = \begin{bmatrix} -0.5 \\ 0 \end{bmatrix}; \quad \mu = \begin{bmatrix} -1 \\ -1.5 \end{bmatrix}.$$

16 / 38

Marginal and Conditional Densities

- ▶ Definitions from pmfs usually translate to densities
- ▶ Suppose $p(\mathbf{x}, \mathbf{y})$ is a density for (\mathbf{X}, \mathbf{Y}) . The marginal and conditional densities are

$$p(\mathbf{y}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{x}$$

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{y})} = \frac{p(\mathbf{x}, \mathbf{y})}{\int p(\mathbf{x}, \mathbf{y}) d\mathbf{x}}$$

17 / 38

Expectations

Expectations

Given a random variable \mathbf{X} with pmf or density $p(\mathbf{x})$ and a function $f(\mathbf{X})$, the expected value $\mathbb{E}[f(\mathbf{X})]$ is

$$\mathbb{E}[f(\mathbf{X})] = \sum_{\mathbf{x}} p(\mathbf{x}) f(\mathbf{x}) \quad \text{discrete}$$

$$\mathbb{E}[f(\mathbf{X})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x} \quad \text{continuous}$$

The sum/integral is over all possible values of \mathbf{x} .

We often write this as $\boxed{\mathbb{E}_{p(\mathbf{x})}[f(\mathbf{X})]}$ to make the distribution clear.

19 / 38

Expectations

Mean and Variance

$$f(\mathbf{x}) = \mathbf{x}$$

The moments of a distribution are expectations of polynomials, e.g. $f(x) = (x - c)^d$ for scalars.

The mean is

$$\mu = \mathbb{E}[\mathbf{X}] = \int p(\mathbf{x}) \mathbf{x} d\mathbf{x}$$

Let $\mu = \mathbb{E}[\mathbf{X}]$. The variance is

$$\begin{aligned} \text{Var}(X) &= \mathbb{E}[(X - \mu)^2] \\ \text{Var}(\mathbf{X}) &= \mathbb{E}[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T] \\ &\quad \text{covariance matrix} \\ \boxed{X - \mu} &= \boxed{z} \\ &\quad \text{---} \\ &= \boxed{\begin{matrix} z_1 z_1 & \cdots & z_1 z_n \\ z_2 z_1 & \cdots & z_2 z_n \\ \vdots & \ddots & \vdots \\ z_n z_1 & \cdots & z_n z_n \end{matrix}} = \sum \end{aligned}$$

20 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
oooo●ooo

Exponential Families
oooooooooooo

Marginal and conditional means use marginal and conditional densities:

$$\mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\mathbf{Y}] = \mathbb{E}_{p(\mathbf{y})}[\mathbf{Y}] \quad \text{marginal}$$

$$\mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[\mathbf{X} | \mathbf{Y} = \mathbf{y}] = \mathbb{E}_{p(\mathbf{x} | \mathbf{y})}[\mathbf{X}] \quad \text{conditional}$$

In the vector case, $\text{Var}(\mathbf{X})$ is the *covariance matrix*.

21 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
oooo●ooo

Exponential Families
oooooooooooo

Linearity of Expectation

For $X, a, b \in \mathbb{R}$:

$$\mathbb{E}[aX + b] = a \mathbb{E}[X] + b$$

For vectors \mathbf{X} and b and matrix A

$$\mathbb{E}[A\mathbf{X} + b] = A \mathbb{E}[\mathbf{X}] + b$$

Proof: write out expectation, use linearity of sum/integral

22 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
oooo●ooo

Exponential Families
oooooooooooo

Variance is Positive (Semi-Definite)

A covariance matrix $\text{Var}(\mathbf{X})$ is always positive semi-definite.

