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The Big Picture

Summary of course so far

» compact representations of high-dimensional distributions

> Bayes nets, MRFs, CRFs

> conditional independence, graph structure, factorization
> inference [

> conditioning, marginalization rees eryj ¢PFiecent ,

| > v-anable elimination, message passing <_ 2\(("(“41‘0”&5 jwnt'f";“ +Me)E_P )

> learning loopy belil frov

> Bayes nets: counting b prepeye

» MRFs/CRFs: numerical optimization of log-likelihood, inference is key subroutine

%;é 2(e) = wxe:“yw{?
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What's left?

> Inference (and therefore learning) not tractable for many models

— approximate inference <M:5(V‘%ba |
voelehma

» Other types of probability distributions (continuous, parametric, ..

l’;{gﬁ'd’\_co\] mar/‘d‘) ML hodelg

)
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> H HH . H H H H H . - . .
A bit of probability: continuous distributions, expectations Continuous Distributions
» Exponential families: very general class of distributions
> includes MRFs
> “redo"” learning in much more general way
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Continuous Random Variables and Density Functions

How to define the distribution of a random variable X € R%?

The random variable X € (2 has density function p: Q — R if

P(XeA)=
PlxeA) =
Implies p(z) > 0, [op(z) = 1.

Note: a pmf is a density function (integral over finite set = sum)

plx)dz
S plw)
wek
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Example: Normal Distribution

The univariate normal (or Gaussian) distribution is the most, well known continuous
Ldj’ enﬂf\f

distribution. It has density N
2
/‘\M
(s ) = L exp ( 22<ac—>>
" e i (/\mmafvmhzvd M
?rab

» 1 € R: location, mean, mode
» o2 > 0: spread, scale,
variance N

P(a é)(éb) = CP(K)J%
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How to Think About a Density
A density is “like” a probability. For X € R with density p(z) —’——'—/4‘—\

X Xt

P(X € [z,x+¢€]) = /Hep(x)dx ~ ep(7)

x

1
p(z) = lim —P(X € [z,z +¢€])

The density can be though of as the probability of X landing in a tiny interval around x
(divided the width of the interval).

The standard rules of probability (conditioning, marginalization) usually translate to
densities in a straightforward way.
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Example: Multivariate Normal Distribution

A multivariate normal (or Gaussian) random variable X € R" has density
U neg, ?uad‘fa‘hc
1 Z 1
P(@) = zexp (= 5(x—p) 'S (x — p))

avnorume | i'zed
> (e R™ mean, mode preb
> 3 € R™™: covariance matrix, defines scale and orientation
> Must be positive definite (PSD): x " $x > 0 for all x € R™. (Equivalently, all
eigenvalues positive). D
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Visualization

Sequence of examples due to Andrew Ng / Stanford
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Multivariate Gaussian

p(z; 0, %) = W exp (*%(I -w)'E Nz~ M)) .

«ponential Families

12/38




13/38

Big Pic

14/38

Contours
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Examples: Non-Symmetric
Coul(%e,¥5) =05
)
1 05 .
[0.5 1 ]; 'Ez[o.s 1 ]
‘j;‘ :Co\;(\(LJ YD

Mean

* Change mu: move mean of density around

<ponential Families
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Marginal and Conditional Densities

» Definitions from pmfs usually translate to densities

> Suppose p(x,y) is a density for (X,Y). The marginal and conditional densities are

ply) = / p(x,y)dx

Expectations
#000000

tributions

Expectations

p(xly) = p(%,¥) P(x,y)
p(y)  [p(xy)dx
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Expectations

Given a random variable X with pmf or density p(x) and a function f(X), the expected
value E[f(X)] is

E[f(X)] = ZP(X)f(X) discrete

E[f(X)] = /p(x)f(x)dx continuous

The sum/integral is over all possible values of x.

We often write this as|IE, ) [f(X)] to make the distribution clear.
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Distributions

Mean and Variance
f69=x
The moments of a distribution are expectations of polynomials, e.g. f(z) = (z — ¢)? for

scalars.
E_ff Y

The mean is
s = EX]= / p(x)x dx

Let u = E[X]. The variance is

= (ov(X;JX3>
Var(X) =E[(X — ) X scalar

Var(X) = E[(X — u)(X — )] X vector

(O\JC\‘H:‘MC m

Wmeteig

Xl - || =2 2] <

Exponential Families

= ELCxm)(x; xaj)]
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Marginal and conditional means use marginal and conditional densities:

Epxy) [Y]= Epy) [Y] marginal
Epey) [XIY = y] = Ep(xjy)[X]  conditional

In the vector case, Var(X) is the covariance matrix.