Proof (scalar): $\mathbb{E}[(X - \mu)^2] \geq 0$ because the integrand is non-negative

Proof (vector): let \mathbf{z} be any vector and $\mu = \mathbb{E}[\mathbf{X}]$. Then

$$\begin{aligned} \mathbf{z}^T \text{Var}(\mathbf{X}) \mathbf{z} &= \mathbf{z}^T \mathbb{E}[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T] \mathbf{z} \\ &= \mathbb{E}[\mathbf{z}^T (\mathbf{X} - \mu)(\mathbf{X} - \mu)^T \mathbf{z}] \quad v = (\mathbf{X} - \mu)^T \mathbf{z} \\ &= \mathbb{E}[v^T v] \\ &= \mathbb{E}[||v||^2] \\ &\geq 0 \end{aligned}$$

23 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
oooo●ooo

Exponential Families
oooooooooooo

Significance

Expectations are important, but can be hard to compute!

Example: suppose $p(\mathbf{x})$ is an MRF. A marginal is an expectation:

$$P(X_u = a, X_v = b) = \mathbb{E}_{p(\mathbf{x})} [\mathbb{I}[X_u = a, X_v = b]]$$

Inference = computing expectations = hard in general

We will come back to approximating expectations and approximate inference

24 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
ooooooo

Exponential Families
•oooooooooooo

Exponential Families

25 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
ooooooo

Exponential Families
oo•oooooooooooo

Exponential Families

An exponential family defines a set of distributions with densities of the form

$$p_\theta(x) = h(x) \exp(\theta^\top T(x) - A(\theta))$$

- ▶ θ : “(natural) parameters”
- ▶ $T(x)$: “sufficient statistics”
- ▶ $A(\theta)$: “log-partition function”
- ▶ $h(x)$: “base measure” (we’ll usually ignore)

26 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
ooooooo

Exponential Families
oo•oooooooooooo

Interpretation ($h(x) = 1$)

$$p_\theta(x) = \exp(\theta^\top T(x) - A(\theta))$$

- ▶ $\theta^\top T(x)$ is a real-valued “score” (positive or negative), defined in terms of “features” $T(x)$ and parameters θ
- ▶ $\exp(\theta^\top T(x))$ is an unnormalized probability
- ▶ The log-partition $A(\theta) = \log Z(\theta)$ function ensures normalization

$$p_\theta(x) = \frac{\exp(\theta^\top T(x))}{\exp(A(\theta))}, \quad A(\theta) = \log Z(\theta) = \log \int \exp(\theta^\top T(x)) dx$$

- ▶ Valid parameters are the ones for which $A(\theta)$ is finite.

27 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
ooooooo

Exponential Families
ooo•oooooooooooo

Applications and Importance

- ▶ We can get *many* different families of distributions by selecting different “features” $T(x)$ for a variable x in some sample space:
 - ▶ Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, ...
- ▶ There is a general theory that covers learning and other properties of all of these distributions!
- ▶ A good trick to seeing that a distribution belongs to an exponential family is to match its log-density to

$$\log p_\theta(x) = \log h(x) + \theta^\top T(x) - A(\theta)$$

28 / 38

Big Picture
ooooContinuous Distributions
ooooooooooooExpectations
oooooooExponential Families
oooo●oooooooooooo

Preview: Graphical Models

For some intuition why exponential families could be relevant for graphical models, observe that the unnormalized probability factors over “simpler” functions, just like graphical models:

$$\exp(\theta^\top T(x)) = \exp \sum_i \theta_i T_i(x) = \prod_i \exp(\theta_i T_i(x))$$

(Think: what could $T(x)$ look like to recover a graphical model?)

Big Picture
ooooContinuous Distributions
ooooooooooooExpectations
oooooooExponential Families
oooo●oooooooooooo

Example: Bernoulli Distribution

The Bernoulli distribution with parameter $\mu \in [0, 1]$ has density (pmf)

$$p_\mu(x) = \begin{cases} \mu & x = 1 \\ 1 - \mu & x = 0 \end{cases}$$

One way to write the log-density is

$$\log p_\mu(x) = \mathbb{I}[x = 1] \log \mu + \mathbb{I}[x = 0] \log(1 - \mu)$$

To match this to an exponential family

$$\log p_\theta(x) = \log h(x) + \theta^\top T(x) - A(\theta),$$

29 / 38

30 / 38

Big Picture
ooooContinuous Distributions
ooooooooooooExpectations
oooooooExponential Families
oooo●ooooooooooooBig Picture
ooooContinuous Distributions
ooooooooooooExpectations
oooooooExponential Families
oooo●oooooooooooo

Review: Bernoulli Distribution

To match this to an exponential family $\log p_\theta(x) = \log h(x) + \theta^\top T(x) - A(\theta)$, take

- ▶ $h(x) = 1$
- ▶ $T(x) = (\mathbb{I}[x = 1], \mathbb{I}[x = 0])$
- ▶ $\theta = (\log \mu, \log(1 - \mu))$
- ▶ $\exp(\theta^\top T(x)) = \begin{cases} e^{\theta_1} & x = 1 \\ e^{\theta_2} & x = 0 \end{cases}$
- ▶ $A(\theta) = \log(e^{\theta_1} + e^{\theta_2})$
- ▶ It's easy to check that $A(\theta) = 0$ when $\theta = (\log \mu, \log(1 - \mu))$

31 / 38

32 / 38

Big Picture
ooooContinuous Distributions
ooooooooooooExpectations
oooooooExponential Families
oooooooooooo●oooo

Example: Bernoulli, Single Parameter

We can also write the Bernoulli as a single-parameter exponential family. Rewrite the log-density as

$$\log p_\mu(x) = \log(1 - \mu) + x \log \frac{\mu}{1 - \mu}$$

33 / 38

Big Picture
ooooContinuous Distributions
ooooooooooooExpectations
oooooooExponential Families
oooooooooooo●oooo

Example: Normal Distribution

$$p_{\mu, \sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$$

35 / 38

Big Picture
ooooContinuous Distributions
ooooooooooooExpectations
oooooooExponential Families
oooooooooooo●oooo

Review: Bernoulli, Single Parameter

- ▶ $h(x) = 1$
- ▶ $T(x) = \mathbb{I}[x = 1] = x$
- ▶ $\theta = \log \frac{\mu}{1 - \mu}$
- ▶ $\exp(\theta^\top x) = \begin{cases} e^\theta & x = 1 \\ 1 & x = 0 \end{cases}$
- ▶ $A(\theta) = \log(1 + e^\theta)$
- ▶ It's easy to check that $\log(1 + e^\theta) = -\log(1 - \mu)$ when $\theta = \log \frac{\mu}{1 - \mu}$

34 / 38

Big Picture
ooooContinuous Distributions
ooooooooooooExpectations
oooooooExponential Families
oooooooooooo●oooo

Review: Normal Distribution

$$\begin{aligned} p_{\mu, \sigma^2}(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right) \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x^2 - 2x\mu + \mu^2)\right) \end{aligned}$$

$$\log p_{\mu, \sigma^2}(x) = x^2 \cdot \frac{-1}{2\sigma^2} + x \cdot \frac{\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \log(\sqrt{2\pi\sigma^2})$$

- ▶ $h(x) = 1$
- ▶ $T(x) = (x^2, x)$
- ▶ $\theta = (\frac{-1}{2\sigma^2}, \frac{\mu}{\sigma^2})$
- ▶ $A(\theta) = \log \int \exp(x^2\theta_1 + x\theta_2) dx = \dots = \frac{\mu^2}{2\sigma^2} + \log(\sqrt{2\pi\sigma^2})$

Note: we need $\theta_1 < 0$; why?

36 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
ooooooo

Exponential Families
oooooooooooo●○

Pairwise Markov Random Field

Will revisit later...

37 / 38

Big Picture
oooo

Continuous Distributions
oooooooooooo

Expectations
ooooooo

Exponential Families
oooooooooooo●

Next Time

- ▶ graphical models are exponential families
- ▶ derive important properties of exponential families
- ▶ general treatment of maximum likelihood learning in exponential families

38 / 38