Exponential Famili
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Expectations
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Continuous Distributions

Linearity of Expectation

For X,a,b € R:
ElaX +b] =aE[X]+b

For vectors X and b and matrix A

E[AX +b] = AR[X] + b

Proof: write out expectation, use linearity of sum/integral

Exponential Families
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Variance is Positive (Semi-Definite)

A covariance matrix Var(X) is always positive semi-definite.
Proof (scalar): E[(X — 11)?] > 0 because the integrand is non-negative

Proof (vector): let z be any vector and 1 = E[X]. Then
Noi(K) =z = 27 EL(%w) ()" 2
£ = () (k)=
= [ \/T\J’l
ELIvr]
7z O

v=(t-) 2

!

f
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Significance

Expectations are important, but can be hard to compute!

Example: suppose p(x) is an MRF. A marginal is an expectation:
P(Xu=0a,Xy,=b) =Epx [I[X, = a, X, = b]]

Inference = computing expectations = hard in general

We will come back to approximating expectations and approximate inference
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Exponential Families
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Exponential Families

An exponential family defines a set of distributions with densities of the form

po(z) = h(z) exp(0T T(z) — A(0))

> 6: “(natural) parameters”

> T'(x): “sufficient statistics”
> A(f): “log-partition function”
>

h(z): “base measure” (we'll usually ignore)
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Interpretation (h(z) = 1)

po(z) = exp(8 ' T'(z) — A(6))
» 0T T(x) is a real-valued “score” (positive or negative), defined in terms of
“features” T'(z) and parameters 6
» exp(6T(x)) is an unnormalized probability

> The log-partition A(f) = log Z(6) function ensures normalization

_ exp(0TT(2))

pole) = iy AB) =1ow Z(0) = log. / exp(67T(x))da

> Valid parameters are the ones for which A() is finite.
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Applications and Importance

» We can get many different families of distributions by selecting different “features”
T'(z) for a variable x in some sample space:

» Bernoulli, Binomial, Multinomial, Beta, Gaussian, Poisson, MRFs, ...

> There is a general theory that covers learning and other properties of all of these
distributions!

> A good trick to seeing that a distribution belongs to an exponential family is to
match its log-density to

log pp(x) = log h(z) + 0T T(x) — A(0)
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Preview: Graphical Models

For some intuition why exponential families could be relevant for graphical models,
observe that the unnormalized probability factors over “simpler” functions, just like
graphical models:

exp(0T(x)) = exp 3 0,T;(x) = [[ exp(6:T;()

(Think: what could T'(z) look like to recover a graphical model?)
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Example: Bernoulli Distribution

The Bernoulli distribution with parameter 1 € [0, 1] has density (pmf)

=1 T
u\r) =
P l—p 2=0

One way to write the log-density is

log pyu(z) = I[z = 1]log p + I[z = 0] log(1 — p)

To match this to an exponential family

log pg(x) = log h(z) + 0" T(x) — A(9),
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Review: Bernoulli Distribution

To match this to an exponential family log py(x) = log h(x) + 0T T () — A(0), take
h(z) =1
T(w) = (1o = 1],If = 0]

0 = (log 1, log(1 — p))
01

exp(0TT(x)) = {292

A(9) = log(e?r + €%2)
It's easy to check that A(f) = 0 when 6 = (log y, log(1 — )

vYyy

r=1
=0

v

vy
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Example: Bernoulli, Single Parameter

We can also write the Bernoulli as a single-parameter exponential family. Rewrite the
log-density as

logpu(2) = log(1 — p) +zlog 7 ﬁu
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Review: Bernoulli, Single Parameter

h(z)=1
> T(x)=Iz=1=x
> 0 =log £,

e =1
> 07 _
exp(0' z) {1 0

v

A(9) = log(1 + €%)

v

It's easy to check that log(1 + e) = —log(1 — ) when 0 = log l{‘—u
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Example: Normal Distribution

Puon(w) = =g exp (= (o= )
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Review: Normal Distribution

1
p,u,az(x) = \/W exp ( - ﬁ(l - /1/)2)
1
= exp (— 5hz (2% — 2zp + pi?))
1 _ 2 1 [T RN
ngp,o'Q(z)—-r ﬁ“!‘l’?—ﬁ—og( 7TO')
> h(z)=1
. T(@) = (2%, 2)
> 0= (2;51?7 d%)
> A(0) = log [ exp(x20; + xbp)dr = ... = % + log(v2mo?)

Note: we need 6 < 0; why?
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Pairwise Markov Random Field

Will revisit later. . .
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Next Time

» graphical models are exponential families
» derive important properties of exponential families
> general treatment of maximum likelihood learning in exponential families

Exponential Families
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